
How to Capture Hybrid Systems Evolution

Into Slices of Parallel Hyperplanes

Tomas Dzetkulic ∗ Stefan Ratschan ∗∗

∗ Institute of Computer Science, Academy of Sciences of the Czech
Republic, Pod Vodarenskou vezi 2, 182 07 Prague 8, Czech Republic

(e-mail: dzetkulic@cs.cas.cz).
∗∗ Institute of Computer Science, Academy of Sciences of the Czech
Republic, Pod Vodarenskou vezi 2, 182 07 Prague 8, Czech Republic

(e-mail: ratschan@cs.cas.cz).

Abstract: In this paper we make a step towards an algorithm for the verification of hybrid
systems that, on the one hand allows very general inputs (e.g., with non-linear ordinary
differential equations), but on the other hand exploits the structure of those parts of the input
that represent special cases (e.g., clocks). We show how to compute slices of parallel hyperplanes
separating reachable from unreachable parts of the state space for a given abstraction of the
input system, and demonstrate the usefulness of such slices within an abstraction refinement
algorithm based on hyper-rectangles.

Keywords: verification, hybrid systems, timed automata

1. INTRODUCTION

Current algorithms for the verification of hybrid systems
range from one extreme of techniques that are quite
efficient but allow as input only a restricted problem class
(e.g., timed automata (Bengtsson and Yi, 2004)), to the
other extreme of algorithms that do allow as input a very
general problem class, but can hardly verify any examples
of the size occurring in practical applications (Ratschan
and She, 2007).

The key to arrive at algorithms that combine the advan-
tages of both approaches, lies in the exploitation of the
structure of parts of the input that represent special cases.

In this paper we use the observation that differential equal-
ities of the form ẋ = c (i.e., clocks of arbitrary speed) and
affine switching conditions often result in reach sets that
are to a certain extent bounded by hyperplanes. Hence we
use pairs of affine inequalities of the form blo ≤ ax ≤ bhi
(which we call slices) to separate the reachable from un-
reachable parts of the state space. However, in order to
allow general applicability, we design an algorithm for
generating such slices for hybrid systems that contain non-
linear ordinary differential equations, non-linear jumps,
etc.

The algorithm computes such slices for a given abstraction
of a hybrid system. It sets up a constraint that formalizes
reachability of states within an abstract state and over-
approximates the solution set of this constraint in the form
of a slice.

The presentation in the paper uses abstractions in the
form of hyper-rectangles (boxes), but also discusses the

⋆ The work on this paper has been supported by GAČR grants
201/08/J020 and 201/09/H057, and by the institutional research
plan AV0Z100300504 of the Czech Republic.

case where polyhedra are used instead. Moreover, we study
the use of such slices in safety verification methods based
on abstract refinement, especially constraint propagation
based abstraction refinement (Ratschan and She, 2007).
Extensive computational experiments show that in fact
the efficiency of these methods becomes much more robust
when using slices. Especially, the method can now verify
the up to now unsolved heating benchmark (Fehnker and
Ivančić, 2004).

In contrast to many algorithms in hybrid systems verifica-
tion, the correctness of our algorithms cannot be hampered
by floating-point rounding errors, since we do conservative
rounding throughout.

Concerning related work, Sankaranarayanan et al. (2008)
describe how to over-approximate the reach set of hybrid
systems using hyper-planes with given coefficients. Their
approach proved successful in forward computation of the
reach set, repeating flow pipe constructions with a fixed
time step. In contrast to that, in our approach we deduce
not only the constant of the hyper-plane but also their
coefficients. Moreover, we aim at improving abstractions,
and not at forward computation. Hence we do not employ
a potentially unbounded number of flow pipe constructions
with a fixed time step, but try to infer single slices as fast
as possible, allowing for efficient abstraction refinement.

Gulwani and Tiwari (2008) synthesize inductive invariants
of hybrid systems. Whenever such an inductive invariant
can be found, this verifies safety of the system. However,
the resulting search for an invariant can be expensive:
Gulwani and Tiwari (2008) use a translation to Boolean
satisfiability modulo bit vectors here. In contrast to that,
we concentrate on improvements of abstractions that can
be computed in negligible time.

