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We present a novel approach to the automatic verification and falsification of LTL

requirements of non-linear discrete-time hybrid systems. The verification tool uses an

interval-based constraint solver for non-linear robust constraints to compute incremen-

tally refined abstractions. Although the problem is in general undecidable, we prove
termination of abstraction refinement based verification and falsification of such proper-

ties for the class of non-linear robust discrete-time hybrid systems. We argue, that—in
industrial practice—safety critical control applications give rise to hybrid systems that

are robust. We give first results on the application of this approach to a variant of an

aircraft collision avoidance protocol.
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1. Introduction

This paper significantly extends previous semi-decidability results for LTL verifi-

cation of non-linear discrete time hybrid systems with real-valued variables. Even
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though this problem is in general undecidable (by reduction from 2 counter ma-

chines), we show, that by exploiting the natural property of robustness of real-life

hybrid systems, an abstraction-refinement based approach—employing both ap-

proximations from above and below—is guaranteed to terminate, either establishing

the truth of the requirement, or exhibiting a concrete counterexample, even for non-

linear hybrid systemsa. Although robustness cannot be checked algorithmically, we

argue, that every reasonable designed system occurring in practice, is in fact robust,

allowing our algorithm to terminate for all practically relevant problem instances.

In contrast, results from Fränzle [15, 16]—also based on robustness arguments—

only handle polynomial flows (in a dense time setting). Our approach also improves

over other approaches to hybrid systems verification [11, 31, 3, 29, 2, 1, 17, 32] in

that termination is guaranteed even for a very rich class of models. Indeed, this is

the first paper providing an algorithm with termination proof for full LTL proper-

ties for discrete time hybrid systems with non-linear dynamics, which are neither

restricted to be controllable, nor to have only finite precision real-valued variables.

The only underlying assumption of robustness is close to the one used by Girard

and Pappas [17], in that validity may not depend on small perturbations of system

variables. In contrast to [17] our notion of robustness applies to the richer setting

of non-linear constraints and full LTL verification of the system model.

The presented approach primarily targets safety critical control applications,

such as collision avoidance systems, where designs must guarantee separation of

traffic agents by safety margins even in the presence of noise and (bounded) in-

accuracies of sensors and actuators, and hence robustness of designs is a key re-

quirement. Intuitively, for such applications, small variances in measurements or

small deviations of actuator settings may not lead to a violation of safety margins

between traffic agents. We will give a formal definition of this intuitive concept of

robustness, which will be instrumental in establishing termination. Even though ro-

bustness cannot be decidable, robustness is ”designed into” industrial safety critical

applications: Development processes for such applications enforce various measures

(such as simulation- or rapid-prototyping based impact analysis of noise, sensor-

and actuator inaccuracies) to ensure that deployed designs meet such robustness

requirements. Design models used for actual deployment, for example in airborne

applications will thus have passed through maturity gates checking that all mea-

sures necessary for ensuring robustness have been performed.b. The termination

argument of our approach thus applies to practically all industrially deployed safety

critical applications. For models which do not meet the robustness assumptions the

algorithm may fail to terminate, but it will never produce an incorrect answer.

aWe use the term ”hybrid systems” for system models that integrate two different models of
execution (state-transition systems for control, and difference equations or differential equations

for the plant). The results of this paper apply to the special case of discrete-time hybrid systems.
bWe have validated this statement with our industrial cooperation partners in the automotive and
avionics domain, see www.safetrans-de.org
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The approach will be illustrated by an air traffic conflict resolution example [34],

where aircrafts follow circular trajectories along opposite directions, leading to a

non-linear hybrid system.

As mathematical model we use discrete time hybrid automata, which in each

time step of fixed duration update a set of real-valued variables as determined

by assignments occurring as transition labels, allowing possibly non-linear arith-

metic expressions. This subsumes the capability to describe the evolvement of plant

variables by difference equations. Transition guards can be non-linear arithmetic

constraints. Steps of the automata are assumed to take a fixed time-period (also

called cycle-time), intuitively corresponding to the sampling period of the control

unit, and determine the new mode and new outputs (corresponding to actuators)

based on the sampled inputs (sensors). We allow arbitrary first-order LTL formulas

as requirements. Atoms are arithmetic constraints over the real-valued variables of

the hybrid automaton, thus allowing to both express response time requirements

(such as “when crash sensor is activated, the airbag will be ignited within 3 cycles”),

stability properties such as ”the aircraft will be maintained at preselected height”,

as well as safety properties (such as “the distance between two aircraft will always

be greater than four miles”).

The decision to base our analysis on discrete time models of hybrid systems is

motivated from an application perspective. Industrial design flows for embedded

control software entail a transition from continuous time models in early analysis

addressing control law design, to discrete time models as a basis for subsequent

code generation. Typically, the control-law design is carried out in CASE tools

such as Matlab-Simulink in a continuous time setting, validating both stability

and safety requirements. Once these key requirements are established, engineers

determine sampling rates using standard text book methods (e.g., [22]), and then

informally validate the discretized model, typically by simulation. For example, if

design engineers have decided to implement a certain control law as a periodic task

with periodicity δ, then simulation would be used to ”verify” that both stability

of the controller as well as safety requirements are maintained in spite of the now

limited observability of the plant at the chosen sampling rate δ. The methods of

this paper replace this informal validation. They allow to formally prove for models

satisfying the robustness assumptions that—even under the limited discrete time

visibility of the plant—LTL requirements, and thus both stability properties as well

as safety requirements, are guaranteed by the controller.

Related work for discrete time model for hybrid systems focusses on restricting

the system model in order to guarantee theoretical decidability for verification by

constructing a suitable finite abstraction. In [2, 1] this is done by requiring finite

precision values in the observations; in [32] this is achieved by considering only con-

trollable systems (where any state may be reached from any state). Recently (at

the same time as the conference version of this paper), an abstraction/refinement

approach was proposed [17] to solve safety verification problems for linear discrete
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time hybrid systems based on robustness assumptions close to ours. In comparison,

we consider full LTL verification of non-linear systems. In most cases, the litera-

ture on abstraction and refinement for hybrid systems considers a continuous time

model [11, 30, 18, 31]. Because of this, a direct comparison of the employed algo-

rithms is not possible. We can, nevertheless, observe some differences concerning

the way they compute the abstraction.

While, for example, also tools such as Hypertech [19] and Checkmate [10] do

support analysis of non-linear systems, with Checkmate offering the highly opti-

mized flow-pipe representation technique, none of these is guaranteed to terminate

for robust models when proving temporal properties of hybrid systems. We also

note the potential unsafeness of the Checkmate approach in the construction of

the abstract transition relation due to rounding errors – in contrast, our constraint

solver guarantees, that rounding errors are conservatively over-approximated in re-

finement steps. In contrast to [11] we are able to prove a termination criterion for

abstraction refinement, and can provide safe abstractions for both verifying and fal-

sifying safety properties. The high potential of interval-based evaluation methods

for hybrid system verification has already been demonstrated [31, 28, 29] for a more

restricted logic, and without termination guarantees.

