
Incremental Computation of Succinct
Abstractions For Hybrid Systems⋆

Tomáš Dzetkulič and Stefan Ratschan

Institute of Computer Science, Academy of Sciences of the Czech Republic

Abstract. In this paper, we introduce a new approach to computing
abstractions for hybrid dynamical systems whose continuous behavior is
governed by non-linear ordinary differential equations. The abstractions
try to capture the reachability information relevant for a given safety
property as succinctly as possible. This is achieved by an incremental
refinement of the abstractions, simultaneously trying to avoid increases
in their size as much as possible. The approach is independent of a con-
crete technique for computing reachability information, and can hence
be combined with whatever technique suitable for the problem class at
hand. We illustrate the usefulness of the technique with computational
experiments.

1 Introduction

In this paper, we study hybrid (dynamical) systems, that is, systems with both
discrete and continuous state and evolution. We address the computation of
abstractions of hybrid systems that capture a given safety property as succinctly
as possible. In other words, given a hybrid system, a set of initial states, and a set
of states considered to be unsafe, we try to characterize the set of trajectories (of
unbounded length) from an initial to an unsafe state. In cases where the input
system does not have such a trajectory (i.e., it fulfills the safety property), we aim
at computing an empty abstraction, which verifies the safety property at hand. In
other cases, the computed abstraction can be used to guide testing/falsification
of the input system.

The abstractions are computed incrementally. This has the obvious advan-
tages of such incremental computation, which are analogous to the case of dis-
crete systems. However, in addition to that, for systems with (complex) con-
tinuous dynamics, incrementality has another important aspect: In such cases,
even over bounded time, exact reachability computation is possible only for
very special cases, and hence (unlike for discrete systems) one has to use over-
approximation. It is a-priori not clear, how much and where to over-approximate
in order to prove a given property. By incremental computation one can adapt
the level of over-approximation to the given problem.

⋆ This work was supported by Czech Science Foundation grants 201/08/J020 and
201/09/H057, MŠMT project number OC10048 and institutional research plan
AV0Z100300504.



Our technique is parametric in the method used for computing reachability
information. We have an implementation that is based on hyper-rectangles and
interval constraint propagation [4]. But instantiations with various alternative
techniques are possible.

Moreover, our technique is orthogonal to other techniques for abstraction re-
finement, especially counter-example guided abstraction refinement (CEGAR) [1,
7]: The essential step of our technique tries to capture information about the
given safety verification problem without increasing the size of the abstraction.
Moreover, this step is not inherently exponential in the problem dimension, hence
allowing the computation of abstractions of high dimension. In contrast to that,
CEGAR approaches are inherently based on increasing the number of states of
the abstraction. Both approaches can be used in combination.

Computational experiments show the usefulness of the approach.
Concerning other related work, some approaches to hybrid systems verifica-

tion do exploit incrementality in reachability computation [12, 11]. But, reuse of
analyses only concerns dropping initial/unsafe states that have been shown not
to lie on any error trajectory—no reuse is done concerning the analysis itself.

In the verification of time-unbounded properties of discrete (finite or infinite
state) systems, fixpoint techniques similar to the ones used in this paper are
ubiquitous. Especially, the idea of abstraction slicing [6] tries to keep abstractions
small within a discrete CEGAR approach. What sets our approach apart is the
fact that we specifically exploit (partial) system continuity, especially concerning
the way how constraint solvers may compute approximate (but conservative)
information for such systems (Section 3), and concerning the way how continuity
restricts possible system evolutions (Section 4.1).

Our previous approach for hybrid systems verification [16] computes abstrac-
tions based on an algorithm that is a special case of the method presented here.
However, as our computational experiments will show, variants of our method
that are different from that special case, show much better behavior, especially
for hybrid systems with cyclic behavior. Moreover, our previous approach was re-
stricted to boxes, and a very specific way of computing reachability information
based on the mean-value theorem and interval constraint propagation.

The content of the paper is as follows: in Section 2 we describe the used
formalism for modelling hybrid systems, in Section 3 we describe how to in-
crementally improve an abstraction of a given hybrid system, in Section 4 we
show how to further improve the technique, in Section 5 we discuss a concrete
implementation of the method, in Section 6 we discuss the behavior of this im-
plementation on some computational experiments, and in Section 7 we conclude
the paper.

2 Hybrid Systems

In this section, we briefly recall our formalism for modelling hybrid systems. It
captures many relevant classes of hybrid systems, and many other formalisms
for hybrid systems in the literature are special cases of it. We use a set S to



denote the discrete modes of a hybrid system, where S is finite and nonempty.
I1, . . . , Ik ⊆ R are compact intervals over which the continuous variables of a
hybrid system range. Φ denotes the state space of a hybrid system, i.e., Φ =
S × I1 × · · · × Ik.