The content of the paper is as follows: In Section 2 we
describe the problem of hybrid systems verification, in
Section 3 we describe how to formulate constraints that
over-approximate the reachable states, in Section 4 we
describe our over-all approach of computing slices from
the reachability constraint already used for computing
abstractions and we estimate complexity of such compu-
tation, in Section 5 we evaluate the method using some
computation experiments, and in Section 6 we conclude
the paper.

2. SAFETY VERIFICATION OF HYBRID SYSTEMS

In this section, we briefly recall our formalism for modeling
hybrid systems. It captures many relevant classes of hybrid
systems, and many other formalisms for hybrid systems in
the literature are special cases of it. We use a set S to
denote the modes of a hybrid system, where S is finite
and nonempty. I1, . . . , Ik ⊆ R are compact intervals over
which the continuous variables of a hybrid system range.
Φ denotes the state space of a hybrid system, i.e., Φ = S×
I1 × · · · × Ik.

Definition 1. A hybrid system H is a tuple
(Flow, Jump, Init, Unsafe), where Flow ⊆ Φ×R

k, Jump ⊆
Φ × Φ, Init ⊆ Φ, and Unsafe ⊆ Φ.

Informally speaking, the predicate Init specifies the initial
states of a hybrid system and Unsafe the set of unsafe
states that should not be reachable from an initial state.
The relation Flow specifies the possible continuous flow of
the system by relating states with corresponding deriva-
tives, and Jump specifies the possible discontinuous jumps
by relating each state to a successor state. Formally, the
behavior of H is defined as follows:

Definition 2. A flow of length l ≥ 0 in a mode s ∈ S is
a function r : [0, l] → Φ such that the projection of r to
its continuous part is differentiable and for all t ∈ [0, l],
the mode of r(t) is s. A trajectory of H is a sequence
of flows r0, . . . , rp of lengths l0, . . . , lp such that for all
i ∈ {0, . . . , p},

(i) if i > 0 then (ri−1(li−1), ri(0)) ∈ Jump, and
(ii) if li > 0 then (ri(t), ṙi(t)) ∈ Flow, for all t ∈ [0, li],

where ṙi is the derivative of the projection of ri to
its continuous component.

A (concrete) counterexample of a hybrid system H is a
trajectory r0, . . . , rp of H such that r0(0) ∈ Init and
rp(l) ∈ Unsafe, where l is the length of rp. H is safe if
it does not have a counterexample.

We use the following constraint language to describe hy-
brid systems and corresponding safety verification prob-
lems. The variable s ranges over S and the tuple of vari-
ables x = (x1, . . . , xk) ranges over I1×· · ·×Ik, respectively.
In addition, to denote the derivatives of x1, . . . , xk we use
the tuple of variables ẋ = (ẋ1, . . . , ẋk) that ranges over
R

k, 1 and to denote the targets of jumps, we use the
variable ŝ and the tuple of variables x̂ = (x̂1, . . . , x̂k) that
range over S and I1 × · · · × Ik, respectively. Constraints
are arbitrary Boolean combinations of equalities and in-

1 The dot does not have any special meaning here; it is only used to
distinguish dotted from undotted variables.

equalities over terms that may contain function symbols,
like +, ×, exp, sin, and cos.

We assume in the remainder of the text that a hybrid
system is described by our constraint language. That
means, the flows of a hybrid system are given by a con-
straint Flow(s,x, ẋ), the jumps are given by a constraint
Jump(s,x, ŝ, x̂), and the initial and unsafe states are given
by constraints Init(s,x) and Unsafe(s,x), respectively.
To simplify notation, we do not distinguish between a
constraint and the set it represents.

Example 1. For illustrating the above definitions, consider
the following simple hybrid system with the modes m1,m2

and the continuous variables x1, x2, where x1 ranges over
the interval [0, 2] and x2 over [0, 1], i.e, Φ = {m1,m2} ×
[0, 2] × [0, 1].