There are mechanisms for approximating non-linear continuous-time hybrid sys-

tems by rectangular automata arbitrarily closely [18]. However, the approximation

has to be done manually, and even verifying only rectangular safety properties on

the resulting approximation is still an undecidable problem.

The paper is organized as follows: Section 2 elaborates the notion of robust

hybrid systems, leading to a new notion of robust satisfaction and robust falsifica-

tion of LTL properties; Section 3 shows how to approximate robust satisfaction from

above and robust falsification from below by exact satisfaction/falsification on finite

approximations, and proves, that for any property that is robustly satisfied (falsi-

fied) by a (non-linear) robust hybrid system, one can find a finite approximation

that establishes this fact; based on this it shows the termination of an abstrac-

tion refinement algorithm for the verification and falsification of LTL properties of

discrete-time hybrid systems; Section 4 concludes the paper.

2. Robust Hybrid Systems

The authors have substantial experience in analyzing industrial control unit de-

signs for automotive [4, 6, 8, 14] and avionics applications [5, 25], among others in

the context of the competence cluster SafeTRANS (www.safetrans-de.org), and the

Integrated Project SPEEDS funded by the European commission under contract

number AIP5-CT-2006-033471. Based on this industrial background, we derive the

following observations:

• For any sensor inputs, a combination of filtering, plausibility checking and

voting will be used to derive what is often called validated inputs.

• This preprocessing will in particular guarantee a minimal separation be-
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tween values assumed by validated inputs, in the following sense: assume,

that v ≤ 5 appears as guard of a transition, then altering the guard to

v ≤ 5 ± ε for some ε smaller than a sensor-dependent constant does not

change the mode-switching behavior of the system.

• To take into account noise on actuators and un-modeled disturbances, the

controller will enforce a safety margin, separating all legal undisturbed runs

from forbidden plant regions by some minimal application dependent con-

stant (catering for noise and disturbances). To this end, deviations induced

by disturbances and noise on actuators are detected using closed-loop con-

trol, and correcting actions to avoid forbidden states are designed to cater

for this difference between ideal and measured trajectories.

Designers hence solve the task to guarantee a safety property ϕ even in the pres-

ence of noise on sensors and actuators and un-modeled disturbances. This entails,

that the classical notion of satisfiability is in fact too weak. What is called for, is

a notion of robust satisfiability, which guarantees ϕ even in the presence of small

bounded uncertainties. In the remainder of this section, we will derive a formal

definition of such a notion of robust satisfiability.

We use constraints over the current values and the values at the next time step

to specify the transition relation. We also use constraints to explicate the predicates

observable on the hybrid system, which define the atomic predicates to be used in

first-order LTL requirement specifications on our systems. In addition to variables

ranging over reals we will use special mode variables written in sans serif font that

range over symbolic constants denoting modes of hybrid systems.

Definition 1.

• An arithmetic expression is a term (in the predicate-logical sense) with

function symbols in {+,×, ,̂ sin, cos, exp}.

• An atomic arithmetic state space constraint is of the form e r c, where e

is an arithmetic expression, r ∈ {6=,=, <,>,≤,≥} is a relational operator,

and c is a real-valued constant.

• A mode constraint is an expression of the form mode = m, where m is a

symbolic constant and mode a mode variable.

• A state space constraint is a Boolean combination of atomic arithmetic

state space constraints and mode constraints.

For formally modeling discrete time hybrid systems we assume a finite set M

of symbolic constants called modes and a finite set X = {x1, . . . , xk} of real-valued

variables (in the formal development, we do not further distinguish between sen-

sors, variables, and actuators). We assume that the real-valued variables range over

bounded intervals {Ix1 , . . . , Ixk}. Moreover, for specifying the variable values at the

next time step we will denote by X ′ the primed versions of the variables in X.

Note that in an engineering context one usually knows bounded intervals for the

reasonable values of real variables. Our method can also be used to check that these
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intervals are never left, by formulating a corresponding safety verification problem

that shows that no variable ever reaches a value too close to the boundary of its

interval.

Definition 2 (discrete time hybrid system) A discrete time hybrid system S

is a tuple S = (τ, π0, π1, . . . , πk, δ) where

• τ is a disjunction of state space constraints of the form mode = m∧guard∧

mode
′ = m′ ∧ transitions where

– m ∈M and m′ ∈M ,

– guard is a conjunction of atomic arithmetic state space constraints that

contains only variables in X

– transitions is a conjunction of atomic arithmetic state space con-

straints that contains only variables in X ∪X ′.

• π0 is a state space constraint containing only variables in X ∪ {mode},

restricting the initial valuation, and

• π1, . . . , πk are additional state space constraints containing only variables

in X ∪ {mode}, that we will later use in LTL queries (the observed propo-

sitions), and

• δ is the sampling rate in time units, a positive real number.

Discrete time hybrid systems are sufficiently expressive to express both plant dy-

namics as well as (possibly hybrid) controllers. Time is modeled implicitly, in that

each step corresponds to a fixed unit delay δ, as motivated in the introduction.

Our example is a discretized variant of an aircraft collision avoidance protocol

that we took from [19] (originally developed in [34]), exhibiting non-linear dynam-

ics. Two aircraft, flying in a straight line and orthogonal trajectories at the same

altitude, initiate a collision avoidance maneuver when the distance between them

reaches 8 miles. Both aircraft turn 90 degrees to the right and start a semi-circle

trajectory to the left, as shown on the left-hand side of Figure 1, with fixed angular

velocities. The linear velocity is also fixed and the same for both aircraft. After

completing the semi-circle, they resume their original trajectories.

The continuous time dynamics during the collision avoidance maneuver is given

by

ẋr = −v1 + v2 cosφr + ω1yr

ẏr = v2 sinφr − ω1xr

φ̇r = ω1 − ω2

where xr and yr are the relative planar coordinates of aircraft two relative to aircraft

one, φr is the angle between the vector speed of aircraft two relative to the vector

speed of aircraft one, and v1 (v2) and ω1 (ω2) are the linear respectively angular

velocity of aircraft 1 (aircraft 2), as illustrated by the right-hand side of Figure 1.