Definition 1. A hybrid system H is a tuple
(Flow, Jump, Init, Unsafe), where Flow ⊆ Φ×R

k, Jump ⊆ Φ×Φ, Init ⊆ Φ, and
Unsafe ⊆ Φ.

Informally speaking, the predicate Init specifies the initial states of a hybrid
system and Unsafe the set of unsafe states that should not be reachable from
an initial state. The relation Flow specifies the possible continuous flow of the
system by relating states with corresponding derivatives, and Jump specifies the
possible discontinuous jumps by relating each state to a successor state. Formally,
the behavior of H is defined as follows:

Definition 2. A flow of length l ≥ 0 in a mode s ∈ S is a function r : [0, l]→ Φ
such that the projection of r to its continuous part is differentiable and for all
t ∈ [0, l], the mode of r(t) is s. A trajectory of H is a sequence of flows r0, . . . , rp
of lengths l0, . . . , lp such that for all i ∈ {0, . . . , p},

1. if i > 0 then (ri−1(li−1), ri(0)) ∈ Jump, and
2. if li > 0 then (ri(t), ṙi(t)) ∈ Flow, for all t ∈ [0, li], where ṙi is the derivative

of the projection of ri to its continuous component.

A (concrete) error trajectory of a hybrid system H is a trajectory r0, . . . , rp
of H such that r0(0) ∈ Init and rp(l) ∈ Unsafe, where l is the length of rp. H
is safe if it does not have an error trajectory.

In the rest of the paper we will assume an arbitrary, but fixed hybrid system
H. We will denote the set of its error trajectories by E .

Instead of defining some concrete syntax in which hybrid systems are de-
scribed, we keep this paper independent of concrete syntax, and require the user
to provide certain operations on hybrid systems that we will introduce in the
next section.

3 Incremental Abstract Forward/Backward Computation

For hybrid systems with complex continuous dynamics even bounded time reach
set computation necessarily involves over-approximation. In such cases one would
like to first compute approximate information using loose over-approximation,
and then incrementally refine this.

Our approach will be based on an incremental refinement of a covering of the
hybrid systems state space by connected sets that we will call regions. We will
form the regions in such a way that no two regions will overlap (i.e., regions are
allowed to intersect, but only on their boundaries). The method is independent
of the class of regions used. In the instantiation of the method used by our



implementation (see Section 5), the regions will be formed by pairs consisting
of a mode and a Cartesian product of intervals (i.e., a box ), but other classes of
regions (e.g., based on polyhedra) are equally conceivable.

Definition 3. An abstraction is a graph whose vertices (which we call abstract
states) may be labelled with labels Init or Unsafe. Moreover, to each abstract
state, we assign a region. We call the edges of an abstraction abstract transitions.

By abuse of notation, we will usually use the same notation for an abstract
state and the region assigned to it.

We call a sequence of abstract states a1, . . . , an an abstract trajectory. If
all abstract states and all transitions between successive abstract states in an
abstract trajectory belong to an abstraction A, we call it an A-abstract trajectory
and we denote it by a1 → · · · → an. An (A-)abstract trajectory represents the
set of concrete trajectories that begin in the region of a1, move from one abstract
state region to the next only if there is a corresponding concrete transition, and
end in the region of an. We denote this set by [[a1, . . . , an]] for a given abstract
trajectory or [[a1 → · · · → an]] for some A-abstract trajectory.

This can be formalized as follows: We define a splitting of a flow l to be a
sequence of flows s1, . . . , sj such that s1(0) = l(0), sj(length(sj)) = l(length(l))
and if i > 1 then si−1(length(si−1)) = si(0). A trajectory splitting is a concate-
nation of splittings of its individual contained flows. [[a1, . . . , an]] then is the set
of all concrete trajectories r1, . . . , rp that have a trajectory splitting q1, . . . qn,
such that for all i, the mode of abstract state ai is the same as the projection of
qi to its discrete part and such that the projection of qi to its continuous part is
in the region of ai.

An A-abstract error trajectory is an A-abstract trajectory a1 → · · · → an
such that in A, a1 is labelled initial, and an is labelled unsafe.

An abstraction A represents the set of all concrete trajectories [[a1 → · · · →
an]] for abstract error trajectories a1 → · · · → an in the abstraction A. We
denote this set by [[A]].

The intuition is that, during abstraction refinement, the abstraction stays an
over-approximation of the set of error trajectories E of a given system. We say
that an abstraction A∗ is a refinement of an abstraction A iff

– the abstraction A∗ represents less trajectories than A, that is, [[A∗]] ⊆ [[A]],
and

– the abstraction A∗ does not lose error trajectories that are present in A,
that is [[A∗]] ⊇ [[A]] ∩ E .

Now we will come up with an algorithm that will incrementally improve an
abstraction by refining it, without increasing the number of abstract states in the
abstraction. Note that, in particular, A is a refinement of A itself, but in practice
we will try to remove as many trajectories from the abstraction as possible.

