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Correction of Coefficients of the Input-Qutput Model

An economic system deseribed by the input-output model
(BE—A)x =1y (0)
(see e.g. |17) is fully determined by the matrix 4, = (@})n:-n, but in practice it is very difficult to find out the exact
values of its coefficients. Fere we suppose that these values are unknown but afj € {a;;, @;;, where ay, @ are given
real numbers, a; = ay, for4,j — 1, ..., n. Supposc it is known that a final demand y corresponds to a gross output x
in the sense of model (0). The main problem of this paper is how to use this information for obtaining more precise
cstimations of afj, i.e. for the sharpening of intevvals {ay, @y, ¢, § = 1, ..., n. The presented results are contained
in |2].
Denote A == (@) xns A= (apnen A Ay ={Ad|A< A= A} and let M — {A| Aeld, A5, (B—A)a=y].
Now the problem under consideration ean be formulated as the problem of eomputing numbers
@; = max {(d),; | Ae M}, a; = min {(4); | A e M}, hi=1,..,n.
Let A == (@)usn A = (@)urxn: 16 is obvious that A, € (A4, 4> ¢ (4, A>.
n the sequel we assume that the following two conditions are satisfied :
(iy x>0,
(i) (E—Magy=(F—Aa.
Condition (i) requires all the scetors of the system to be producing and (ii) holds if and only if M 8. The “if”
part is clear, becanse it A € M, then (B — A)e < (E — A)a =y < (B — A) @, the “‘only if”” part is proved helow.
Theorem 1: Let (i) and (ii) be satisfied. Then

~ . 1

;= min (aU:-/l‘] (s — i 4;,2'"’“@*)) (1)
@ >y
i ’ GLi=1, .0,

4;j = max (ufj;/; (s — —kZ dikxb))- (2)
) #J

Troof: We shall prove the statement (1) only, because the proof of (2) is quite analogons. For [ =1, ..., 7

E—A)yx —y) . - ..
put ¢, ::(( ((A ) ;) )‘I])l if (4 — A)x), 7 0 and { = 0 otherwise. Tt follows from (ii) that f; € <0, 1) for cach .
A —A)z),
Let ak — ay - tlay —ay), Lk—1,..,n, and let A* = (@%)y.n. Then A*¥e (A, A) and (B — A*)r=y,
so that 4* € M. Henee M = 0.

o I
Let 4,5¢ {1,...,n}. Put xy = Py (@ — y - X agxy). Let A = (ag)a-n ¢ M: then (B — A)x =y, thus
i k#j

2
£

1 . — . L
@y =, (0 — 1y — X agay) << oy Sinee ay =< ay;, it implies that a; < min (@ij; i), hence also
) L#j A
Gy = max {(A); | A e M} =< min (a;; &y) -

To complete the proof, it will suffice to find a matrix A ¢ M such that (1) = min (@;; «j;). We distinguish two
cases:

1) Let oy =< @y. 1t follows from (ii) that ay < ay;, 80 that ay € <@y, @;>. Put al = o, af = ay for k7§,
ay —akforl i, k=1,..,n, and let AL = (@}i)axs- Then A* ¢ M and (44); =y = min (@;; %i)-

2) Let 4y < ag. For ¢ € <0, 1> define the real function

gii(t) = agry + X (@ + Haa — an) 2 -
k)

Then @4(0) < x — Yo @i(l) = (Ax); = @, — g, thus there exists a ;€ (0, 1) such thab @ilTy) = & — Y. Now

put aj @ = apt TGy — ag) for k= j, aly = a¥ for I£4, k=1,..,m, A2 = (af)wxn Then A2e M
and (42)y = @y = min (@y; ), Q- B. D.
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We say the ij-th coefficient (of the matrix Ag) is corrected if a; < ay; or Gy << ay, ic. if @y — e <L a; — a.
Taking py = (ay — @) xj, 1, § = 1, ..., a, it follows from (1) and (2) that
ay < ay if and only if * p;; > ((E’ —Ayx — ), )
ay < ay ifandonly if p; > (y - (B — 4)a),, (4)
s0 that the ij-th coefficient is corrected if and only if
Py > min ((E — A) z — y)s, (y - (B — A)x)) . (5)
Theorem 2: Let (i), (ii) hold. Then
a) if ay < ay for some €, j, then @iy = ay, for all k + 7§,
b) if ay < ay for some i, §, then @y = ay, for all k- j .
Proof: Suppose there exist i, j, k, j 5% &, such that d; < ay, @y < dig- Using (3) and (4), we obtain
pij 4 pie > (A — Ap); = 2): Pa = Py + P
which is & contradiction.
Theorem 3: Let (i), (ii) be satisfied. Then for i, §, k=1, ..., n,
@ip — Qg _ @y — i : 6)

iy — W, = @ij — Wy

0 < py = pa =>
Proof: We may suppose that & £ j and @ — a; < @;; — ay, because the other cases are trivial. ''hen two
cases are possible:

1) @; < ay. Then py = p; > (K - A) e — y),, thus @y < ag and according to Theorem 2, a; — aj;,

i = @G- Now we have (@ — ay) @y = (B — A) & — y)i = (@p — i) @, s0 Lhat
e — e (B —d)w—y) (= A)e—y) & -
iy — Wig Pir = Pij a — ty

2) @i < ay. In the similar manner we obtain (@5 — ay) o= (y - (B — A) 2); = (@ — ag)ry and it again
implies (6).
Note that the ij-th coefficient is corrected if and only if % g—? < 1. Thus Theorem 3 implies that if
Fij — &ij

0 < pij < pa nnd the ij-th coefficient is corrected, then the ik-th one is also corrected. This result can be used
also in the following way: let
Piji — Max Py, t=1,..,n;
J
then if the ij;-th coefficient is not corrected, then no coefficient of the i-th row is corrected. Note also that if
@i — @y _ Ay — Qi

0 < pij = pix, then = " =
~ Vi ks = 5
@ij — @iy Qi — dig;
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Multicommodity Location Problems

Recently A. Warszawski has developed a procedurc for the multicommodity location problem with no capacity
constraints on the supply sources. The purpose of this contribution is to describe how this procedure can be extended
to the problems with nontrivial capacity constraints.

The single-commodity problem involves locating of one or more supply sources within a set of given possible
sites 80 as to minimize the sum of the setup costs and the transportation costs to a set of destinations with given
demands. Denoting by m the number of possible sites, n the number of destinations, ¢: the setup costs associated
with placing the supply source at site ¢, A, the capacity of the supply source if placed at site ¢, b; the demand at