Please consult [34] for the non-trivial derivation of the system dynamics. For the
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purpose of this paper we further specialize the dynamics by choosing a constant

linear velocity v1 = v2 = 1 and angular velocities ω1 = 1 and ω2 = 0.95. With these

instantiations, the model specializes to

ẋr = −1 + cosφr + yr

ẏr = sinφr − xr

φ̇r = 0.05

We are interested in analyzing discretized versions of this collision avoidance

strategy under a fixed sampling rate δ with respect to the overall safety require-

ment, that the distance between the two aircraft never becomes smaller than 4

miles. In a typical design flow, this corresponds to the situation, where the time

model in Matlab-Simulink is now changed from continuous time to discrete time, in

order to analyze the impact of discretization in maintaining the collision avoidance

requirement. To this end, we derive a discrete time version using Euler discretization

wrt. the chosen sampling rate δ, by replacing each differential equation v̇ = f(v) by

v′ = v + δ ∗ f(v), yielding

φ′r = φr + δ ∗ (0.05) ∧ x′r = xr + δ ∗ (yr − 1 + cosφr) ∧ y′r = yr + δ ∗ (sinφr − xr)

Initial region

Unsafe region

84

Aircraft two

φr

xr

yr

Fig. 1. Air traffic control protocol

where δ is the sampling period of the controller in seconds. We analyze the system

for an initial region with φ = 1.57 ∧ x2 + y2 = 64 ∧ x > 0 ∧ y < 0, which models

an initial configuration before entering the collision avoidance maneuver (before the

right-turn of the aircrafts) at a distance of 8 miles, restricted to the cases where the

intersection of the trajectories lies ahead of both aircraft

Definition 3.

• A valuation σ is a mapping that assigns a mode in M to the mode variable

mode and, for each 1 ≤ i ≤ k a real value in Ixi to the variable xi. We

denote the set of all valuations by Σ.

• We denote by [[π]] the set of all valuations satisfying a state space constraint

π, and similarly by [[τ ]] the set of pairs of valuations 〈σ, σ′〉 satisfying the
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transition constraint τ , where primed (resp. unprimed) variables are inter-

preted over σ′ (resp. σ).

• Given a set Γ, we call a tuple (→, Q0, Q1, . . . , Qk), with →⊆ Γ × Γ, and

Q0, . . . , Qk ⊆ Γ, an (extended) transition system over Γ

• Given a hybrid system H of the form (τ, π0, π1, . . . , πk, δ) we denote by [[H]]

the transition system ([[τ ]], [[π0]], . . . , [[πk]]) over Σ.

• A run of a system (τ, π0, π1, . . . , πk, δ) is a mapping θ : N → Σ such that

for all t ∈ N, 〈θ(t), θ(t+ 1)〉 ∈ [[τ ]].

We use first-order LTL formulas such as G ¬ x ≥ 10 to formalize requirements

on discrete time hybrid systems. Still, the results of this paper hold for any tempo-

ral logic using only universal path quantifiers, such as ACTL∗. Since steps have a

defined duration, real-time constraints can be expressed using the next-time oper-

ator. As atoms we allow the observed propositions π0, . . . , πk. We employ standard

syntax and semantics of LTL as can be found in various textbooks [13]—the needed

adaption to our definition of extended transition system is a trivial exercise. Es-

pecially we write T |= ϕ to signify that the extended transition system T satisfies

ϕ.

Note that we do not treat the state space constraint π0 that specifies the initial

states in any special way (e.g., by allowing only runs that start in an initial state).

Instead, we encode initial states into the queries by using LTL formulae of the form

π0 → Gϕ (i.e., ¬π0 ∨Gϕ).

Robustness of a hybrid system S is defined relative to a temporal specification

ϕ: it requires, that the validity of ϕ does not depend on small perturbations of S.

The formal definition is based on a metric between arithmetic constraints [26]. For

S to be robust wrt. ϕ requires the existence of a bound ε, such that if ϕ holds in S,

then it must also hold in any S ′ defined by constraints that have distance at most

ε from the constraints defining S. Intuitively, this entails that avoiding forbidden

plant states may not depend on small inaccuracies of sensors or actuators. Indeed,

controller designs in which changing a guard of the form e r c to e r (c±ε) (mirroring

sensor inaccuracy) or changing an actuator setting from a′ = e to an assignment

a′ = e±ε (modeling a small error in actuator settings) causes forbidden states to be

reached would not be acceptable (and not “robust”, under our formal definition).

We now define these concepts more formally:

Definition 4.

• The distance between two valuations σ1, σ2 is defined by d(σ1, σ2)
.
=

– ∞, if σ1(mode) 6= σ2(mode), and

– max{d(σ1(x), σ2(x)) | x ∈ X}, where d(a, b)
.
= |a− b|, otherwise.

• The distance between two atomic arithmetic constraints e r c and e′ r′ c′

(we assume that all arithmetic constraints have been brought into this form)

is defined by d(e r c, e′ r′ c′)
.
=∞, if e 6= e′ or r 6= r′, and d(c, c′), otherwise.
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• The distance between two mode constraints mode = m1 and mode = m2 is

∞ if m1 6= m2 and 0, otherwise.

• The distance between two constraints φ, φ′ is defined by d(φ, φ′)
.
=

– ∞, if φ and φ′ have a different Boolean structure or do not have mode

constraints at the same places, and

– the maximum of the distance between two corresponding atomic (arith-

metic or mode) constraints, otherwise.

The key definition of this paper, reported below, captures our intuition that

safety properties should be guaranteed even under disturbances, as long as these are

bounded by some ε. To this end, we define a non-standard semantics of discrete time

hybrid systems that allows transitions that miss the original transition predicate

only by a slight margin below some ε. For a safety property to be robustly satisfied,

there must exist a degree of perturbation ε > 0 such that the safety property is true

in all ε-perturbed systems.

We start with defining the notion of an ε-perturbed solution set by stating a

condition when x is allowed to be in such a solution set, and a condition when x is

allowed to be not in such a solution set. In both cases we require the existence of

some perturbations establishing the corresponding fact.

Definition 5. A set P is an ε-perturbed solution set of a constraint φ iff

• for every x ∈ P , there is a constraint φ∗ with d(φ, φ∗) ≤ ε and an x∗ with

d(x, x∗) ≤ ε such that x∗ |= φ∗, and

• for every x 6∈ P , there is a constraint φ∗ with d(φ, φ∗) ≤ ε and an x∗ with

d(x, x∗) ≤ ε such that x∗ 6|= φ∗.

In each item of this definition we employ two types of perturbations: a syn-

tactic perturbation of the constraint and a semantic perturbation in the solution

space. The motivation for the use of syntactic perturbation lies in the fact that two

systems that show the same behavior when corresponding exactly to their model,

might show radically different behavior under perturbations. This can be seen, for

example, on the constraints 0 = 0 and 0 ≤ 1 which have the same solution set but

behave radically different when perturbing the zero on the left-hand sides of these

constraint. The motivation for the use of semantic perturbation lies in the fact that

we also want to model drift that external effects might introduce into the system.

Moreover, this second type of perturbation also simplifies the proofs in the rest of

the paper significantly.