Given abstract states a and a′, we will assume a procedure InitReach(a) that
computes an over-approximation of the set of points in a that are reachable
from an initial point in a, and a procedure Reach(a, a′) that computes an over-
approximation of the set of points in a′ reachable from a according to the system



dynamics 1. See Section 5.2 for an example how this can be implemented in prac-
tice. We assume that smaller inputs improve the precision of these operations,
that is:

– a1 ⊆ a2 implies InitReach(a1) ⊆ InitReach(a2)
– a1 ⊆ a2 and a′1 ⊆ a′2 implies Reach(a1, a

′
1) ⊆ Reach(a2, a

′
2)

Furthermore, we assume that these procedures exploit information about
empty inputs, that is:

– a = ∅ implies InitReach(a) = ∅
– a = ∅ implies Reach(a, a′) = ∅
– a′ = ∅ implies Reach(a, a′) = ∅

In the following, we require the existence of operations ⊑ and ⊎ on regions,
with the following properties.

– ⊑ s.t. if a∗ ⊑ a, then for all n ∈ N, i ∈ {1 . . . n} and for all regions
b1 . . . bi−1, bi+1 . . . bn: [[b1, . . . , bi−1, a

∗, bi+1, . . . , bn]] ⊆ [[b1, . . . , bi−1, a, bi+1, . . . , bn]]
i.e., less concrete trajectories follow a given abstract trajectory after replac-
ing an abstract state by smaller one wrt. ⊑ operation.

– ⊎ s.t. for all regions a1, a2, b : a1 ⊑ b∧a2 ⊑ b implies a1⊎ba2 ⊑ b, a1 ⊑ a1⊎ba2
and a2 ⊑ a1 ⊎b a2.

Since in our case abstract states represent sets, this can be ensured by the
following:

– ⊎ s.t. for all a1, a2 ⊆ b: a1 ∪ a2 ⊆ a1 ⊎b a2 and a1 ⊎b a2 ⊆ b
– ⊑ s.t. a1 ⊑ a2 iff a1 ⊆ a2

This is our natural interpretation of ⊎ and ⊑. However, different choices are
possible, as long as they fulfill the above properties: For certain representations
of regions it might be convenient to use a weaker form of ⊑, for efficiency rea-
sons. Also, later (Section 4.1) we will see that for being able to encode more
information into abstract states, different interpretations of those symbols are
convenient.

In the instantiation of the method with boxes, a1 ⊎b a2 is the smallest box
that includes both argument boxes a1 and a2, but does not exceed b (i.e., box
union intersected with bounding box), and ⊑ is the subset operation on boxes.
Note that for a1, a2 ⊆ b defining a1 ⊑ a2 iff a1 ⊎b a2 = a2 fulfills the above
property.

The following algorithm (which we will call pruning algorithm) computes a
refinement of a given abstraction A:

1 Here we do not assume any time bound. However, it is possible to apply our method
also for implementations of those procedures that compute reachability over bounded
time. This would only require slight modifications of the algorithms.



A∗ ← copy of A, all regions set to ∅, no initial labels, no edges
// from now on, for every abstract state a of A,
// we denote by a∗ the corresponding abstract state of A∗

for all a ∈ A, a is initial
a∗ ← InitReach(a)
if a∗ 6= ∅ then

mark a∗ as initial
while there is a pair of abstract states (a1, a2) in A with

a1 → a2, s.t. Reach(a∗1, a2) 6⊑ a∗2 do

if a∗1 6→ a∗2 in A∗ then introduce an edge a∗1 → a∗2 into A∗

a∗2 ← (a∗2 ⊎a2
Reach(a∗1, a2))

return A∗

Note that the pruning algorithm does not increase the size (i.e., the number
of nodes) of the abstraction. Still it deduces some some interesting information:

Theorem 1. The result of the pruning algorithm is a refinement of the input
abstraction A.

Proof. We have to prove two items:

– [[A∗]] ⊆ [[A]]: This follows from the following:
• the set of initial/unsafe marks of A∗ is a subset of the set of marks of A
• the set of edges of A∗ is a subset of the set of edges of A
• the abstract states of A∗ are subsets of the corresponding abstract states

of A since InitReach(a) ⊆ a, and a∗2 ⊎a2
Reach(a∗1, a2) ⊆ a2 from the

definition of ⊎.
– [[A∗]] ⊇ [[A]]∩E : Let T be an A-error trajectory in [[A]]∩E . We prove that T

is an element of [[A∗]]. Let a1 → · · · → an be an A-abstract error trajectory
s.t. T ∈ [[a1 → · · · → an]]. We prove that for the corresponding A∗-abstract
trajectory a∗1 → · · · → a∗n, also T ∈ [[a∗1 → · · · → a∗n]]. Let Ti be a fragment
of trajectory T before the transition ai → ai+1 is made. We will prove by
induction that for all i: Ti ∈ [[a∗1 → · · · → a∗i ]] and observation T = Tn

concludes the proof.
• a1 contains the initial point of T and InitReach(a1) contains all points

of T in a1. After the first loop of the algorithm, a∗1 is initial in A∗ and
it is equal to InitReach(a1). After that, all regions in A

∗ only increase
w.r.t. ⊑ operation and that implies that Ti ∈ [[a∗1]].