The set of initial states are given by the constraint
Init(s, (x1, x2)) ≡ (s = m1 ∧ x1 = 0 ∧ x2 = 0).
The constraint Unsafe(s, (x1, x2)) ≡ (x1 > 1 ∧ x2 =
1) describes the set of unsafe states. The hybrid sys-
tem can switch modes from m1 to m2 if x2 ≥ 1, i.e.,
Jump(s, (x1, x2), s

′, (x′
1, x

′
2)) ≡ (s = m1 ∧ x2 ≥ 1 → s′ =

m2 ∧ x′
1 = x1 ∧ x′

2 = x2), The continuous behavior is
very simple: In mode m1, the values of the variables x1, x2

change with slope 1; in mode m2, the slope of variable x1

is 1 and variable x2 has slope −1. For a flow in mode m1,
the constraint 0 ≤ x1 ≤ 1 must hold and in mode m2,
1 ≤ x1 ≤ 2 must hold. The corresponding flow constraint
is Flow(s, (x1, x2), (ẋ1, ẋ2)) ≡ (s = m1 → ẋ1 = 1∧ẋ2 = 1∧
0 ≤ x1 ≤ 1)∧ (s = m2 → ẋ1 = 1∧ ẋ2 = −1∧ 1 ≤ x1 ≤ 2).
Note that the constraint 0 ≤ x1 ≤ 1 in Flow forces a
jump from mode m1 to m2 if x1 becomes 1. In general,
an invariant that has to hold in a mode can be modeled
by formulating a flow constraint that does not allow a
continuous behavior in certain regions.

Obviously, this hybrid system is safe.

A box abstraction of a hybrid system H is a set of non-
overlapping mode/box pairs (which we call abstract states)
with transitions between them, such that:

• every point on a counterexample of H is an element
of an abstract state

• whenever a counterexample moves from an abstract
state a1 to an abstract state a2 then there is a
corresponding transition a1 → a2 from a1 to a2 (it
is an easy, but rather technical exercise to formally
define ”moves from”).

We assume that we have a method for computing such a
box abstraction (Ratschan and She, 2007; Stursberg and
Kowalewski, 2000).

3. REACHABILITY CONSTRAINTS

Now we assume that we have a box abstraction for a given
hybrid system H, and present a constraint formalizing the
fact that a given point in the state space of H may lie on
a counterexample.

Observe that a point lies on a counterexample iff it is both
reachable from an initial state and leads to an unsafe state.
We will only formalize the first part of this condition, the
second part is dual. Details can be found in an earlier

publication (Ratschan and She, 2008). In the case where
an over-approximation of the set of reachable states, or of
the set of backward reachable states is desired, one can use
only one of the two dual formalizations.

A point in a box B is reachable only if it is reachable
either from the initial set via a flow in B, from a jump
via a flow in B, or from a neighboring box via a flow
in B. These three possibilities refer to the three parts
of the conjunction in the following Theorem 1. We will
now formulate constraints corresponding to each of these
conditions. Then we can remove points from boxes that do
not fulfill at least one of these constraints.

The approach can be used with any constraint that de-
scribes that y can be reachable from x via a flow in B and
mode s, for example:

Lemma 1. If a hybrid system (Flow, Jump, Init, Unsafe)
has a trajectory in a box B ⊆ R

k consisting of one single
flow from a point x = (s, x1, . . . , xk)T ∈ B to a point
y = (s, y1, . . . , yk)T ∈ B, then

∃t ∈ R≥0∃ẋ ∈ R
k∃ẏ ∈ R

k

[Flow(s,x, ẋ) ∧ flow∗
B(t,x,y) ∧ Flow(s,y, ẏ)],

where flow∗
B(t,x,y) denotes

∧

1≤i≤k

∃a1, . . . , ak, ȧ1, . . . , ȧk[(a1, . . . , ak) ∈ B

∧ Flow(s, (a1, . . . , ak), (ȧ1, . . . , ȧk)) ∧ yi = xi + ȧi · t]

We denote the above constraint by ReachB(s,x,y). For
formalizing the above three possibilities for reachability,
for a box B = [x1, x1] × · · · × [xk, xk], we define its j-th
lower face to be [x1, x1]×· · ·×[xj , xj]×· · ·×[xk, xk] and its
j-th upper face to be [x1, x1]×· · ·× [xj , xj]×· · ·× [xk, xk].
Now we can formulate the following theorem:

Theorem 1. For a set of abstract states B, a pair (s′, B′) ∈
B and a point z ∈ B′, if (s′,z) is reachable and z is not an
element of the box of any other abstract state in B, then

IflB′(s′, z) ∨
∨

(s,B)∈B,(s,B)→(s′,B′)

JflB,B′(s, s′, z)

∨
∨

(s,B)∈B,s=s′,B 6=B′,(s,B)→(s′,B′)

BflB,B′(s′, z)

where IflB′(s′, z), JflB,B′(s, s′, z), and BflB,B′(s′, z) denote
the following three constraints, respectively:

• ∃x ∈ B′ [Init(s′,x) ∧ ReachB′(s′,x, z)],
• ∃x ∈ B∃x′ ∈ B′ [Jump(s,x, s′,x′) ∧ ReachB′(s′,x′, z)],
• ∃x ∈ B ∩ B′[[

∀faces f of B′[x ∈ f ⇒ inf
s′,B′(x)]

]
∧ ReachB′(s′,x, z)

]
.

Here,
inf

s′,B′(x) = ∃ẋ1, . . . ,∃ẋk[Flow(s
′,x, (ẋ1, . . . , ẋk)) ∧ ẋj ≥ 0],

if f is the j-th lower face of B′, and if f is the j-th upper
face of B′,
inf

s′,B′(x) = ∃ẋ1, . . . ,∃ẋk[Flow(s
′,x, (ẋ1, . . . , ẋk)) ∧ ẋj ≤ 0].

We denote the main constraint of Theorem 1 by
reachB,B′(s′, z). If we can prove that a certain point does
not fulfill this constraint, we know that it is not reachable.

1
0

1

0

y

 x

Fig. 1. Constraint x = y and its box enclosure in box [0, 1]2

4. SLICE COMPUTATION

In this section we describe our approach of adding slices
of the form blo ≤ ax ≤ bhi to abstract states of a given
abstraction. Here, blo may be −∞, and bhi may be ∞. We
call a slice without any finite bound trivial.

The amount of over-approximation in box abstraction can
be huge. See Fig. 1 for graphical representation of a simple
linear constraint. With slices, we can remove all over-
approximation in such linear cases and also decrease over-
approximation in non-linear cases as we will show below

Throughout the rest of the paper we will use interval
arithmetic techniques for safely over-approximating global
behavior and for safe handling of rounding errors. When-
ever one of the arguments to an arithmetic operation is
an interval, the corresponding interval operation is used.
Here, if the other argument is a single real number, this
number is enclosed into an interval before application of
the interval operation.

Initially, we add a trivial slice to each abstract state.
During computation, non-trivial slices appear that over-
approximate the set of states lying on a counter-example.

For this, we start with the reachability constraint de-
scribed in Theorem 1 with every constraint x ∈ B in
this constraint replaced by x ∈ B ∧ βB(x), where βB is
the slice that we already have for the box B. Then, we
proceed in two steps, described in the corresponding sub-
sections below: First, we replace every non-linear atomic
sub-constraint (i.e., equality or inequality) by an over-
approximating slice (Subsection 4.1). Then, we compute a
slice for the overall constraint using the constraint solving
technique described in the next section (Subsection 4.2).

Note that a tighter slice for a given abstract state a results
in a tighter reachability constraint for all abstract states a′

reachable from a by an abstract transition a → a′. Hence,
slice computation can be iterated over the abstraction until
no significant slice improvements occur any more.

4.1 Linearization of Atomic Sub-constraints

We compute an over-approximating slice of non-linear
atomic sub-constraints by first computing a slice with
interval coefficients, and from this, a slice with real co-
efficients.