Probably the reason why some authors only consider one of these two types of

perturbations (e.g., only semantic [17]) is the fact that in the context of robustness

considerations both perturbations behave differently only for special cases (e.g., the

constraint 0 = 0, whose solution set vanishes under syntactic perturbations, but

stays the same under semantic perturbations).

Definition 5 extends to hybrid systems as follows:
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Definition 6. A transition system (→, Q0, Q1, . . . , Qk) is an ε-perturbed manifes-

tation of a hybrid system (τ, π0, π1, . . . , πk) iff → is an ε-perturbed solution set of

τ , and for each i ∈ {0, . . . , k}, Qi is an ε-perturbed solution of πi.

This allows us to define robustness of a hybrid system relative to a temporal

specification.

Definition 7. An LTL formula ϕ is satisfied by a hybrid system S with robustness

ε (S |=ε ϕ) iff for all ε-perturbed manifestations T of S, T |= ϕ. An LTL formula

ϕ is robustly satisfied by S (S|≡ ϕ) iff there is an ε > 0 such that S |=ε ϕ.

For example, a system that starts in state x = 0 and evolves according to the

transition constraint x′ = x, satisfies the LTL formula G¬x ≥ 1, but does not

robustly satisfy it, because any transition constraint of the form x′ = x + ε, with

ε > 0, will eventually violate the constraint ¬x ≥ 1. On the other hand, a system

that evolves according to the transition constraint x′ = x− 1, robustly satisfies this

LTL formula.

Definition 8. An LTL formula ϕ is falsified by a hybrid system S with robustness ε

iff for all ε-perturbed manifestations T of S, T 6|= ϕ. An LTL formula ϕ is robustly

falsified by S iff there is an ε > 0 such that ϕ is falsified by S with robustness ε.

For example, a system that starts in a state fulfilling 0 ≤ x ≤ 1, and evolves

according to the transition constraint x ≤ x′ ∧ x′ ≤ x + 1/10 robustly falsifies the

LTL formula G¬x ≥ 10.

It is worthwhile to reflect on the nature of the two simple examples of non-robust

satisfaction respectively falsification, by setting them into an application perspec-

tive. Both examples would indeed fall short of being accepted in industrial settings,

because they fail to compensate the possible effect of disturbances and noise. Con-

sider, for example, a speed monitoring system for a train. The example following

Definition 7 would correspond to a design, in which the current controlling the en-

gine is set to maintain the targeted speed, without checking that the actual speed of

the train is meeting the targeted speed. Unmodelled disturbances, such as the slope

of the track, can easily cause the actual speed to grow beyond the critical maximal

speed (potentially causing derailing of the train): just consider the situation, where

the train is running through a segment of the track with a constant negative slope,

adding in each step an ε unintended increment to the current speed. It is exactly for

this reason that no control-engineer would rely on open-loop control for such appli-

cations; indeed, by providing a feedback-loop compensating for a possible difference

between the intended set point (where x is to remain unchanged forever), and the

real value in the physical system, the unintended growth of x would be detected and

compensated. Also the example illustrating Definition 8 is an open-loop system.



October 7, 2006 15:5 WSPC/INSTRUCTION FILE journal˙rev

Guaranteed Termination for Robust Hybrid Systems 11

3. Effective Construction of Finite Abstractions with Bounded

Imprecision

Our approach follows the abstraction refinement paradigm. In contrast to previous

approaches, we are able to prove termination of the refinement loop under the as-

sumption, that the analyzed model is robust. In this section we introduce the key

instrument—a bound on the degree of imprecision introduced by abstraction. By

proving that incremental refinements make the degree of imprecision converge to

zero, any desired degree of precision can be reached. We also show in this section,

that such abstractions can be efficiently computed even for non-linear hybrid sys-

tems, using interval arithmetic. The last part of this section puts all pieces together

in defining an algorithm for proving robust first-order LTL properties and proving

its termination.

From now on, we fix a discrete time hybrid system S = (τ, π0, π1, . . . , πr, δ), and

a LTL requirement ϕ on S over the atoms π0, . . . , πr. For the rest of the develop-

ment, it will be convenient to assume, that negations occur only in literals, and

that all atoms appear under the scope of a negation (this can easily be achieved by

adapting the relational operators in arithmetic constraints). This allows us to over-

approximate the behavior of a hybrid system by over-approximating the observed

propositions π0, . . . , πr in the same direction as the transition relation τ , allowing

more uniformity in the algorithms and proofs. So, by over-approximating the solu-

tion set of π0 and π1 in a query of the form G(¬π0 ∨F¬π1), we under-approximate

the literals ¬π0 and ¬π1.

We use abstractions that approximate the behavior of the original system, and

then we measure the approximation error introduced by these abstractions.

Definition 9. Let T be a transition system over Γ of the form (→, Q0, . . . , Qr)

and let T ′ be a transition system of the form (→′, Q′
0, . . . , Q

′
r) over Γ′. Then T ′

abstracts T (T ′ º T , T ¹ T ′) iff there is a function H (the abstraction function)

such that

• for all i ∈ {0, . . . , r}, for all s ∈ Qi, H(s) ∈ Q′
i, and

• for all s, s1 with s→ s1, H(s)→ H(s1).

Clearly, for transition systems T and T ′ such that T ⊆ T ′ (with ⊆ defined

element-wise) T ¹ T ′ (e.g., using the identity abstraction function). Moreover, the

relation ¹ is transitive.

The abstraction relation implies the existence of corresponding runs:

Lemma 10. For transition systems T and T ′ such that T ′ abstracts T , for every

run θ of T there is a run θ′ of T ′ such that for all i ∈ {1, . . . , r}, for all t ∈ N,

θ(t) ∈ Qi implies θ
′(t) ∈ Q′

i

The proof is easy by element-wise application of the abstraction function. More-

over, due to Theorem 5.6. in Clarke et. al. [12] we have:
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Lemma 11. For every transition system T and T ′, for every LTL formula ϕ, if

T ¹ T ′ then T ′ |= ϕ implies T |= ϕ.

So, for showing satisfiability we will try to construct transition systems that

abstract the original system (i.e., an over-approximation), and for falsification

transition systems that are abstracted by the original system (i.e., an under-

approximation).

3.1. Over-Approximating Abstraction

We use predicate abstraction, tuned to our application domain of hybrid systems.

In this framework, the abstract state space is given by a finite set of first-order

predicates P , which jointly cover the concrete state space, that is for all σ in Σ

there is a p ∈ P such that σ ∈ [[p]] (note that in contrast to some approaches

in software model checking, here the abstract states are formed by the predicates

themselves and not Boolean combinations of them).

Different approaches for finding P have been discussed in the literature. For

example, an initial set of predicates can be derived from transition guards and

atomic formulas in the specification logic [7]; or a certain class of predicates, such

as convex polyhedra [10], or hyper-rectangles [29] can be used.

