Marti, K., Approximationen stochastischer Optimierungsprobleme, Manuskript 1977 (im Druck).
 ROCKAFELLAR, R. T.; Wets, R., Stochastic convex programming, J. Math. Economics 2, 349-370 (1975).

Anschrift: Prof. Dr. K. Marti, Institut für Operations Research der Universität Zürich, Weinbergstraße 59, CH-8006 Zürich, Schweiz.

ZAMM 58, T 494 -T 495 (1978)

Jrří Rohn

Correction of Coefficients of the Input-Output Model

An economic system described by the input-output model

$$(E - A_0) x = y \tag{0}$$

(see e.g. [1]) is fully determined by the matrix $A_0 = (a_{ij}^0)_{n \times n}$, but in practice it is very difficult to find out the exact values of its coefficients. Here we suppose that these values are unknown but $a_{ij}^0 \in \langle a_{ij}, a_{ij} \rangle$, where a_{ij}, a_{ij} are given real numbers, $a_{ij} \leq a_{ij}$, for i, j = 1, ..., n. Suppose it is known that a final demand y corresponds to a gross output x in the sense of model (0). The main problem of this paper is how to use this information for obtaining more precise estimations of a^o_{ij} , i.e. for the sharpening of intervals $\langle \underline{a}_{ij}, \overline{a}_{ij} \rangle$, i, j = 1, ..., n. The presented results are contained

Denote $\underline{A} = (\underline{a}_{ij})_{n \times n}, \overline{A} = (a_{ij})_{n \times n}, \langle A, A \rangle = \{A \mid A \leq A \leq \overline{A}\}$ and let $M = \{A \mid A \in \langle A, \overline{A} \rangle, (E - A)x = y\}$. Now the problem under consideration can be formulated as the problem of computing numbers

$$\tilde{a}_{ii} = \max\{(A)_{ij} \mid A \in M\}, \quad \tilde{a}_{ij} = \min\{(A)_{ij} \mid A \in M\}, \quad i, j = 1, ..., n$$

Let $\underline{A} = (\underline{a}_{ij})_{n \times n}$, $\widetilde{A} = (\widetilde{a}_{ij})_{n \times n}$. It is obvious that $A_0 \in \langle \underline{A}, \widetilde{A} \rangle \in \langle A, \widetilde{A} \rangle$. In the sequel we assume that the following two conditions are satisfied:

(i)
$$x > 0$$
,

(ii)
$$(E - \bar{A}) x \leq y \leq (E - \underline{A}) x$$
.

Condition (i) requires all the sectors of the system to be producing and (ii) holds if and only if $M \neq \emptyset$. The "if" part is clear, because if $A \in M$, then $(E - A) x \leq (E - A) x = y \leq (E - A) x$, the "only if" part is proved below.

Theorem 1: Let (i) and (ii) be satisfied. Then

$$\tilde{a}_{ij} = \min \left(\tilde{a}_{ij}; \frac{1}{x_j} \left(x_i - y_i - \sum_{k \neq j} a_{ik} x_k \right) \right) \tag{1}$$

$$\tilde{a}_{ij} = \min \left(\tilde{a}_{ij} : \frac{1}{x_j} (x_i - y_i - \sum_{k \neq j} a_{ik} x_k) \right)$$

$$\underline{a}_{ij} = \max \left(a_{ij} : \frac{1}{x_j} (x_i - y_i - \sum_{k \neq j} \tilde{a}_{ik} x_k) \right),$$

$$(1)$$

$$i, j = 1, \dots, n.$$

$$(2)$$

Proof: We shall prove the statement (1) only, because the proof of (2) is quite analogous. For $l=1,\ldots,n$

put $t_l = \frac{((E-A)x-y)_l}{(A-A)x_l}$ if $((A-A)x_l)_l \neq 0$ and $t_l = 0$ otherwise. It follows from (ii) that $t_l \in (0,1)$ for each l.

Let $a_{lk}^* - \underline{a_{lk}} + l_l(\overline{a_{lk}} - \underline{a_{lk}}), \ l, k = 1, \dots, n$, and let $A^* = (a_{lk}^*)_{n \times n}$. Then $A^* \in \langle \underline{A}, \overline{A} \rangle$ and $(E - A^*)_{x} = y$, so that $A^* \in M$. Hence $M \neq \emptyset$.

