INPUT-OUTPUT PLANNING WITH INEXACT DATA

J. Rohn

1. Introduction. In this paper, we deal with the input-output

model from the point of view of the interval mathematics. No
preliminary knowledge neither from economics, nor from the
region of interval mathematics are required, because all the
necessary facts are given below. After a short review of the
used symbolies in the section 2, we give a brief description

of the classical input-output model in the section 3. The next
section 4 contains the formulation of the problem and some basic
assumptions, too. The proper mathematical part of this paper
begine in the section 5, where the fundamental definition of
feasible solutions and two different ways of their description
are given. In the section 6, we discuss optimal feasible solu-
tions. Then in the section 7 some further properties of feasible

solutionse are given.

2, Symbolics. Some symbols used throughout the paper are
explained in this section. Let A = (aij)' B = (bij) be two mxn-
-matrices. We write A<B (A<B) if aijsbij (aij<bij) for i =
= 1yeseymy j = 1y0e0,n. The relation B2 A (B>A) is equivalent
to A<B (A<B). A matrix A is called nonnegative (positive) if
A20 (AD>0), O being the zero matrix. Let A £B; then, the set
{c]agc <B} is called interval and is denoted by (A,B]. Thus,




due to the definition, any interval [A,B] is nonempty, but may be re-
duced to a single matrix if A = B. An interval (A,B] is said to

be nonnegative if A is nonnegative. AT

means the transpose of A.
The same symbols are also used for vectors, which are treated as
one-column matrices. E denotes the unit matrix, whereas e denotes

the vector (1,1,...,1)%.

3. The input—output model. Here, we give a brief account of

the input—output model. Por more detailed information, see (] , a21.
The model describes a national economy which is supposed to be

disaggregated to n sectors, n3 2, labeled by 1,2, ...,n. For each

i, i = 1, .e.,n, the i~th sector produces a single kind of goods,

which is also labeled by i. A part (possibly zero) of the gross

output of each sector is consumed by some other sectors as inputs

for their own productioﬁs;,tho amount of the i-th goods consumed

by the j-th sector is supposed to be proportional to the gross

output x- of the j-th sector with the coefficient of proportionality
°
854
tion purposes within the national economy is equal to z;ala i

Thus the total amount of the i-th goods consumed for produc-

Hence, we have .
ZainJ * Y5 i = 1,2, eeeyny
where, for each i, x5 denotes the gross output and ¥ the net
output of the i=th sector (measured, as usual, in monetary units).
The a 1j ‘s are called input coefficients and are assumed to be
. o

constant. Taking A = (aij)’ X = (xi), y = (yi), we can put the
above gystem into the form

(BE-a)x=7 (1)
which is the basic equation in the Leontief ‘s input-output

analysis. Clearly, Ao and x are nonnegative and go is y if the




-3 -
workability of all sectors is supposed. The profitability of
the j=-th sector means that the value of its production is
greater than that of compoq&yts used, i.e.

Xj> %agjxj,
which leads to ~

10 z_a‘.)..

-

Thus, using the vector e = (l,l,...,l)T, introduced in the sec—
tion 2, the assumption of profitability of all sectors can be
written as

oT(E - a,) > 0.
As we shall see in the next section, the two conditions

(I,) 4,2 0
(11,) e(E - 4,) > OF
imply the nonnegative invertibility of the matrix E - A, .
For a given net output y = (yi), the number ﬁfyi = eTy
is called the national income. -
The model (1) is used mainly for planning to solve the two

main problems: (i) to find a gross output x which yields a given
net output y, (ii) to find a net output y corresponding to a

given gross output x. In the sequel, we shall consider the problem

(i) onmly.

4. Basic assumptions., From the point of view of the model (1),
the national economy is completely characterized by the matrix
Ao. But, in practice, it appears to be very difficult to find out
the exact values of input coefficients, because the data from
which they are determined often fajil to be both exact and complete.
In this paper, we make an attempt to take this fact into account

assuming for each i,j = 1,2, «++syn W8 know only a real interval
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2y 49 Eij] containing a.gj, but not the value a(i’j itself, Tak-
ing A = (gij), = (Eij), we thus have an interval [A,XJcontain-
ing the unknown matrix Ao. We assume this interval to be
sufficiently "narrow* so that the conditions (Io), (IIO) fronm
the preceding section remain valid for any A€ [A,K]. It can be
easily seen that an interval [4,] has this property if and only
if it satisfies the assumptions
(1) [a,X] is a nonnegative interval containing A,
(11) T(E - ) > o'.
Now, for a given gross output x, we are not able to say more than
that the corresponding net output y belongs to the set {(E - A)xl
]Ae [A,I]} , 80 that the problem (i) mentioned at the end of sec—
tion 3 is no more solvable. Therefore, we assume that instead
of a fixed desired net output y, an interval [g,¥] satisfying
the assumption
(111) [y,7] is a nonnegative interval

is given and we want to f£ind out such a gross output x to be
able to be sure that the corresponding net output y = (E - Ao)x
will lie in [x,’i]. This leads to the definition of a feasible
solution, which is given in the next section.