For a given finite set of predicates P , we construct an abstraction αP (S) (natural

abstraction) of [[S]]. It is a transition system whose transition relation is the set of

all 〈p, p′〉 for which there is a pair 〈σ, σ′〉 ∈ [[τ ]] such that σ |= p and σ′ |= p′. The set

of initial states, and the observed propositions are defined canonically as the set of

all p for which there is a σ ∈ [[πi]] such that σ |= p. We get an abstraction function

between the concrete infinite state transition system [[S]] and αP (S) by assigning to

each state space element σ of S a predicate p such that σ |= p. Due to Lemma 11

for all first-order LTL formulas ϕ, αP (S) |= ϕ implies S |= ϕ.

Note that here the abstract transition relation also might contain self-loops,

that is, transitions from a predicate to itself, if the transition relation τ specifies

transitions between between two elements satisfying the same abstract state. If all

trajectories eventually leave a certain region, then the corresponding self-loops will

be removed as soon as the abstraction is fine enough. This allows the method to

prove progress properties.

We now introduce the notion of the diameter of a predicate abstraction to later

measure the degree of imprecision introduced by an abstraction.

Definition 12. The diameter diam(p) of a predicate p ∈ P is defined as the supre-

mum of {d(σ, σ∗) | σ ∈ [[p]], σ∗ ∈ [[p]]}. The diameter diam(P ) of a predicate ab-

straction over P is defined as the maximal diameter of a predicate in P.

To bound the degree of imprecision of abstraction we will ensure that for every

ε > 0 the abstraction eventually only represents a ε-perturbation of S. Hence, the

query will eventually be proven on the abstraction. Since it is hard to compare the

discrete and finite abstraction with the transition system denoted by S, we will
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measure these perturbations not from the abstraction αP (S) directly, but from the

following continuous over-approximation:

Definition 13. A transition system (→, Q0, Q1, . . . , Qr) over a set of predicates P

represents the transition system

γ(→, Q0, . . . , Qr)
.
= (γ(→), γ(Q0), γ(Q1), . . . , γ(Qr)),

where γ(R) =
⋃

p∈R[[p]].

It is not hard to prove that, using an abstraction function that assigns to each

p ∈ P , an element of [[p]], for every transition system T over P , γ(T ) abstracts T .

Hence any query ϕ that is satisfied by γ(T ) is also satisfied by T , and in particular

γ(αP (S)) |= ϕ implies that model checking the abstraction will succeed, that is

αP (S) |= ϕ.

So we are left with the task of showing that γ(αP (S)) will be sufficiently close

to [[S]]. For this, given a constraint φ, let [[φ]]ε be the set of all x for which there is

a φ∗ with d(φ, φ∗) ≤ ε and an x∗ with d(x, x∗) ≤ ε such that x∗ |= φ∗. Clearly this

forms the maximal element of the ε-perturbed solution sets of a constraint φ wrt.

the partial order ⊆. Extending this to every constraint defining a hybrid system,

we denote the transition system given by the resulting maximal elements by [[S]]ε,

and we have:

Theorem 14. [[S]]diam(P ) abstracts γ(αP (S)).

We do not include the proof since it can be adapted from the proof of Theorem 17

below. We can conclude that an abstraction αP (S) only introduces bounded pertur-

bations since it can be sandwiched between the exact system [[S]] and its perturbed

version [[S]]diam(P ) due to the fact [[S]] ¹ αP (S) ¹ γ(αP (S)) ¹ [[S]]diam(P ).

The natural abstraction can be constructed effectively, if we do not allow the

transcendental function symbols sin, cos, exp in our constraints. For this we de-

cide [33] satisfiability of p(x1, . . . , xk) ∧ τ(x1, . . . , x, x
′
1, . . . , x

′
k) ∧ p(x

′
1, . . . , x

′
k) for

defining the abstract transition relation, respectively p ∧ πi for determining the set

of initial states and observed propositions. However, due to the huge complexity of

the corresponding decision procedure [9], this approach is not viable in practice.

Consider thus a predicate abstraction of S, where each predicate is of the form

mode = m ∧ B, where B is a so-called box of the form
∧

i∈{1,...,k} ci,l ≤ xi ≤ ci,u.

We will usually write such box predicates as pairs 〈m,B〉.

In this case the computational effort in constructing the abstract transition re-

lation can be drastically reduced by using interval arithmetic based tests instead of

full decision procedures (the cost of a single test reduces from non-elementary in the

number of variables to linear in the expression size). Moreover, this does not restrict

the allowed function symbols to addition and multiplication. In this approach, tran-

sitions from box p to box p′ are only added, if they cannot be excluded by interval

arithmetic. We thus further abstract from the concrete transition behavior.
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More specifically, we evaluate terms over boxes by extending all function sym-

bols f to corresponding functions f I over intervals. For example, the arithmetic

expression xy + 1 for a box that restricts x to [−1, 1], and y to [1, 2], evaluates to

[−1, 1][1, 2] +I [1, 1] = [−2, 2] +I [1, 1] = [−1, 3]. Given an arithmetic expression e

and a box B we denote by I(e)(B) the interval evaluation of e over B.

The properties of interval evaluation of terms have been widely studied [24, 21].

Here we use a version that is extended to constraints. Using the Booleans {F,T}

with the order F < T one can form Boolean intervals, which allows us to ex-

tend relations and connectives to intervals in a similar way as above. Hence

we can evaluate Boolean combinations of equalities and inequalities over inter-

vals. The formalization of this is a trivial exercise. For example, the evaluation

of the constraint 2x ≥ 0 ∨ x − 2 ≥ 0 over a box restricting x to [1, 3] yields

[2, 2][1, 3] ≥I [0, 0] ∨I [1, 3] − [2, 2] ≥I [0, 0] = [2, 6] ≥I [0, 0] ∨I [−1, 1] ≥

[0, 0] = [T,T] ∨I [F,T] = [T,T]. One can easily incorporate mode constraints

by evaluating a constraint of the form mode = m0 over a box predicate 〈m,B〉 to

[T,T] iff m = m0 and to [F,F], otherwise.

Whenever such an evaluation yields an interval [F,F] we know that the cor-

responding constraint cannot hold. So we get a conservatively over-approximated

satisfaction relation |=I such that 〈m,B〉 |=I φ iff T is in the interval evaluation

of φ on 〈m,B〉. Hence 〈m,B〉 6|=I φ tells us that φ cannot be satisfied by mode m

and an element of B, whereas 〈m,B〉 |=I φ does not tell us anything since in the

case where interval evaluation is {F,T}, the element T might be spurious due to

over-approximation.