• We assume that for some i < n: Ti ∈ [[a∗1 → · · · → a∗i ]]. Since T leaves ai
to ai+1, a

∗
i contains all the points of T in ai, Reach(a

∗
i , ai+1) contains all

the points of T in ai+1. Since Reach(a
∗
i , ai+1) is non-empty, the abstract

transition a∗i → a∗i+1 is introduced into A∗ and from the while cycle
termination condition, we have: Reach(a∗i , ai+1) ⊑ a∗i+1, thus Ti+1 ∈
[[a∗1 → · · · → a∗i+1]].

⊓⊔



Note that the second part of the proof does not depend on the definition of
⊎. Hence, for ensuring that no error trajectory is lost by the algorithm, ⊎ does
not necessarily have to fulfill the requirement stated above. This requirement
just ensures that all computed reachability information is captured, and hence
will not have to be re-computed again.

Note moreover, that it is a-priori not clear, that the pruning algorithm ter-
minates. However, termination can be ensured, for example, by using a rep-
resentation for which, for given regions a and b, there is not infinite chain
a ⊑ a1 ⊑ a2 ⊑ · · · ⊑ b. See Section 5.1 for a more detailed discussion of this
issue.

As already mentioned, the pruning algorithm tries to deduce information
about a given system without increasing the size of the abstraction. In cases,
where it can deduce no more information, we have to fall back to some increase
of the size of the abstraction (cf. to a similar approach in constraint program-
ming where one falls back to exponential-time splitting, when polynomial-time
deduction does not succeed any more).

We do this by the Split operation that chooses an abstract state and splits it
into two, copying all the involved edges and introducing edges between the two
new states. All the labels and abstract transitions to other abstract states are
copied as well. Moreover, two new abstract transitions that connect the original
abstract state with its copy are added. The region assigned to the abstract state is
equally split among two abstract states. Such an refinement decreases the amount
of over-approximation in subsequent calls to the pruning algorithm due to the
properties of the Reach and InitReach. We chose such a simple splitting strategy
to show the usefulness of our approach in isolation. However, it is possible to
use much more sophisticated splitting strategies, for example, one could use one
CEGAR step [1, 7] instead of our simple splitting technique.

It is clear that the pruning algorithm can also be done backward in time (i.e.,
removing parts of the abstraction not leading to an unsafe state)[12, 11]. We will
denote the resulting algorithm by Prune−(A). Now we have to following overall
algorithm for computing increasingly fine abstractions:

while there is an A-abstract error trajectory
A ← Prune(A)
A ← Prune−(A)
A ← Split(A)

return ”safe”

Since neither pruning nor splitting removes an error trajectory, the absence
of an A-abstract error trajectory at the termination of the while loop implies
the absence of an error trajectory of the original system. Hence, in such a case,
the algorithm correctly returns the information that the input system was safe.

Note that forward pruning may enable further backward pruning and vice
versa, hence the algorithm may be extended in such a way that forward and back-
ward pruning are done in a loop until no further improvement occurs. If either



forward or backward pruning is dropped from the algorithm, it will incrementally
compute a tighter and tighter over-approximation of the (forward/backward)
reach set.

4 Improvements

In this section we introduce three improvements to the basic pruning algorithm.
The first improvement exploits the specific structure of hybrid systems (continu-
ous time, discontinuous jumps) and the two other improvements introduce more
incrementality into the way the algorithms handles the abstraction.

4.1 Exit Regions

When computing Reach(a∗1, a2) we get an over-approximation of the set of points
in a2 reachable from a∗1 according to the system dynamics. However, trajectories
can leave a∗1 not arbitrarily, but only at points fulfilling certain conditions:

– flows can leave a∗1 only over its boundary, and
– jumps can leave a∗1 only over parts of a∗1 belonging to the projection of the

set Jump to its first part corresponding to jump source, that is, over the set
{(m,x) ∈ S × R

k | ∃x′ ∈ R
k,m′ ∈ S . ((m,x), (m′, x′)) ∈ Jump}.