The assumptions (I), (II), (III) are called basic assump-
tions. We draw some conclusions of them in the following

Corollary. Let (I), (II) be satisfied. Then, (i), (ii),
(iii) hold:

(i) E - A is nonnegatively invertible for each a€ [a,K]

(1) (8 - )% [ (@ -7 @ - D for each ae [4,X]

(111) (B - &)(E - D7 E
Proof. Using the norm Jal = m&lea |, we have l|Al €

< max Zaij = max(e A) < 1 for each AE[A,AJ. Hence (E - A)
i~ Jj
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o
= ZOAJ due to the well-known theorem, which in view of the
nonnegativity of A implies (i). Because the inequalities 0 £ A <
< A<Z imply QJSAJSKJ for j = 1,25+, we have (E - g)-lé
< (E -~ A)"1= (£ = )~1, which is (ii). At last, (E - 4)(E - £)™¢
=E+ (£ - A)E - K)'léE and the proof is complete.m

Using the Kronecker symbol Jij (i.e. Jij =1 for i=j
and Jij = Q otherwise), we define the matrices

4 = (@~ a5
4; = (Jijﬁij)
K = (A= d45;))
I, = (dy3:-

Then, 4, and A, are nonnegative, 4, is diagonal and A; + 4, = 4
for K, K, the same is valid. Further, E - A, and E - i, are
diagonal matrices with positive diagonal elements, since
a4 <8y, !—.(eTK)i<l for i = 1,2, ++.y0n. Now we define the
matrices
=y~1

P=(E=-4)(E-TK)

H=E - 52 + FA,
which both are nonnegative according to the Corollary and the

previous note. Finally, we define the vectors

y=y-F
x, = (-5
x = (E -7

the last two of them being obviously nonnegative. The introduced
matrices and vectors will frequently appear in the following

theorems.

5, Peasible solutionsg, In the sequel, we always suppose the

basic assumptions (I), (II), (III) to be satisfied, without

-
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mentioning them in the theorems. We start with the fundamental
definitions:

Definition. A nonnegative interval [x,x] is said to be a
feasible solution if (E - a)x€[y,¥] for any A€ [_A_,K], x€
e [x,x].

It would be more correct to speak of "feasible gross out-
put solution subject to [y,y] ", but, for the sake of brevity,
we say "feasible solution* only. Thus, if [x,x] is a feasible
solution and x€ [ _:5,?(], then the definition combined with the
basic assumption (I) ensures that the corresponding net out-
put y = (E = A )x lies in [x,¥] although the matrix A  is not
known. In Theorem 1 and Theorem 2 we give two different ways of
description of feasible solutions.

Theorem 1. An interval [x,X] is a feasible solution if and
only if x and X satisfy the system

(E - 52)-’-‘ i SE4 £y
(E=-R)x~-5% 2% (2)

X <%

Proof. Let [x,%] be a feasible solution. Set W = (E - A,)% -
- AX W= (E - 12)5 - Kl?t and suppose Wi> ii for some i,
1<i<n. Then, taking A = 4, X = (51,...,;i_l,il,;iﬂ,...,gc_n)Te
€[x,x] , we have ((E - A)x); = '—'i> §i’ which contradicts the
feasibility of [x,%]. Hence W <J; the inequality w > y can be
proved in a similar way. Conversely, let x and X satisfy (2). First,
the second and third inequality in (2) imply (E - X)x >
> (E -4z - E % > y and premultiplying this by the nonnegative
matrix (E - )~% gives x > (E - D7y = x,> 0y so that [x,%]
is a nonnegative interval. Second, tak;ng W, w as above, for any

a€la,k], xe[x,x] we have (E - A)x <(E-A)x<€W<Yand




- T -

(E~A)x> (E-EK)x> w>y, hence [x,X] is a feasible solu~
tion. W

For the purpose of another description of feasible solu-
tions, it is useful to introduce the vector d = x - X, which
is called the length of the interval [x,X] . With the help of

the identity X = x + d, the system (2) can be rearranged to

the system
(B-a)x <F - (B -4,
(E-D)x >y + &4 (3)
0 =<d.