9

4
2 3

y

x

Fig. 2. Constraint y = x2 and a slice over-approximating
it’s solution in box [2, 3] × [4, 9]

For computing a slice with interval coefficients from a
function f in a box B we use a similar method as
introduced by Kolev and Nenov (2001): Let us denote
by xmid the center of B and by D an interval vector
over-approximating the gradient of φ in B (this can be
computed by automatic differentiation Griewank (2000)).
Let the function F (x) be the linearization f(xmid)+D(x−
xmid). Then, due to the mean value theorem, we have:

Theorem 2. If f and F are as above, then for all x ∈ B,
f(x) ∈ F (x).

We compute a slice with constant coefficients from the
above linear function with interval coefficients by choosing
the midpoint of each interval coefficient. Then we have, for
d being the midpoint of D, F (x) =
f(xmid) + D · (x − xmid) =
f(xmid) + d · (x − xmid) + (D − d) · (x − xmid) ⊆
d · x − d · xmid + f(xmid) + (D − d) · (B − xmid).

The latter expression still contains intervals, but only as
constant terms—all coefficients are constants. Depending
on whether we have the relation symbol ≤, ≥ or = we
create a slice consisting of a linear inequality in x with
non-trivial upper bound, lower bound, or both bounds,
respectively.

The error we make with over-approximation is equal to
the width of the interval (D − d) · (B − xmid), but it goes
to zero quadratically with the width of the box B.

Note that the application of the above procedure to an
input that is already affine, just returns the input as
output.

Example 2. Example of linearization using the above algo-
rithm for constraint x2−y = 0 in box (x, y) ∈ [2, 3]× [4, 9]:
Automatic derivation gives us Dx = [4, 6] and Dy =
[−1,−1]. The midpoints (dx, dy) = (5,−1) of these inter-
vals are the constant coefficients of the linearization. The
corresponding interval constant term −d·xmid+f(xmid)+
(D−d) · (B−xmid) is −5∗2.5+6.5+2.52 −6.5+ [−1, 1]∗
[−0.5, 0.5] = −6.25 + [−0.5, 0.5] = [−6.75,−5.75]. The
result of linearization of the constraint x2 − y = 0 in the
box [2, 3] × [4, 9] is the slice 5.75 ≤ 5x − y ≤ 6.75.

See Fig. 2 for the graphical representation of this example.

4.2 Approximate Solving of Quantified Constraints

In this sub-section we compute, given a quantified con-
straint and a box, a slice over-approximating the solution
set of the constraint in the box.

For atomic constraints (equalities or inequalities) we get
the slices using the linearization approach described in the
previous section. Then we proceed recursively, bottom-up,
according to the logical symbols (existential quantifiers,
conjunctions, and disjunctions) occurring in the formula.
Due to the fact that ∃[φ∨ψ] is equivalent to [∃φ]∨ [∃ψ] we
can assume that the logical symbol below an existential
quantifier is always a conjunction. Hence we can treat
existential quantifiers and conjunctions in one step. We
will now describe this step, and at the end of the section
we show how we handle disjunctions.

The common way of handling quantifiers, is to use methods
for eliminating them. However, quantifier elimination is
known to be expensive, since it blows up the number of
constraints (Fischer and Rabin, 1974). Our method uses a
similar elimination step as Fourier-Motzkin elimination,
but only generates a sub-set of the corresponding con-
straints. From this subset we then pick the constraint that
provides most information in the given box.

Due to the correctness of Fourier-Motzkin elimination,
and due to the fact that removing constraints from a
conjunction over-approximates the solution set of this
conjunction, this method is correct. That is, it results in a
conservative over-approximation of the solution set of the
input constraint in the given box.

In order to be able to choose constraints that provide
more information within a given box B, we will define
a goodness function γ(φ,B) that assigns a value from
the interval [0, 1] to a constraint in such a way, that a
higher value means that the constraint is more important
(contains more useful information).

Definition 3. For a constraint f(x) ≤ 0 and box B, let
f(B) = [a, a] be an interval that we obtain from interval
arithmetic if we substitute the whole box B for the
variables in function f . We define the goodness function
γ(f(x) ≤ 0, B) as follows:

• 0, if a ≤ 0,
• 1, if a > 0, and
• a/(a − a), otherwise.

For a slice β(x), we define γ(β,B) as the sum of γ(φ,B)
for both contained inequalities.