Hence, in the computation of Reach(a∗1, a2), instead of the full region a∗1 we can
use a subset fulfilling this condition. However, a∗1 already is an over-approximation.
Hence, it is better to directly compute an over-approximation of the points ful-
filling this condition, as follows:

We assume that the function InitReach(a), in addition to an over-approximation
of the set of points in a that are reachable from an initial point in a, also com-
putes an over-approximation of the set of states in a through which a trajectory
starting from an initial point in a leaves a. Moreover, we assume that Reach(a, a′)
in addition to an over-approximation of the set of points in a′ reachable from
a, computes an over-approximation of the set of states in a′ through which a
trajectory coming from a leaves a′.

We store those additional regions with abstract states, calling them exit re-
gions. For extending the operations ⊎ and ⊑ to abstract states consisting of a
region and an exit region we will need the following:

Lemma 1. Assume a region a that contains a trajectory T , an a∗ ⊑ a that also
contains T and an exit region ae containing the point L where T leaves a. Then
T also leaves a∗ at L.

Proof. Since a∗ contains all points of T in a, it also contains L. Let us assume
that T leaves a∗ at L∗ and that L∗ 6= L. Since a∗ contains T and both L
and L∗, it also contains a flow r, that is a part of the trajectory T , such that
r(0) = L∧r(length(r)) = L∗. Since a∗ ⊑ a, flow r is also in a and that contradicts
the assumption that T leaves a at L. ⊓⊔



Hence, T leaves a∗ at a point that already was an element of the exit region
ae of the original box a. This motivates us to extend the check ⊑ to abstract
states with exit regions in such a way that for abstract states (i.e., region/exit
region pairs) (cr, ce) and (dr, de), (cr, ce) ⊑ (dr, de) iff cr ⊑ dr and ce ⊑ de.
Moreover, ⊎ will also apply the corresponding operation on both the region and
exit region.

This makes it possible to implement InitReach and Reach in such a way that
they are compatible with ⊑.

Now, we extend the semantics of abstract trajectories in such a way that
concrete trajectories have to leave abstract states through their exit regions.
The correctness of the pruning algorithm is preserved, if the new operations ⊎
and ⊑ still fulfill the necessary properties. This is clearly the case for ⊎. But also
⊑ again fulfills the required property:

Theorem 2. For ⊑ extended with exit regions, for all abstract states a = (ar, ae)
and a∗ = (a∗r , a

∗
e), if a

∗
r ⊑ ar and a∗e ⊑ ae then a∗ ⊑ a.

Proof. Let T be a trajectory in [[b1, . . . bi−1, a
∗, bi+1, . . . , bn]]. We show that this

trajectory is also in [[b1, . . . , bi−1, a, bi+1, . . . , bn]]. Since a∗r ⊑ ar, T is covered by
the region ar. All we have to prove is that T leaves a at the point in ae. From
Lemma 1, we know that T leaves a and a∗ at the same point L. Since T is in
[[b1, . . . bi−1, a

∗, bi+1, . . . , bn]], L belongs to a∗e and since a∗e ⊑ ae it also belongs
to ae. ⊓⊔

This implies that Theorem 1 is also valid for abstractions with exit regions:

Corollary 1. The result of the pruning algorithm extended with exit regions is
a refinement of the input abstraction A.

Exit regions can be computed in both forward (i.e., Prune(A)) and backward
(i.e., Prune−(A)) computation. We will call such a region computed during
backward computation an enter region. Exit regions are computed only during
forward computation, while enter regions are computed only during backward
computation. When doing computation in one direction, the dual exit regions
do not change.

Moreover, in the computation of Reach(a∗1, a2), one can exploit not only the
exit region of a∗1, where the trajectory leaves a∗1, but also the enter region of a2,
where the trajectory has to enter the region of a2. Such an information can then
be used by the underlying reachability computation algorithm to constrain the
reachable states.

Furthermore, in Split(A), new boundaries are created. A trajectory can now
enter and exit the region through this new boundary and we have to create new
abstract states in such a way that the new boundary is part of the enter and
exit regions. For new abstract state a∗, new boundary b and original exit region
ae, we create a new exit region a∗e in such a way that (ae ∩ a∗) ∪ b ⊆ a∗e . This
clearly does not change the set of represented error trajectories.



4.2 Avoided Redundant Edge Checks

One disadvantage of the pruning algorithm is that it may do redundant tests for
the condition Reach(a∗1, a2) 6⊑ a∗2 in the update function. Whenever such a test
has been made, this can be remembered until the information is not valid any
more.

To this purpose we add additional edges to the abstraction that we label with
⊑ (and which we call consistency edges). We keep the invariant (that we will
call consistency invariant) that whenever a∗1 →⊑ a∗2, then Reach(a∗1, a2) ⊑ a∗2.