Theorem 2. An interval f_x,?c] is a feasible solution if and

only if

x, + (E = D™ 4 + k)
(4)

T E]

x4+ 4

Where d and k are nonnegative vectors satisfying the systenm
Hi + Fk sy’ (5)

Proof. Let [x,%X] be a feasible solution. Then the vectors
d=X=~x k=(E-EKzx-y~ k4 are nonnegative in view of (3)
and we obtain ixﬁmediately x=x+d, x=(E - I)"l(l + Ild + k),
which is (4). To see (5), we apply this expression of x to the
first inequality in (3), which yields (5). Conversely, if (4) and
(5) hold, then d is the length of [x,X] and we have (E - Dx =
=y+Ed+k2 y+E4, (E-A)x=Ha+F(g+k) - (E -4,8<
< ¥ - (E-4,)d, thus x and d satisfy (3), hence [x,%] is a
feasible solution.ll |

Using this result, we can describe lengths of feasible solu-

tions.



Theorem 3. A nonnegative vector d is the length of a

feasible solution if and only if it satisfies the system
Hd <y’. (6)

Proof. If d is the length of a feasible solution [x,X] ,
then Theorem 2 ensures the inequality Hd + Fk < y’ for some
k > O, which, by virtue of F> 0, implies Hd = y»'. On the other
hand, if Hd <y’ and d > O, then Theorem 2 as applied to k = 0
ensures the existence of a feasible solution of the length d. B

For a nonnegative vector d, there can be infinitely many
feasible solutions of the length d in the general case, but it
is possible to estimate their lower and upper bounds:

Theorem 4. Let [;,§J be a feasible solution of the length d.
Then, we have

zefx, + (B-D7Ea, x - (E- AHE -0 (D

Felx, + E-DHE-T)a, x - (- a)tae] . (®)

Proof. Premultiplying the first inequality in (3) by non-
negative matrix (E - A)_l and the second one by nomnnegative
matrix (E - I)-l, we obtain

x, + E-DEa<xsx -~ (E- a)7HE - 4,4

which proves (7). Then, by adding d to these inequalities, we

obtain (8). W

6. Optimization. It can be easily seen from (6) that if
y':>0, then infinitely many feasible solutions exist, so that now
tbe question arises,which of them is to be chosen for practical
use. Perhaps the most natural criterion of optimality is the
maximization of the national income, which represents the summary
profit of & national economy. Let us recall that the national in-

come formed by a net output y = (E - Ao)x is the number eTy =
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= eT(E - Ao)x. First, we shall evaluate the lower and upper
bound of national income at a given feasible solution.
Theorem 5. Let [x,X] be a feasible solution and let M =
= {eT(E - A)x I A€ [a,K] , xe [g,i]} . Then
= [eT(E-D)x, T(E-2)37).

Proof. Take r = el(E - R)x, s el (E - A)%. If a€[a,EX],
then 0F < eT(E = &) < oT(E - ) € T(E - 4), therefore for any
x€[x,%] we have e*(E - A)x&[r,s] , hence MC[r,s] . To prove
the converse inclusion, we define the real function f(t) =
=el(E-X% + (K - a))(x + t(X - x)) for t€[0,1] . Clearly, f
is continmuous in {0,1] and f(0) = r, £(1) = s. Let v¢[r,s] .
Then, there exists a t¢€ [0,1] such that f(t) = v. Now, taking
A=3+t(A~3), x=2x+ t(X ~ x), we have A€ [A,X], x€[x,X]
and v = eT(E - A)x €M. Hence [r,s] C M, which completes the
proof. B

Under maximization of the national income in the interval
case we will understand the maximization of its lower bound.
This leads, in the light of Theorem 5, to the problem

max {eT(E - R)x “5,;] is a feasible solution}, (9)
But, from the point of view of the interval approach, the problem
in this formulation has a great disadvantage. Namely, if [x,X]
is a feasible solution which yields the optimal value in (9),
then x = X. In fact, if x # %, then the basic assumption Il
implies el(E - A)x < eT(E - L)X, hence the feasible solution
[*,%X]yields a greater value of objective function, which is a
contradiction. For the practical use, however, the relation
x # X in the goal solution [x,x] may be desirable. To remove this
difficulty, we shall suppose the length of the desired optimal

feasible solution to be given beforehand. Then, we have a8 new
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problem: for a given nonnegative vector 4, find

max {eT(E - 2)x l[;,g + d] is a feasible solution}_ (10)
Clearly, (9) is equivalent to (10) for d = O. According to
(3), the problem (10) is equivalent to the linear programming
problem

