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Abstract

We formulate the problem of estimating the region of attraction
using quantified constraints and show how the resulting constraints can
be solved using existing software packages. We discuss the advantages
of the resulting method in detail.

1 Introduction

Given an ordinary differential equation ẋ = f(x), an equilibrium of ẋ =
f(x), and a Lyapunov function V of ẋ = f(x), we consider the problem
of estimating the region of attraction around the equilibrium, that is, the
problem of finding a set R such that the limit of every trajectory of ẋ = f(x)
starting in R is the equilibrium point.

Usually this problem is attacked by solving the optimization problem

min
{

V (x) | V̇ (x) = 0, x 6= 0
}

. (1)

which yields the corresponding sublevel set of V as an estimate for the region
of attraction. This method has several drawbacks, which we remove by
re-formulating the problem as a quantified constraint solving problem and
applying corresponding solvers [12, 13, 3]. Among other advantages, the
resulting method can not only estimate regions of attraction to equilibrium
points but also to more general sets. Moreover, the method is easy to employ,
since it relies on existing solvers, and does not need the implementation of
complicated algorithms.

The classical overview of the general problem of estimating the region
of attraction is an article by Genesio and co-authors [6]. Newer work that
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solves the problem based on a given function V uses a conservative convex
optimization approximation [16], Gröbner basis computation [5], the solu-
tion of the above optimization problem using the theorem of Ehlich and
Zeller [17], or an LMI method based on the theory of moments [8].

In Section 2 we formally describe the problem solved in this paper; in
Section 3 we review the classical method used to solve this problem; in
Section 4 we introduce a new method that removes some of the drawbacks
of the classical method; in Section 5 we illustrate this improvement on some
examples; and in Section 6 we conclude the paper.

2 Problem Description

Consider an ordinary differential equation

ẋ = f(x), (2)

where f is continuous and f(0) = 0, that is, there is an equilibrium point of
the system at the origin. Denote by V̇ (x) = ∇V T f(x) the time-derivative
of V in direction f(x). We would like to estimate the region of attraction
of f around the equilibrium, that is, we want to find a set R, such that for
every trajectory φ(t) of ẋ = f(x) that starts in R, the limit limt→∞ φ(t)
is the equilibrium point. We call such a set R an attraction region. The
existence of such an attraction region is ensured by the following corollary
of Lyapunov’s stability theorem:

Theorem 1 Let (2) have an equilibrium at the origin and D ⊆ R
n be a

connected set containing this equilibrium. Let V : D → R be a continuously
differentiable function such that

V (0) = 0,

for all x ∈ D − {0}, V (x) > 0

for all x ∈ D − {0}, V̇ (x) < 0

Then there is an attraction region.

In such a case, the differential equation is called asymptotically stable and
V is called a Lyapunov function. Note that the theorem is non-constructive,
that is, it only ensures the existence of an attraction region, but does not
provide it. In this paper, we consider the constructive version of the above
theorem, that is, the problem of finding such an attraction region. We
restrict ourselves to the case where both f and V are elementary functions.

Note that a Lyapunov function can often be found by solving the so-
called Lyapunov equation for the linearization ẋ = Ax, where A is the
Jacobian matrix of f evaluated at the origin. This captures the local be-
havior of the differential equation around the equilibrium. Hence, this will
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only allow us to find attraction regions that only include the part of the
state space where the linearization behaves in a similar way as the original,
non-linear system.

The problem of finding a Lyapunov function of a given non-linear ODE
that captures the non-linear behavior of f around the equilibrium is highly
non-trivial and usually relies on engineering intuition. Nonetheless, recently,
tools for supporting this arise [10, 11, 14, 9, 7].

3 Classical Method

In this section we sketch a widely-used classical approach for finding an at-
traction region based on a given Lyapunov function V . In this approach,
the attraction region is determined as a sublevel set of V , that is, a set
RV <c

.
= {x | V (x) < c} for a certain value c. As long as the conditions

that Theorem 1 enforces on D also hold on this set, we know that no trajec-
tory leaves RV <c. Moreover, these conditions ensure that every trajectory
eventually reaches the equilibrium.

In order to deal with the case that RV <c is not connected, in the above
process, one only considers the connected component of RV <c that contains
the equilibrium.

One usually chooses c as the solution of Problem (1). If V : R
n → R is

a continuously differentiable function such that V (0) = 0 and V (x) > 0 for
x 6= 0, and if the condition

∃x1 ∈ RV <c : V̇ (x1) < 0 (3)

holds, then V̇ (x) < 0 for all x ∈ RV <c. This can be seen as follows: From
the choice of c it follows that for every x ∈ RV <c, V̇ (x) 6= 0. This implies,
because of the continuity of V (x), and because of (3), that V̇ (x) < 0 for all
x ∈ RV <c. Hence, all preconditions of Theorem 1 hold for D = RV <c, and
V is a Lyapunov function.

This classical method has several drawbacks:

1. The found minimizer might not lie on the connected component of
{x | V̇ (x) = 0} that surrounds the equilibrium. This might result in a
very conservative underapproximation of the region of attraction.

2. Sublevel sets of the Lyapunov function sometimes do not approximate
the region of attraction well. Again, as a result, we might arrive at a
very conservative underaproximation of the region of attraction.