Now, by using the over-approximated satisfiability |=I we get another abstrac-

tion αI
P (S) (the interval abstraction) for a given set of box predicates P . Since |=I

over-approximates |=, also αI
P (S) ⊇ αP (S), and hence αI

P (S) º αP (S). However,

we again have to establish that this abstraction only introduces bounded over-

approximation:

We start with providing bounds for interval evaluation. By its Lipschitz continu-

ity (e.g., Theorem 2.1.1 in Neumaier’s book [24]), it is easy to derive the following

convergence result for interval evaluation of terms:

Lemma 15. For every arithmetic expression e with function symbols in the set

{+, ∗, ,̂ exp, sin, cos}, denoting a function [[e]] and box B there is a function E :

R
+ → R

+ such that limx→0 E(x) = 0, and for every box B′ with [[B′]] ⊆ [[B]], for

all y ∈ I(e)(B′), there is an x ∈ [[B′]] such that d([[e]](x), y) ≤ E(diam(B′)).

Now we can bound the approximation of interval satisfaction on constraints:

Lemma 16. For every constraint φ, mode m and box B there is a function E :

R
+ → R

+ with limx→0 E(x) = 0, such that for every box B′ with [[B′]] ⊆ [[B]],

〈m,B′〉 |=I φ implies that there is a φ∗ with d(φ, φ∗) ≤ E(diam(B′)) and an x ∈

[[B′]] such that 〈m,x〉 |= φ∗.
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Proof. Let φ, m, and B be arbitrary but fixed. Let us first assume that φ is

an atomic arithmetic constraint of the form e ≥ c. Choose E as provided by

Lemma 15, let B′ be arbitrary, but fixed, and assume B′ |=I e ≥ c. In the case when

I(φ)(B′) = {T}, the rest is trivial. In the case when I(φ)(B ′) = {F,T}, c ∈ I(e)(B′)

and we can choose y = c in Lemma 15, which provides a corresponding x ∈ [[B ′]] such

that d([[e]](x), c) ≤ E(diam(B′)). This implies [[e]](x) ≥ c−E(diam(B′)). Choosing

φ∗ as e ≥ c− E(diam(B′)) clearly d(φ, φ∗) ≤ E(diam(B′)) and 〈m,x〉 |= φ∗.

The case of other atomic constraints with different relation symbols are similar,

and the case of mode constraints is trivial. In the case where φ is non-atomic we

can choose E as the maximum of the E’s of its atomic sub-constraints and choose

φ∗ by taking for each atomic constraint the corresponding constraint constructed

above.

Note that in practice—in order to ensure efficiency—interval arithmetic is usu-

ally implemented using floating point arithmetic. In that case, all the necessary

operations are rounded outwards. So, differently from other methods, we preserve

correctness also under the presence of rounding. In principle, for achieving a tight

enough over-approximation, one would need to adjust the precision of the used

floating-point representation to the level of robustness of the given verification

problem. However, experience has shown that for cases arising in practice the usual

machine floats suffice.

Finally we can establish an analogous result to Theorem 14:

Theorem 17. There is a function E : R
+ → R

+ with limx→0 E(x) = 0, such that

given a set of box predicates P , [[S]]E(diam(P )) abstracts γ(α
I
P (S)).

Proof. Let αI
P (S) be of the form (→, Q1, . . . , Qr). Let Eτ be the function given by

Lemma 16 for the transition constraint τ of S and the box Ix1 × . . .× Ixk bounding

the state space, and Eπ1
, . . . , Eπk

be the functions given by Lemma 16 for the state

space constraints π1, . . . , πk of S and the bound of the state space Ix1 × . . .× Ixk .

Let E(x)
.
= max{x,Eτ (x), Eπ1

(x), . . . , Eπr
(x)}. We prove that [[S]]E(diam(P )) ⊇

γ(αI
P (S)), with ⊇ interpreted element-wise which implies the theorem.

• For an arbitrary, but fixed i ∈ {0, . . . , r}, for proving that every element σ of

γ(Qi) is in the corresponding element of [[S]]E(diam(P )), we prove that it is an

element of an E(diam(P ))-perturbed solution set of the corresponding state

space constraint πi. Observe that, by Definition 13, there is a corresponding

element p of Qi such that σ |= p. By definition of interval abstraction,

p |=I πi. So, by Lemma 16, there is a π∗i with d(πi, π
∗
i ) ≤ Eπi

(diam(P )), and

σ∗ with σ∗ |= π∗i . Since diam(p) ≤ diam(P ), also d(σ, σ∗) ≤ diam(P ). So,

by Definition 5, every element σ of γ(πi) satisfies the transition constraint

up to E(diam(P )).

• For proving that every element 〈σ, σ′〉 of γ(→) is in the corresponding

element of [[S]]E(diam(P )), we have to prove that it is an element of an
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E(diam(P ))-perturbed solution set of the transition constraint τ . Observe

that by Definition 13 there is a corresponding transition 〈p, p′〉 in → such

that σ |= p, and σ′ |= p′. By definition of interval abstraction, 〈p, p′〉 |=I τ .

So, by Lemma 16, there is a constraint τ ∗ with d(τ, τ∗) ≤ Eτ (diam(P )), and

〈σ∗, σ′∗〉 with 〈σ∗, σ′
∗
〉 |= τ∗. Since diam(p) ≤ diam(P ) and diam(p′) ≤

diam(P ), also d(σ, σ∗) ≤ diam(P ) and d(σ′, σ′
∗
) ≤ diam(P ). So, by Defi-

nition 5, every element 〈σ, σ′〉 of γ(→) satisfies the transition constraint up

to E(diam(P )).

So also the abstraction αI
P (S) only introduces bounded perturbations since it

can be sandwiched between the exact system [[S]] and its maximally E(diam(P ))-

perturbed version [[S]]E(diam(P )) due to the result [[S]] ¹ αI
P (S) ¹ γ(αI

P (S)) ¹

[[S]]E(diam(P )). By decreasing the diameter of P , the precision of the abstraction

can be arbitrarily increased. We will use these results in the development of an

algorithm for proving robust satisfaction of LTL formulas of discrete time hybrid

systems.

3.2. Under-Approximating Abstraction

Now we also construct a finite system that under-approximates the original system

S, hence [[S]] now abstracts the under-approximation. We first present a simple and

succinct approach, which helps to simplify the proof, and then point out possible

improvements to achieve practical efficiency.

We choose a sample point s(p) for every predicate p ∈ P . Then let αP (S) be the

transition system whose transition relation is the set of all 〈s(p), s(p′)〉 such that

p, p′ ∈ P , and 〈s(p), s(p′)〉 |= τ , and for which for every i ∈ {0, . . . , k}, the i-th

observed proposition contains the set of all s(p) such that p ∈ P , s(p) |= πi. In the

case without transcendental function symbols this can be effectively constructed,

and due to an identity abstraction function αP (S) is abstracted by [[S]], which

ensures the correctness of the under-approximation.