Let
$$i, j \in \{1, \dots, n\}$$
. Put $\alpha_{ij} = \frac{1}{x_j}(x_i - y_i - \sum_{k \neq j} \underline{a}_{ik}x_k)$. Let $A = (a_{ik})_{n \leq n} \in M$; then $(E - A) x = y$, thus

$$a_{ij} = \frac{1}{x_i} (x_i - y_t - \sum\limits_{k \neq j} a_{ik} x_k) \le \alpha_{ij}$$
. Since $a_{ij} \le \bar{a}_{ij}$, it implies that $a_{ij} \le \min{(\bar{a}_{ij}; \alpha_{ij})}$, hence also

$$\tilde{a}_{ij} = \max \{(A)_{ij} \mid A \in M\} \leq \min (\tilde{a}_{ij}; \alpha_{ij}).$$

To complete the proof, it will suffice to find a matrix $A \in M$ such that $(A)_{ij} = \min (\bar{a}_{ij}; \alpha_{ij})$. We distinguish two

- 1) Let $\alpha_{ij} \leq \bar{a}_{ij}$. It follows from (ii) that $\underline{a}_{ij} \leq \alpha_{ij}$, so that $\alpha_{ij} \in \langle \underline{a}_{ij}, \bar{a}_{ij} \rangle$. Put $a_{ij}^1 = \alpha_{ij}$, $a_{ik}^1 = \underline{a}_{ik}$ for $k \neq j$, $a_{ik}^1 = a_{ik}^*$ for $l \neq i$, $k = 1, \ldots, n$, and let $A^1 = (a_{ik}^1)_{n \times n}$. Then $A^1 \in M$ and $(A^1)_{ij} = \alpha_{ij} = \min{(\bar{a}_{ij}; \alpha_{ij})}$.
 - 2) Let $\tilde{a}_{ij} < \alpha_{ij}$. For $t \in \langle 0, 1 \rangle$ define the real function

$$\varphi_{ij}(t) = \bar{a}_{ij}x_j + \sum_{k+j} (a_{ik} + t(\bar{a}_{ik} - \underline{a}_{ik})) x_k$$
.

Then $\varphi_{ij}(0) < x_i - y_i$, $\varphi_{ij}(1) = (\bar{A}x)_i \ge x_i - y_i$, thus there exists a $\tau_{ij} \in (0, 1)$ such that $\varphi_{ij}(\tau_{ij}) = x_i - y_i$. Now put $a_{ij}^2 = \bar{a}_{ij}$, $a_{ik}^2 = a_{ik} + \tau_{ij}(\bar{a}_{ik} - a_{ik})$ for $k \ne j$, $a_{ik}^2 = a_{ik}^*$ for $l \ne i$, $k = 1, \ldots, n$, $A^2 = (a_{ik}^2)_{n \times n}$. Then $A^2 \in M$ and $(A^2)_{ij} = \bar{a}_{ij} = \min(\bar{a}_{ij}; \alpha_{ij})$, Q. E. D.

We say the ij-th coefficient (of the matrix A_0) is corrected if $\underline{a}_{ij} < \underline{a}_{ij}$ or $\tilde{a}_{ij} < a_{ij}$, i.e. if $\tilde{a}_{ij} = \underline{a}_{ij} < a_{ij} = \underline{a}_{ij}$. Taking $p_{ij} = (a_{ij} - \underline{a}_{ij}) \, x_j$, $i, j = 1, \ldots, n$, it follows from (1) and (2) that

$$\tilde{a}_{ij} < \bar{a}_{ij}$$
 if and only if $p_{ij} > ((E - \underline{A}) x - y))_i$, (3)

$$\underline{a}_{ij} < \underline{a}_{ij} \quad \text{if and only if} \quad p_{ij} > (y - (E - \overline{A}) x)_i,$$
 (4)

so that the ij-th coefficient is corrected if and only if

$$p_{ij} > \min\left(\left(\left(E - \underline{A}\right)x - y\right)_i, \quad (y - \left(E - A\right)x)_i\right). \tag{5}$$

Theorem 2: Let (i), (ii) hold. Then

a) if $\tilde{a}_{ij} < \bar{a}_{ij}$ for some i, j, then $a_{ik} = a_{ik}$ for all $k \neq j$,

b) if $\underline{a}_{ij} < \underline{a}_{ij}$ for some i, j, then $\tilde{a}_{ik} = a_{ik}$ for all $k \neq j$.