max {eT(E - 3)x l(E - - (E - 4,)4, (11)

which, according to Theorem 3 and Theorem 4, has an optimal solu-
tion for any nonnegative d satisfying Hd < y’. The optimal
solution x of the problem (11) is called the d-optimal solution.
Theorem 6. A vector 39 is a d-optimal solution if and only
if
= x + (B-DEE + k), (12)
where ko is an optimal solution of the problem
nax { % | k>0, P&y~ Ha). (13)
Moreover, if my is the optimal value of (11) and m, the optimal
value of (13), then
m, = eT(y + A,d) + mye (14)
Proof. According to the Theorem 2, x satisfies the constraints
of the problem (11) if and only if
x=x, + (B-DEQ +K) *
where k satisfies the constraints of the problem (13) and this
correspondence between x and k is obviously one-to—one. Moreover,
(*) implies
eT(E - K)x = et (y + x,4) + Tk, » ()
Hence if z? is an optimal solution of (11), then the vector ko'
corresponding to §° in the sense of (x), is an optimal solution

of (13), and conversely. Taking the optimal values in **,

we obtain (14). H
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This theorem gives more than a mere reformulation of the
problem (11), because the number of rows in the constraints
matrix of (13) is twice smaller than that of (11).

Por a length d, satisfying an additional condition, the
d-optimal solution can be expressed explicitly.

Theorem 7. If a nonnegative vector d satisfies the condition

Flaa € 7Yy, (15)

then the vector

P =x - (E-2"HE -4, (16)
is the unique d-optimal solution.

Proof. Pirst of all, the basic assumption (II) implies
oTF ! < eT(& - D)(8 - )73 0. Purther, the vector k =
= F"l(y'- H3) obviously satisfies the constraints of the problem
(13). Now, if k is any vector satisfying the constraints of (13),

then taking h = y'- Hd - Fk, we have h> 0 and k = k, - F-l

h,
hence e’k = e’k ~ eTFln<eTk  and ek = 'k, if and only if
h = 0, which is equivalent to k = ko. Hence ko is the unique
optimal solution of (13), so that the vector x° = x  +

(- D™ (Ed + k) = x = (E=A2)7H(E - 4,)a is the unique
d-optimal solution. W »

Note that the condition (15) is stronger than (6), which
follows from (15) by premultiplying it by the nonnegative
matrix F.

In the last section 7, we shall deal with some further
properties of feasible solutions without any connection with

the matter of section 6.
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1. Properties. Another characterization of feasible solu-
tions is given in the following

Theorem 8. An interval [3_{,?{] is a feasible solution if and

only if [x,%x]CX, where
X= {x( (E ~ A)x <Y, (E—A‘)xéx}. (17)
Proof, First of all, if x€&X, then (E - A)x> y, which
implies x2 x > O. Whence, if (x,x] CX, then [x,%] is a non-
negative interval and for any A€ [4,2] , x€[x,%X] we have
(E - a)x€ [(E «)x, (E~-a)x)JC[y,7] , so that [x,X)is a
fea.sible soiution. Conversely, if [ 5,?] is a feasible solution
and x€ [x,%] , then in the light of Theorem 1 we have (E - A)x<
€(E - A,)% = Ay x<y and (E - R)x2(E - E,)x - K;x2y, hence
x€X and since x has been chosen arbitrarily in [x,Xx] , it
implies [Xx,x]CX. W
Note that X is the union of all feasible solutions. The
next theorems of this section will be devoted to various
properties of X. Pirst, we give some equivalent necessary and
sufficient conditions for existence of a feasible solution.
Theorem 9, The following conditions are mutually equivalent:
(i) There exists a feasible solution
(i) ¥y 0
(115) (E - &) (x - %) > 0
(v) (B -A)x, £y - X
(v) x,€X
(vi) X # 4.
Proof. We prove (1) = (i) = (1id) => (iv) =D (v) = (vi) => (i)
(1) =>(ii). If there exists a feasible solution [(x,%] ,then,
by viftue of the nonnegativity of its length 4 and of the matrix

H, Theorem 3 implies y > Hd 2 O.
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(ii) = (iii) =>(iv). Both these implications follow from
the identities y = (E = A)(:\f:1 -x) = F-x~ (&~ A)x,, which
can be proved easily.

(iv)=> (v). By definition of X,, We have (E - I)xo = Yo
Then (E - A)x, =3 + (& ~ A)x, <7, so that x € X according
to (17).

(v) =(vi) is obvious.

(vi) =2(i). If x€X, then [x,x] is a feasible solution
according to Theorem 8.l

Perhaps (iv) is the most illustrative of these six condi-
tions, showing that the matrix A - A must be "sufficiently
smaller® than the vector y - y to ensure the existence of a
feasible solution.