Now let, for a constraint φ, [[φ]]
ε
be the set of all x for which there is no φ∗ with

d(φ, φ∗) ≤ ε and no x∗ with d(x, x∗) ≤ ε such that x∗ 6|= φ∗, which is the minimal

element of the ε-perturbed solution sets of wrt. to the subset relation ⊆. Again we

extend this to hybrid systems, and use the result to bound the under-approximation

error as follows:

Theorem 18. [[S]]
diam(P )

¹ αP (S)

We do not include a proof here since it can be adapted from the proof of Theo-

rem 19 below.

So, instead of falsifying an LTL formula against the original system S we can

check it against αP (S). Moreover, by letting the diameter of P go to zero, this check

will eventually succeed for robust systems.
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However, there is no known algorithm that can check in all cases whether a term

containing constants, addition, multiplication, and transcendental function symbols

is zero. The reason is that it is not known how many digits after the comma have

to be zero to be able to decide that the constant is zero. Hence, in that case, it also

not in general possible to check the transition relation and observed propositions

against the sample points.

In our solution we use interval arithmetic to enclose the value of the terms of the

constraints at the sample points into small intervals of bounded width (or alterna-

tively, compute their value up to a certain precision), and compute a conservative

under-approximation based on that information. Again, this ensures correctness of

the under-approximation (αI
P (S) ¹ [[S]]). Moreover, since for robustly false prob-

lems finite precision suffices for falsification, by making the width of the computed

intervals go to zero as the diameter of the abstraction goes to zero, the falsification

will eventually succeed:

Theorem 19. There is a function E : R
+ → R

+ with limx→0 E(x) = 0, such that

given a set of predicates P , [[S]]
E(diam(P ))

¹ αI
P (S)

Proof. Let Es be the function that assigns to ε the maximal width of the in-

tervals enclosing the terms used for computing αI
P (S). Choose for E the func-

tion such that E(ε) = max{ε,Es(ε)}. Assume that [[S]]
E(diam(P ))

has the form

(→, Q0, Q1, . . . , Qr), and αI
P (S) has the form (→′, Q′

0, Q
′
1, . . . , Q

′
r).

For proving [[S]]
E(diam(P ))

¹ αI
P (S), we use an abstraction function H such that

H(x) is s(p) where p is a predicate in P such that x |= p. We prove the two items

of Definition 9 as follows:

• Let i ∈ {0, . . . , r} be arbitrary, but fixed. Let x ∈ Qi. We have to prove

that H(x) is in the corresponding element Q′
i of α

I
P (S). By definition of H

this means to prove that for all p with p ∈ P and x |= p, s(p) ∈ Q′
i, that

is, interval evaluation of πi on s(p), as used in the construction of αI
P (S),

yields a true value.

Since the distance between x and s(p) is smaller than diam(P )

and hence also smaller than E(diam(P )), and due to the definition

of [[S]]
E(diam(P ))

we know that for all constraints π∗i with d(πi, π
∗
i ) ≤

E(diam(P )), and hence also for all constraints π∗i with d(πi, π
∗
i ) ≤

Es(diam(P )), s(p) |= π∗i . Hence interval evaluation of πi will be precise

enough to ensure that s(p) ∈ Q′
i.

• Let x, x1 be such that x → x1. We have to prove that H(x′) →′ H(x1)
′.

By definition of H this means to prove that for all p and p1 with p, p1 ∈ P ,

x |= p, and x1 |= p1, we have that s(p)→′ s(p1), that is interval evaluation

of τ on 〈s(p), s(p1)〉, as used in the construction of αI
P (S), yields a true

value.

Since the distance between x and s(p) and the distance between x1
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and s(p1) are both smaller than diam(P ), and hence also smaller than

than E(diam(P )), and due to the definition of [[S]]
E(diam(P ))

we know that

for all constraints τ∗ with d(τ, τ∗) ≤ E(diam(P )), and hence also for all

constraints τ∗ with d(τ, τ∗) ≤ diam(P ), 〈s(p), s(p1)〉 |= τ∗. Hence interval

evaluation of τ will be precise enough to ensure that s(p)→′ s(p1).

This approach will typically need a set of predicates with a very small diameter to

be able to guarantee the existence of transitions. We now sketch some improvements,

based on numerical local search methods and argue, that for realistic designs this

will lead to drastic improvements.

We exploit typical testing strategies for dynamic systems. Consider as an ex-

ample electronic stability control applications. Test engineers would typically force

a car into areas where the different modes of such an envelope protection system

become active, testing each mode in isolation. For example, they would from a

stable driving situation speed into a curve in a way causing oversteering without

control intervention, and after recovery of stability proceed to a next maneuver, for

example, testing the ability to control partial road-icing. Such examples teach two

lessons:

• Test-cases require only a bounded history - each threat of violating envelop

protection, as well as the timely invocation of control-strategies compen-

sating for the attack on car stability, can be tested in isolation, starting

from a ”home state”, in which the car is stable.

• Secondly, the test driver is forcing the open control inputs (e.g., angle of

steering wheel, rate of acceleration) towards meeting the triggering condi-

tion for the ”relevant” mode of the envelope protection algorithm. Heuris-

tics for efficient construction of under-approximations should thus find set-

tings of open control inputs moving the plant from a stable ”home state”

towards predicates guarding transitions towards recovery modes of the sys-

tem.

This motivates an approach that analyzes sequences of predicates p0, . . . , pl
whose corresponding transitions have not yet been excluded in an over-

approximating abstraction. It then uses using an iterative numerical method with

a sample point in each predicate as starting point to find a concrete trajectory run-

ning through this sequence. By recursively analyzing longer and longer sequences

the method will build longer and longer concrete trajectories. The above analysis

shows that this will eventually lead to trajectories from home state to home state,

allowing us to build transitions of the underapproximation for which we know that

they can be concatenated, and hence be used to form concrete counter-examples.

Since the approach uses sample points as starting points for the numerical search

method, it inherits the convergence properties ensured by the theorems above. And

since we know from the above analysis that usually an analysis of sequences of short

length suffices, the combinatorial blowup of analyzing all abstract-counterexamples
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can be avoided.

3.3. Proving Robust Satisfaction and Falsification

Now assume as given a temporal specification ϕ ∈ LTL, with the arithmetic atoms

Π = {π0, . . . , πn} occurring negatively. Since the aim of the current paper is to

establish the overall approach, we only give a basic algorithm for abstraction re-

finement, whose efficiency can be significantly improved according to the directions

outlined below. The key result of this section is, that the abstraction refinement

algorithm is guaranteed to terminate, if ϕ is robustly satisfied or falsified by S.