Moreover we use a procedure propChange(a) that, for every a′ with a → a′

deletes every edge a →⊑ a′. This allows us to change the while loop in the
pruning algorithm as follows:

A∗ ← copy of A, all regions set to ∅, no initial labels, no edges
// from now on, for every abstract state a of A,
// we denote by a∗ the corresponding abstract state of A∗

for all a ∈ A, a is initial
a∗ ← InitReach(a)
if a∗ 6= ∅ then

mark a∗ as initial
propChange(a∗)

while there is a pair of abstract states (a1, a2) in A with
a1 → a2, s.t. a

∗
1 6→⊑ a∗2 and Reach(a∗1, a2) 6⊑ a∗2 do

introduce an edge a∗1 →⊑ a∗2
if a∗1 6→ a∗2 in A∗ then introduce an edge a∗1 → a∗2 into A∗

a∗2 ← a∗2 ⊎a2
Reach(a∗1, a2)

propChange(a∗2)
return A∗

Algorithms of such a type are known in the literature under them name
”chaotic iteration” or ”worklist algorithms”. They have been used and studied
mainly in the context of abstract interpretation [8, 5, 13] and constraint satisfac-
tion [2, 3].

Theorem 3. Independent of the consistency edges of the input A, the improved
pruning algorithm computes the same result as the original one.

Due to space restrictions we omit the proof of this theorem.

4.3 Incremental Refinement of Abstraction

Now observe that splitting, or dual pruning, only changes a part of the abstrac-
tion. Still, the pruning algorithms do a complete re-computation. This is not
necessary, and in order to avoid it:



– We mark all abstract states for which we know, that a re-computation will
not improve, with the mark Cons (the consistency mark).

– Whenever splitting or dual pruning changes an abstract state, we delete this
consistency mark, and all consistency marks of states reachable from it.

– At the beginning of the pruning algorithm for all abstract states we reset
the abstract state with the result of InitReach only if the consistency mark
is not set. Abstract states with the consistency mark, retain the value from
the input abstraction A.

Since we do separate forward and backward pruning, we also need separate
consistency marks for both cases. Splitting removes both consistency marks at
the same time.

5 Implementation

The method introduced in this paper can be instantiated with various techniques
for forming and representing abstract states, and computing reachability infor-
mation. Nonetheless, in order to study the viability of the approach, we created
a specific implementation that uses boxes (with floating point endpoints) for
representing regions.

In the Split operation on boxes, we pick a splitting dimension of the box
assigned to the region and we split the box into halves using this dimension.
For picking the splitting dimension, a round-robin strategy has proved to be the
useful heuristics [16].

5.1 Widening

Termination of the algorithm that uses boxes for region representation is en-
sured by doing all the computations on the finite set of floating point numbers.
Hence there are only finitely many possibilities of changing boxes with ⊎, until
a fixpoint is reached. This may in some cases lead to stuttering (i.e., many small
improvements by close floating point numbers) and thus to a slow convergence
to a fixpoint.

We designed a widening strategy to avoid stuttering and speed up the con-
vergence of the algorithm. Here, widening is applied to the line a∗2 ← (a∗2 ⊎a2

Reach(a∗1, a2)) of the algorithm, that we replace with a∗2 ← widening(a2, a
∗
2, a

∗
2⊎a2

Reach(a∗1, a2)). Informally speaking, when a change from a∗2 to a
∗
2⊎a2

Reach(a∗1, a2)
would be small compared to a2, widening gives us region a bit bigger than
a∗2 ⊎a2

Reach(a∗1, a2), but still smaller or equal than a2.
Formally, the widening operates on each individual dimension separately (re-

call that in our implementation regions are represented by boxes, that is Carte-
sian products of intervals). Let b be the box a∗2 ⊎a2

Reach(a∗1, a2) and in the
considered dimension i let [a2i, a2i], [a

∗
2i
, a∗2i] and [bi, bi] be the intervals of the

boxes a2, a
∗
2 and b respectively. We will denote by wi := a2i−a2i the width of the

box a2 in its i-th dimension. For a given, pre-chosen constant c ∈ [0, 1] (which



we call widening-constant), the result of widening in the considered dimension is
[a2i, a2i]∩ [min(bi, a

∗
2i
−cw),max(bi, a∗2i+cw)]. Hence, widening depends on the

width of the box in the original abstraction. After splitting the region, widening
in the next execution of pruning algorithm adds smaller parts of the region. In
our implementation, we use the widening constant c = 1/16.

Our previous approach for hybrid systems verification [16] computes ab-
stractions based on an algorithm that can be viewed as is a special case of
the method presented here that uses some extreme form of widening where
widening(a2, a

∗
2, a

∗
2 ⊎a2

Reach(a∗1, a2)) = Reach(a1, a2). In other words, the
method does not accumulate reachability information at all, and immediately
uses the weaker old abstract state a1 instead of a∗1. This results in a much simpler
algorithm where instead of our while loop, reachability information is computed
only once for each neighbor in the abstraction. However, as our computational
experiments will show, different variants of the method presented in this pa-
per show much better behavior than that particular instantiation, especially for
hybrid systems with cyclic behavior.