We can see that, if f(B) evaluates to an interval containing
only negative values, the constraint f ≤ 0 is true on the
whole box and this constraint can be excluded from our
system. Such a constraint will be assigned goodness value
0. Constraints with higher values are more important,
because they cut off some volume of the box.

In the case where we have abstractions based on polyhe-
dra instead of boxes, computation of a similar goodness
function would need the solution of two linear programs
computing a lower and upper found of f in the polyhedron.

Recall that Fourier-Motzkin elimination is based on the
fact that two linear inequalities φ and ψ in which a certain

variable x has coefficients of opposite sign, can be written
in the form f ≤ x and x ≤ g, where f and g are
linear expressions not containing the variable x. This in
turn implies the constraint f ≤ g, again not containing
variable x. For such φ and ψ we will now write this implied
constraint as elim(φ, ψ).

The problem is, that for a given conjunction of k linear
inequalities, in the worst case there may be k2/4 such
pairs. Hence we use the goodness function to only gener-
ate those constraints in Fourier-Motzkin elimination that
appear to provide promising information. Here we use a
2-step process: First, generate implied constraints using
elim using only a subset of the k2/4 pairs used in Fourier-
Motzkin elimination, and second, choose a sub-set of the
implied constraints.

The algorithm has the following specification:

• Input:
· a set Φ of linear inequalities in variables x1, . . . , xn

· an n-dimensional box B = I1 × · · · × In

• Output: a set Φ′ of linear inequalities in variables
x1, . . . , xn−1 such that for all (x1, . . . , xn) ∈ B,∧

Φ(x1, . . . , xn) =⇒
∧

Φ′(x1, . . . , xn−1)

For applying it we simply view the slices computed for all
sub-constraints as two inequalities.

In the algorithm, we use interval arithmetic to avoid
rounding errors. We denote by I the upper bound of the
interval I and I the lower bound of the interval. The
algorithm works as follows:

• Add constraints xn − In ≤ 0 and −xn + In ≤ 0 to
the input constraint Φ (to enforce the bounds given
by the input box)

• Split the constraints in Φ into 3 groups:
· Φ+, where xn has positive coefficient
· Φ−, where xn has negative coefficient
· Φ0, where xn has zero coefficient

• let Φ′ be {elim(φ+
γ , φ−) | φ− ∈ Φ−}∪{elim(φ+, φ−

γ) |

φ− ∈ Φ−} ∪ Φ0, where φ+
γ (φ−

γ , respectively) is

the element of Φ+ (Φ−, respectively) with maximal
goodness.

• remove all constraints from Φ′ whose goodness is not
good enough according to some heuristics.

Here, to take care of rounding errors, when computing
elim we first use interval arithmetic and then compute an
over-approximating constraint with constant coefficients
using the according method from Subsection 4.1.

Our choice of pairs of constraints to combine is based upon
the following criteria:

• Use all input constraints in at least one combined pair
in order preserve variety of constraints for the second
step.

• Combine the best constraints, with respect to good-
ness function, with as many other constraints as pos-
sible.

Note that, in the worst case, Φ′ contains |Φ|+1 constraints.
Moreover, this set can be made arbitrarily small by using
appropriate heuristics in the last step of the algorithm.

The heuristic that we use is the following: We first check
whether Φ′ contains some constraints with equal coeffi-
cients. If yes, we collect all their bounds into one slice.
For such a slice we define the goodness function as the
sum of goodness of both contained inequalities. Then, we
pick the slice with the best goodness function. If we apply
the algorithm several times to eliminate a block of several
existential quantifiers, we remove constraints only after
the last elimination step. Hence, in the worst case, after
eliminating the q-th quantifier, we have |Φ|+q constraints,
from which we extract one slice after the last elimination.