We introduce the following basic algorithm: Create a sequence of partitions

P0, P1, . . . such that the diameter of the partitions goes to zero. If at a certain

iteration i, αI
Pi
(S) falsifies ϕ, terminate with the result that ϕ is robustly falsified

in S. If αI
Pi
(S) satisfies ϕ, terminate with the result that ϕ is robustly satisfied by

S. Here we start with P0 = {〈m, Ix1 × . . .× Ixk〉 | m ∈M} as the initial partition.

We ensure that the diameter of the partition goes to zero by splitting the largest

box in Pm along the biggest side-length to obtain Pm+1 (recall that the real-valued

variables range over bounded intervals).

Before providing our main result and applying the algorithm to a more com-

plex example, we illustrate its behavior on a toy example of a safety verification

problem. To keep the example simple, we concentrate on its continuous behavior

and completely ignore possible discrete behavior. We assume that the constraint

τ is of the form x′1 = x1/2 ∧ x
′
2 = x2/2, that the set of initial states is described

by a constraint π0 of the form x1 ≤ 3 ∧ x2 ≤ 3 and the set of unsafe states is

described by a constraint π1 of the form x1 ≥ 6. The assumption of a state space

[0, 8] × [0, 10] will lead to the initial partition {[0, 8] × [0, 10]}. The corresponding

abstraction consists of the single abstract state [0, 8]× [0, 10] with the set of initial

states and set of unsafe states both being equal to {[0, 8] × [0, 10]} (see Figure 2,

where the left-hand side shows the partitioning of the state space, and the right-

hand the corresponding abstraction). This abstraction is clearly unsafe, and hence

a finer partition is needed.

The algorithm will then split [0, 8] × [0, 10] along the biggest side-length which

will result in an abstraction consisting of the two abstract states [0, 8] × [0, 5],

[0, 8]× [5, 10]. This abstraction is still not safe since [0, 8]× [0, 5] is still both in the

set of initial and the set of unsafe states (see Figure 3).

After two further splittings, the abstraction consisting of the four abstract states

[0, 4] × [0, 5], [0, 4] × [5, 10], [4, 8] × [0, 5], and [4, 8] × [5, 10] (see Figure 4) will be

safe, proving the safety of the original system.

The following main result opens a new line of attack to the verification of non-

linear hybrid systems.

Theorem 20. The basic algorithm is guaranteed to terminate with definite answer

if S robustly satisfies ϕ or ϕ is robustly falsified by S.
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[0, 8] × [0, 10]

Fig. 2. Initial Abstraction

[0, 8] × [5, 10]

[0, 8] × [0, 5]

Fig. 3. Refined Abstraction

[0, 4] × [5, 10] [4, 8] × [5, 10]

[0, 4] × [0, 5] [4, 8] × [0, 5]

Fig. 4. Safe Abstraction

Proof. The abstraction refinement procedure ensures that the diameter of the ab-

straction goes to zero. If S robustly satisfies ϕ, the fact that γ(αI
Pm

(S)) abstracts

αI
Pm

(S) due to Theorem 17, and transitivity of abstraction implies that αI
Pm

(S) is

abstracted by [[S]]ε with ε going to zero as m goes to infinity. Let r > 0 be such
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that [[S]]r |= ϕ which is ensured by robustness. Thus, there is an m, from which on

ε will be smaller than r. Then αPm
(S) |= ϕ and the algorithm succeeds. The case

where ϕ is robustly falsified in S is similar.

Note that this theorem also includes robust progress properties. In that case,

the algorithm will eventually remove all unnecessary transitions in the abstraction

that lead from a predicate to itself.

Clearly, further work is needed, to make this algorithm practically efficient.

Still—in order to evaluate its efficiency potential—we have implemented it using

the programming language O’Caml. Our implementation keeps a list of boxes for

each mode, starting with one box per mode. It computes the abstraction by going

through each box, and marking it as initial or unsafe if interval arithmetic cannot

disprove the corresponding constraint. Moreover, on every pair consisting of this box

and another box, it checks whether interval arithmetic can disprove the transition

constraint, and if it cannot, it puts a transition in the abstraction. If this abstraction

is safe, verification is finished. If it is not, the box with the biggest side-length is

split, and the abstraction is recomputed. This continues until a safe abstraction can

be found, which is ensured for robust inputs due to the results of this paper.

For the interval arithmetic checks, the implementation uses the constraint prop-

agation engine RSolver [27]. In some cases, this allows us, in a similar way as in

the continuous time case [29, 28], to prove that only a part of a given box can be

reachable from any other box, in which case we only keep this smaller part in the

box list. Moreover, after splitting a box, we do not recompute the whole abstraction,

but only the part that was involved in the split.

Already in this basic form, the algorithm yields promising results for realistic

examples. More specifically, for our collision-avoidance example, a designer will

ensure that the necessary distance of the two planes should not only be kept for

this very example, but this should also be the case when the behavior of the planes

changes slightly. The results of this paper imply, that in such a robust case our

verification algorithm terminates.

In fact, for δ = 0.6, our interval arithmetic prototype proves in about 20 seconds

that the safety margin of the planes is maintained, using an abstraction that has

only 100 boxes.

4. Conclusion

This paper opens a novel line of attack to the verification of non-linear hybrid sys-

tems. We have argued for the naturalness of the notion of robust satisfaction, and

demonstrated how to construct a series of increasingly more accurate abstractions,

which for robust designs is guaranteed to converge to a sufficiently precise model

to prove or falsify temporal specifications of hybrid systems in a rich specification

logic with first-order arithmetic constraints, able to express real-time requirements.

Though we have chosen LTL as the temporal framework in this paper, the devel-
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opment only exploits safeness of the constructed abstractions; it is well known [13],

that also ACTL* properties are preserved under the performed abstractions.

The base algorithm is compatible with many of the optimization techniques

for abstraction refinement. Promising directions for optimization currently under

investigation in the large scale collaborative research project AVACS include:

Initial Partitioning: We refine B0 to approximately discriminate all guards and

arithmetic constraints in Π, over-approximating their shapes by boxes. This ap-

proach is already realized as part of another research activity for verification of

hybrid systems based on predicate abstraction techniques [7].

Counterexample guided abstraction refinement: We incrementally analyze coun-

terexample fragments for concretization [11]. We do so, by applying the constraint

propagation based solver for non-linear constraints [27] to the corresponding first-

order formula. If the constraint is unsolvable, we dismiss the counterexample frag-

ment as spurious by encoding the corresponding information into an automaton-

based representation of the abstraction.

Local search for counter-examples: Instead of just testing samples in the abstract

states for counter-examples, we use local search (based on a Newton-like method)

to find samples that form counter-examples.

We see this paper hence as a promising starting point in exploiting the usage of

interval-based constraint solving techniques for the verification of non-linear hybrid

systems.
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