5.2 Computation of Reachability Information

For computing reachability information of hybrid systems, as needed by our
functions Reach and InitReach, one has to come up with a way of handling the
differentiation operator. Here, one can over-approximate it to a purely polyno-
mial constraint using Taylor expansion. Since Reach and InitReach only need
reachability information in bounded regions, this results in bounds on all deriva-
tives, and hence Reach and InitReach can be computed in a conservative way,
even over unbounded time. Our current implementation only uses Taylor poly-
nomials of degree one (corresponding to the mean-value theorem). This is a very
crude over-approximation, which is sufficient for studying the behavior of the
algorithm presented in this paper. In order to arrive at an efficient implementa-
tion, one would have to use Taylor polynomials of higher degrees, which is an
easy, but tedious, implementation exercise.

The resulting constraint contains variables corresponding to derivatives and
to the source points of trajectories and jumps. In order to arrive at a description
of the set of reachable states, those have to be eliminated. In theory, one could
use quantifier elimination procedures for this (cf. the notion of logical interpre-
tation [18]). However, in the case of polynomials and real numbers, those do
not scale in the problem dimension at all. Hence we simply project the boxes
computed by interval constraint propagation [4] (we also have a generalization of
this technique available [14]). We also have investigated an alternative method
based on an over-approximation of Fourier-Motzkin elimination [10].

6 Computational Experiments

We studied the behavior of our implementation in two scenarios: First, the sce-
nario where the abstraction refinement method of this paper is used for hybrid



systems verification. And second, where it is used for computing abstractions of
high-dimensional systems that can then be used for other purposes (e.g., running
simulations for testing). Since we did not want to test the underlying reachability
computation algorithms, but the incremental abstract computation algorithm in-
troduced in this paper, we only used the highly over-approximating reachability
computation described in Section 5.2. For practical analysis of concrete hybrid
systems, one can use much more sophisticated reachability algorithms, adapted
to the type of system at hand.

For studying the first scenario, we took benchmarks from our database (avail-
able on the web at http://hsolver.sourceforge.net/benchmarks). For each exam-
ple, the behavior of a full verification cycle is described in Table 1. Here, the three
main columns describe the three widening strategies described in Section 5.1, i.e.,
verification algorithm with (moderate) widening, without widening, and with the
extreme widening strategy that corresponds to the previous algorithm from [16].
The column Refine represents the number of refinement steps of the overall al-
gorithm for safety verification from Section 3. All timings were measured on PC
with Intel Core 2 3.0GHz CPU and 4GB RAM. From the measured results we
conclude that an extreme widening strategy does not pay off and can solve less
benchmark examples than approaches with less aggressive widening. This is il-
lustrated particularly nicely by the cycle benchmark, where verification finishes
in one refinement step with the method presented in this paper, while the pre-
vious approach is not able to solve this benchmark at all. The reason is that for
such benchmarks with cyclic system behavior, widening should not prevent the
analysis of full system cycles.

We also conclude that the moderate widening strategy pays off since it causes
only negligible run time increase, but removes stuttering in the mutant bench-
mark and does not increase the number of refinement steps in any benchmark.

For studying the second scenario we conducted computational experiments
with high dimensional problems. For this purpose, we created two example prob-
lems using the parallel composition of several instances of simpler benchmarks.
Our first high dimensional example contains 102 clock variables and one mode.
The example was not verified in the time limit of one hour, however, the vol-
ume of all boxes in the abstraction was pruned from the size of approximately
8× 1040 down to 1× 1030. Hence, our method resulted in an abstraction whose
volume is 8×1010 times smaller, and that contains additional information about
initial and unsafe states, and abstract transitions. The result can be used to
guide testing or falsification [17], since we know that the pruned parts of the
abstraction do not contain any error trajectory. Our second high dimensional
benchmark is a benchmark with 100 variables with non-linear evolution, one
clock variable and one mode. It was verified using thirteen refinement steps in
36 minutes. From the measured results in high dimension we conclude, that our
technique for abstraction refinement is feasible also in case of high dimensional
benchmarks.