Example 3. Let us assume that x ∈ [0, 1], y ∈ [0, 1], t ∈
[0, 1] and that the result of the linearization described in
Section 4 is x = t, y = [0, 1]+ t. Before applying the above
algorithm, we use a preprocessing step to replace each
equality by two inequalities and to eliminate the intervals.
The result is x − t ≤ 0,−x + t ≤ 0, y − t − 1 ≤ 0,−y +
t ≤ 0. Goodness of these constraints is 0.5, 0.5, 0 and 0.5
respectively. Now we apply the above algorithm.In the first
step, we add constraints t ≤ 1 and −t ≤ 0 to the input
set. Now we split our constraints: x − t ≤ 0, y − t − 1 ≤ 0
and −t ≤ 0 form a negative group. Goodness of these
constraints is 0.5, 0 and 0 respectively. We will pick first
constraint for combining step. The result of combining step
are constraints 0 ≤ 0, x − y ≤ 0 and x ≤ 1. Similarly
we do the combining step with positive group with result
−1 ≤ 0, 0− y ≤ 0 and y ≤ 2. The only constraint with the
positive goodness is x − y ≤ 0. It would be the result of
the algorithm.

For handling disjunctions we have to show how, given
a constraint φ1 ∨ · · · ∨ φn, boxes B1, . . . , Bn and slices
β1, . . . , βn, to compute a single slice that over-approximates
the solution set of φ1∨· · ·∨φn in the box hull of B1∪· · ·∪
Bn.

For doing this we exploit the fact that the slices computed
for the constraints under the big disjunction in Theorem 1
often point in a similar direction. The algorithm picks
multiple promising slice normals (i.e, coefficients a), then
computes bounds of slices having such normals and in
the final step algorithm chooses the slice with the high-
est goodness. The candidates for good normals are the
normals of input slices. In the following, we will explain
how to compute upper and lower bound of a slice with a
given normal. With each normal a we do the following:
For each box Bi and respective slice βi in the disjunction
we find mi = min(ax) in Bi ∩ βi and Mi = max(ax)
in Bi ∩ βi. The slice mini(mi) ≤ a · x ≤ maxi(Mi) then
over-approximates all the results of the input disjunction.
To solve the optimization problems, we use approximate
quantifier elimination to eliminate x from q = ax ∧ βi in
box Bi. The resulting inequality just contains the single
variable q, and hence allows us to read off a bounds for q
that safely over-approximates mi and Mi.

4.3 Complexity of slice computation

We now estimate how many operations is needed in the
worst case for computing a single slice. For hybrid system
with n variables, we have constraints with O(n) inequal-
ities. The algorithm does O(n) elimination steps, while
computing goodness functions and combining constraints

takes O(n2) operations. Hence computing one slice takes
O(n3) arithmetic operations.

5. COMPUTATIONAL EXPERIMENTS

For our experiments, we integrated slice computation into
verification by constraint propagation based abstraction
refinement (Ratschan and She, 2007). That algorithm
computes an abstraction based on boxes by alternating
a pruning step that replaces boxes by smaller ones still
capturing all counter-examples of the input system, with
a step that splits boxes. In our extension of the algorithm,
after every pruning of a box, we also compute a slice for
that box.

Table 1. Experimental results

without slices with slices
Name Recomp Time Recomp Slices Time

1-flow 2 < 1s 2 1 < 1s

2-tanks 5 < 1s 5 1 < 1s

car 30 < 1s 30 8 < 1s

circuit 1478 9s 1478 0 16s

eco 1230 4s 1230 8 10s

focus 51 < 1s 51 0 < 1s

mixing 3 < 1s 3 2 < 1s

van-der-pole 5 < 1s 5 0 < 1s

fischer2 N/A N/A 24 9 < 1s

fischer3 N/A N/A 656 259 19s

heat-simple 46028 1904s 1963 728 632s

heating N/A N/A 26862 2804 3525s

We took benchmarks from our database (http://hsolver.
sourceforge.net/benchmarks) and, for each example,
describe the behavior of a full verification cycle with in-
tegrated slice computation in Table 1. All timings were
measured on PC with Intel Core 2 3.0GHz CPU and
2GB RAM. The first two columns refer to abstraction
refinement without slice computation, the rest refers to
the method with slice computation added. The columns
”Recomp” refer to the number of recomputed boxes, and
”Slices” refers to the number of times a non-trivial slice
was computed in a certain box recomputation. We can see
that slices indeed exploit the fact that certain examples
partially correspond to special cases (clocks in the case of
fischer2 and fischer3, affine switching hyperplanes in the
heating example). Note that up to our knowledge, the
heating example has been unsolved up to now. On the
other hand, in cases where slices are not able to exploit
any special structure, computation time may increase due
to the additional computational effort (for example, the
circular structure of the focus example prohibits any slice
computation).