Theorem 1Q0. Let X # #. Then, we have the following:

(1) xCx %]
(ii) xeX

(iii) x € X if and only if P

y'>0
(iv) If eTKl) OT, then X is an interval if and
only if X = {x}.

Proof. (i) If x €X, then [x,x] is a feasible solution of

the length d = O, hence Theorem 4 ensures x € [x o,x1] . Thus
X C[xo,xl] .

(ii) The implication X # # =»x, €X follows from Theorem 9.

(iii)Because (E - g._)x:L = y due to the definition of Xqs
(17) gives that x4 €X if and only if (E - K)x; > y. But
(E-X)xy -3 = F"l'i -y = F-ly', hence x; € X if and only
if Fiy > o.

(iv) If X = {xO} , then X
= [x,%x]. Then (i), (ii) imply

[xo,xol. Conversely, let X =

I

= X,e Take 4@ = x - Xye Then
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xo and d satisfy the system (3), especially the second in-
equality in (3) implies A-ld < 0, hence Zld = 0 and thus also
"X )d = 0, which gives d = O, since e, > of and a> o.
Hence X = x and X = {XO}..

The condition eTKl) OT, appearing in (iv), requires for
each j to exist an i such that i # j and Eij> 0.It means, that
this condition is fulfilled if each sector needs the products
of at least one another sector as input for its production.

An alternative holds for the segment gonnecting X, with Xy
{xo + 17(x:L - xo) l t€
e[o,l]}. Then, either SCX, or SAX = {x}.

Theorem 1l. Let X # & and let S

Proof. Por t& [0,1] denote Xp = X, + t(x, - xo). Now, x,€X
if and only if (E - A)x, £y and (E - K)xt > y. These inequali-
ties, if rearranged, are equivalent to (1 - t)y’> 0 and
$F"1y > 0. But (1 - £)y°> O holds for any t€ [0,1] since
¥°>0 (Theorem 9, (ii)). Now, if x, & X, then Fly°> 0 (Theorem
10, (iii)), which implies tF ly“y 0 for any t€ [0,1], hence ScCX.
If xl¢X, then (F 1y ')i < 0 for some i, 1=1i%n, hence
£(Fly*), > 0 if and only if t = 0. Thus SNX = {x,} in tnis case.m

At last, we give some facts concerning the interior of X,
denoted by x°.

Theorem 12. We have (i), (ii), (iii):

(1) = x| (®-0x<T, E-Dx> z}
(ii) X° # @ if and only if y >0
(iii) If Aje > 0, [xX]CX and x < X, then x €x° and X €X°.

Proof. (i) Take ¥ = {x| (E - &)x <¥, (E - E)x> x} - Clearly,

Y is open a.nd Y CX, hence v¢x°, To prove (i), it is sufficient

]

%o show that X°CY. To this end, let x = (x;)€X°. Then there
exists a o[>o such that [x - cf; e, X + d; eJC X. Suppose fo,
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let e.g. ((E - 4)x); = ii for some i. Then taking x’= (Xypeees
X + cf; ,...,xn)T, we have x'€[x - cf;e, X + cgeJCX and
((E - A\_)x'):.L =y, + (- gii)cf; > ¥;» hence x'¢ X, which is a
contradiction., Thus x€Y, hence X°c Y, which proves % =v.
(ii) Let X° # #. Then there exists an interval [x,x]JCX
such that d = X = x > 0. Using Theorem 3, we obtain y "> Hd>
2 (B~ Az)d > 0, since E - A, is diagonal matrix with
positive diagonal elements. On the other hand, if y > O, then
there exists a o{)O such that J;(He) < y°. Then, according
to Theorem 3, there exists an interval [x,x]CX such that
X=x= {e) 0, hence # ¥ (x,%]° € x°.

(i3i) Let [x,X)CX, x <X. Set d = X = x = (d;),

‘ %=

= mi.n d;o Then d > 0, & >0 and we have Kjd > 4,d > {éle> 0,
(E - é_z)dg (E - Kz)d > 0. Pirst, x and 4 satisfy the system (3),
- hence (E-A)Esy- (E-éz)d<§a.nd (E-K);)x-ﬁ—ﬁld) X

so that (i) ensures 5€x°. Second, rearranging the system (3)

by putting x = X = d, we obtain (E - A)X £y - 4;d <y and

(E-K)x>y+ (E-1%,)d> g, which implies x€x’. m

Some further results concerning the interval approach to the

input-output model are contained in fB]; [4] .
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