The first benchmark we used was the parallel composition of 34, three-
variable 1-flow benchmarks from our database. The second benchmark was a



Table 1. Experimental results

F/B + widening F/B reachability orig. alg.
Name Refine Time Refine Time Refine Time

1-flow 2 < 1s 2 < 1s 2 < 1s
2-tanks 2 < 1s 2 < 1s 9 1s
car 1 < 1s 1 < 1s 1 < 1s
circuit 101 752s 101 706s N/A
clock 15 1s 15 1s 16 2s
convoi-1 1 < 1s 2 < 1s 2 < 1s
convoi 19 4s 20 4s N/A
cycle 1 < 1s 1 < 1s N/A
eco 24 18s 24 18s N/A
fischer2 1 < 1s 1 < 1s 6 40s
focus 5 < 1s 5 < 1s 5 < 1s
hallstah 134 463s 134 427s N/A
mixing 1 < 1s 1 < 1s 1 < 1s
mutant 2 < 1s N/A N/A
sinusoid 118 121s 118 109s N/A
van-der-pole 1 < 1s 1 < 1s 2 < 1s

parallel composition of 50 three-variable clock benchmarks, where all the in-
stances share the common third clock variable, but have separate variables for
non-linear evolution. The original clock benchmark needs fifteen refinement steps
including fifteen splitting steps. Splitting in such a high dimension would cre-
ate huge abstractions, so we have simplified the instances of the benchmark,
changing the constant in the differential equation from ẋ1 = −5.5x2 + x2

2 to
ẋ1 = −5.5x2 + 0.3x2

2. We believe, that instantiation of the technique with a
reachability computation method that requires less splitting steps allows verifi-
cation of the benchmark without this simplification.

7 Conclusion

In this paper we introduced a technique for computing abstractions of hybrid
systems that can handle arbitrary hybrid systems for which certain reachability
computation algorithms are provided. The abstractions are computed in such a
way that they are as succinct as possible. Computational experiments confirm the
usefulness of the approach. Especially, the approach can compute information for
high-dimensional systems that can be used for guiding testing or falsification.
In future work we will instantiate this technique with different methods for
reachability computation and we will try to create an algorithm that provably
terminates for all robust inputs [9, 15].



References

1. R. Alur, T. Dang, and F. Ivančić. Predicate abstraction for reachability analysis
of hybrid systems. Trans. on Embedded Computing Sys., 5(1):152–199, 2006.

2. K. R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1–2):179–210, 1999.

3. K. R. Apt. The role of commutativity in constraint propagation algorithms. ACM
Transactions on Programming Languages and Systems, 22(6):1002–1036, 2000.

4. F. Benhamou and L. Granvilliers. Continuous and interval constraints. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, chap-
ter 16, pages 571–603. Elsevier, Amsterdam, 2006.

5. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In D. Bjørner,
M. Broy, and I. Pottosin, editors, Formal Methods in Programming and Their
Applications, volume 735 of Lecture Notes in Computer Science, pages 128–141.
Springer Berlin / Heidelberg, 1993.

6. I. Brückner, K. Dräger, B. Finkbeiner, and H. Wehrheim. Slicing abstractions.
Fundamenta Informaticae, 89(4):369–392, 2008.

7. E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and
M. Theobald. Abstraction and counterexample-guided refinement in model check-
ing of hybrid systems. Int. J. of Foundations of Comp. Sc., 14(4):583–604, 2003.

8. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
Mathematical foundations. In Proceedings of the 1977 symposium on Artificial
intelligence and programming languages, pages 1–12, 1977.

9. W. Damm, G. Pinto, and S. Ratschan. Guaranteed termination in the verification
of LTL properties of non-linear robust discrete time hybrid systems. International
Journal of Foundations of Computer Science (IJFCS), 18(1):63–86, 2007.

10. T. Dzetkulič and S. Ratschan. How to capture hybrid systems evolution into slices
of parallel hyperplanes. In ADHS’09: 3rd IFAC Conference on Analysis and Design
of Hybrid Systems, pages 274–279, 2009.

11. G. Frehse, B. H. Krogh, and R. A. Rutenbar. Verifying analog oscillator circuits us-
ing forward/backward abstraction refinement. In DATE 2006: Design, Automation
and Test in Europe, 2006.

12. T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for
hybrid automata. volume 999 of LNCS, pages 252–264, 1995.

13. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

14. S. Ratschan. Efficient solving of quantified inequality constraints over the real
numbers. ACM Transactions on Computational Logic, 7(4):723–748, 2006.

15. S. Ratschan. Safety verification of non-linear hybrid systems is quasi-semidecidable.
In TAMC 2010: 7th Annual Conference on Theory and Applications of Models of
Computation, volume 6108 of LNCS, pages 397–408. Springer, 2010.

16. S. Ratschan and Z. She. Safety verification of hybrid systems by constraint propa-
gation based abstraction refinement. ACM Transactions in Embedded Computing
Systems, 6(1), 2007.

17. S. Ratschan and J.-G. Smaus. Finding errors of hybrid systems by optimising an
abstraction-based quality estimate. In C. Dubois, editor, Tests and Proofs, volume
5668 of LNCS, pages 153–168. Springer, 2009.

18. A. Tiwari and S. Gulwani. Logical interpretation: Static program analysis using
theorem proving. In F. Pfenning, editor, Automated Deduction CADE-21, vol-
ume 4603 of Lecture Notes in Computer Science, pages 147–166. Springer Berlin /
Heidelberg, 2007.