We did additional timings measuring the amount of time
needed by slice computation within the algorithms, and
in all examined cases it needed approximately halve of
computation time. One single slice computation usually
takes 12ms in examples of dimension 3. Moreover, due to
the cubic worst-case complexity of slice computation, even
in the worst case one will be able to compute slices for
very high problem dimensions. Also observe that due to
sparsity, in practice, slice computation will be much more
efficient than in the worst case.

Summing up, we can conclude that the efficiency of the
resulting method is more robust in the sense that it never

more than approximately doubles computation time, but
by exploiting some simple problem structure, it makes
the solution of example with such structure much more
efficient, and hence allows the solution of many more
examples.

6. CONCLUSION

In this paper we introduced a method for the verification
of hybrid systems that can handle a very general class of
hybrid systems, but still exploits some of the structure of
more special cases. Computational experiments confirm a
corresponding efficiency improvement. In future work we
will further decrease the amount of over-approximation of
our slices, while retaining the efficiency of their compu-
tation. Moreover, we will try to arrive at an algorithm
that provably terminates successfully for all robust in-
puts (Damm et al., 2007; Ratschan, 2009).

REFERENCES

Bengtsson, J. and Yi, W. (2004). Timed automata: Seman-
tics, algorithms and tools. In Lectures on Concurrency
and Petri Nets, volume 3098 of LNCS, 87–124. Springer.

Caviness, B.F. and Johnson, J.R. (eds.) (1998). Quantifier
Elimination and Cylindrical Algebraic Decomposition.
Springer, Wien.

Damm, W., Pinto, G., and Ratschan, S. (2007). Guaran-
teed termination in the verification of LTL properties of
non-linear robust discrete time hybrid systems. Int. J.
of Foundations of Computer Science, 18(1), 63–86.

Fehnker, A. and Ivančić, F. (2004). Benchmarks for hybrid
systems verification. In R. Alur and G.J. Pappas (eds.),
HSCC’04, number 2993 in LNCS. Springer.

Fischer, M.J. and Rabin, M.O. (1974). Super-exponential
complexity of presburger arithmetic. SIAM-AMS Pro-
ceedings, 7, 27–41. Also in Caviness and Johnson (1998).

Griewank, A. (2000). Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation. SIAM.

Gulwani, S. and Tiwari, A. (2008). Constraint-based ap-
proach for verification and synthesis of hybrid systems.
In CAV, number 5123 in LNCS, 190–203. Springer.

Kolev, L.V. and Nenov, I.P. (2001). Cheap and tight
bounds on the solution set of perturbed systems of
nonlinear equations. Reliable Computing, 7(5), 399–408.

Ratschan, S. (2009). Safety verification of non-linear
hybrid systems is quasi-decidable. Submitted.

Ratschan, S. and She, Z. (2007). Safety verification of
hybrid systems by constraint propagation based abstrac-
tion refinement. ACM TECS, 6(1).

Ratschan, S. and She, Z. (2008). Recursive and back-
ward reasoning in the verification on hybrid sys-
tems. In Proc. of the 5th Int. Conf. on Infor-
matics in Control, Automation, and Robotics. IN-
STICC Press. Available from http://www.cs.cas.cz/

~ratschan/papers/bwrec.pdf.
Sankaranarayanan, S., Dang, T., and Ivani, F. (2008).

Symbolic model checking of hybrid systems using tem-
plate polyhedra. In TACACS, number 4963 in LNCS,
188–202. Springer.

Stursberg, O. and Kowalewski, S. (2000). Analysis of
controlled hybrid processing systems based on approxi-
mation by timed automata using interval arithmetic. In
Proc. of the 8th IEEE Mediterranean Conf. on Control
and Automation (MED 2000).