Proof: Suppose there exist $i, j, k, j \neq k$, such that $\tilde{a}_{ij} < a_{ij}, a_{ik} < a_{ik}$. Using (3) and (4), we obtain

$$p_{ij}+p_{ik}>((\bar{A}-\underline{A})x)_i=\sum_i p_{ii}\geq p_{ij}+p_{ik}$$
,

which is a contradiction.

Theorem 3: Let (i), (ii) be satisfied. Then for i, j, k = 1, ..., n,

$$0 < p_{ij} \leq p_{ik} \Rightarrow \frac{\tilde{a}_{ik} - a_{ik}}{a_{ik} - a_{ik}} \leq \frac{\tilde{a}_{ij} - a_{ij}}{a_{ij} - a_{ij}}.$$
 (6)

Proof: We may suppose that $k \neq j$ and $\tilde{a}_{ij} = \underline{a}_{ij} < a_{ij} = \underline{a}_{ij}$, because the other cases are trivial. Then two cases are possible:

1) $\tilde{a}_{ij} < \tilde{a}_{ij}$. Then $p_{ik} \ge p_{ij} > ((E-A)x - y)_i$, thus $\tilde{a}_{ik} < a_{ik}$ and according to Theorem 2, $\tilde{a}_{ij} = \underline{a}_{ij}$, $\underline{a}_{ik} = \underline{a}_{ik}$. Now we have $(\tilde{a}_{ij} - \underline{a}_{ij}) x_j = ((E-A)x - y)_i = (\tilde{a}_{ik} - \underline{a}_{ik}) x_k$, so that

$$\frac{\tilde{a}_{ik} - a_{ik}}{\tilde{a}_{ik} - \tilde{a}_{ik}} = \frac{((E - A)x - y)_i}{p_{ik}} \le \frac{((E - A)x - y)_i}{p_{ij}} = \frac{\tilde{a}_{ij} - a_{ij}}{\tilde{a}_{ij} - a_{ij}}.$$

2) $\underline{a}_{ij} < \underline{a}_{ij} < \underline{a}_{ij}$. In the similar manner we obtain $(\tilde{a}_{ij} - \underline{a}_{ij})x_j = (y - (E - \bar{A})x)_t = (\tilde{a}_{ik} - \underline{a}_{ik})x_k$ and it again

Note that the *ij*-th coefficient is corrected if and only if $\frac{\tilde{a}_{ij}-a_{ij}}{\bar{a}_{ij}-a_{ij}} < 1$. Thus Theorem 3 implies that if $0 < p_{ij} \le p_{ik}$ and the ij-th coefficient is corrected, then the ik-th one is also corrected. This result can be used also in the following way: let

$$p_{iji} = \max p_{ij}, \quad i = 1, \ldots, n;$$

then if the ij_i -th coefficient is not corrected, then no coefficient of the i-th row is corrected. Note also that if $0 < p_{ij} = p_{ik}$, then $\frac{\tilde{a}_{ij} - \tilde{a}_{ij}}{\tilde{a}_{ij} - \tilde{a}_{ij}} = \frac{\tilde{a}_{ik} - \tilde{a}_{ik}}{\tilde{a}_{ik} - \tilde{a}_{ik}}$.

References

Nikaido, H., Convex Structures and Economic Theory, Academic Press, N.Y. 1968.
 Rohn, J., Interval Analysis of the Input-Output Model (in Czech), Dissertation, Prague 1976.

Anschrift: Dr. Jiří Rohn, Faculty of Mathematics and Physics, Malostranské nám. 25, 11800 Praha 1, Czechoslovakia

ZAMM 58, T 495 - T 496 (1978)

M. VLACH

Multicommodity Location Problems

Recently A. Warszawski has developed a procedure for the multicommodity location problem with no capacity $constraints \ on \ the \ supply \ sources. \ The \ purpose \ \hat{of} \ this \ contribution \ is \ to \ describe \ how \ this \ procedure \ can \ be \ extended$ to the problems with nontrivial capacity constraints.

The single-commodity problem involves locating of one or more supply sources within a set of given possible sites so as to minimize the sum of the setup costs and the transportation costs to a set of destinations with given demands. Denoting by m the number of possible sites, n the number of destinations, g_i the setup costs associated with placing the supply source at site i, A_i the capacity of the supply source if placed at site i, b_i the demand at