3. If the found minimizer is only local but not global, then the resulting
sublevel set is not an attraction region, that is, the method computes
an incorrect result.
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4. When excluding the equilibrium point from the minimization problem,
one has to take care not to exclude other points with V̇ (x) = 0 also.

5. The procedure needs an equilibrium and cannot estimate regions of
attraction to other sets, for example limit cycles.

4 Removing the Drawbacks

We observe that a large part of the reasoning above is done on sets. In the
following we will describe these sets using constraints in a certain formal lan-
guage (the first-order predicate language [4]) and then apply a corresponding
solver.

First of all, we will use a constraint to describe the set of points that
the trajectories eventually should reach. For example, this can be (in the
2-dimensional case) a ball described by x2

1
+ x2

2
< 1, or a rectangle −1 <

x1 < 1∧−1 < x2 < 1. In the following, we will use Target(x) as a short-cut
for the used constraint.

Moreover, we will describe the attraction regions using such constraints.
For example, in the case when one wants to use sublevel sets of Lyapunov
functions this is the constraint V (x) ≤ c (or V (x) < c). In the following we
will use Region(c, x) as a short-cut for the used constraint, where x is the
vector of state-space variables, and c the vector of parameters that can be
changed to define different regions.

Now we can define the constraint that describes the c such that all ele-
ments of the region of attraction not yet in a target region are attracted to
the region:

∀x :
[

[Region(c, x) ∧ ¬Target(x)] → V̇ (x) < 0
]

(4)

which can also be written as

∀x :
[

¬Region(c, x) ∨ Target(x) ∨ V̇ (x) < 0
]

(5)

Theorem 2 If for a given c, Constraint (4) holds, the set T
.
= {x | Target(x)}

is open, and the set R
.
= {x | Region(c, x)} is

• closed and bounded,

• contains the target set, and

• is invariant, that is, if for a given trajectory φ : R → R
n, and a given

t ≥ 0, Region(c, φ(t)), then for all t′ > t also Region(c, φ(t′)),

then for every trajectory φ : R → R
n with Region(c, φ(0)), there is a t > 0

such that Target(φ(t)).
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Proof. Let T
.
= {x | Target(x)}, and let R

.
= {x | Region(c, x)}. Since R

is bounded and R\T is closed, due to the continuity of V̇ , we know that V̇

has a maximum ǫ in R \ T . Obviously, ǫ < 0.
Let φ : R → R

n be a trajectory starting in R. We assume that for all
t ∈ R≥0, not φ(t) ∈ T , and derive a contradiction. Since R is invariant, and
due to Constraint (4), for all t ∈ R≥0, V̇ (φ(t)) ≤ ǫ. This implies that as t

goes to infinity, V (φ(t)) goes to minus infinity, contradicting the fact that
V is bounded in R \ T .

Thus, there exists a t ∈ R≥0 such that φ(t) ∈ T . ⊓⊔
One can either use a constraint Region(c, x) for which the above condi-

tions holds by construction (e.g., ensuring invariance by defining Region(c, x)
as sublevel sets of the Lyapunov function), or by formulating appropriate
conditions that can be added to the above constraint.

In which cases, and how can these constraints be solved? In the case
where all terms occuring in the constraints are polynomial, this is ensured
by the fact that the predicate-logical theory of the real-numbers admits
quantifier elimination [15]. This means that there is an algorithm that, for
every expression that contains the logical quantifiers ∀ and ∃, the Boolean
connectives ∧, ∨, ¬, the predicate symbols ≤, <, and the function sym-
bols × for multiplication and + for addition, computes an equivalent, but
quantifier free expression. There are also software packages implementing
such algorithms (e.g., QEPCAD [1], the Resolver function implemented in
Mathematica). In practice, however, the complexity for doing this is huge,
and corresponding software packages can only solve examples of moderate
size.

To be able to solve larger examples, and to also allow functions given by
expressions with symbols like sin, cos, or exp, one can resort to a method that
can compute approximate solutions [13]. This method is implemented in
the solver RSolver [12]. Given a quantified constraint and closed intervals
restricting every variable in the input constraint, it computes a set of boxes
(i.e., hyper-rectangles) containing only solutions to the input constraint and
a set of boxes containing only non-solutions. To retain correctness of the
method, it is necessary that the box B restricting the universally quantified
variables of constraint (4) contains the found attraction region. Since the
computation times of RSolver increase, as the size of B increases, one can
for example first try to solve an example with a small box, and if the resulting
region intersects B one can accordingly increase its size. The precision of
the computed approximation can be adjusted by allowing that not the whole
box restricting the free variables of the input constraint has to be covered
by the set of boxes computed by RSolver . The ratio of the size of the
region that is left uncovered relative to the size of the box restricting the
free variables is called the remnant value.

The method described above solves the problems listed in the previous
sections as follows:
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• Problems 1 and 2 are solved or at least alleviated by the fact that
one can freely define Region(c, x), and hence one can approximate the
region of attraction more closely than with level sets.

• Problems 3 and 4 are solved by the fact that the given constraints
are solved exactly, by taking into account global, and not only local
information, and by not suffering from correctness problems due to
rounding errors.

• Problem 5 is solved by the fact that one can now freely define the
target region Region.

5 Examples

This section contains three examples that illustrate the method described in
the previous section and how it solves some of the problems of the classical
method. All computations have been performed with both RSolver and
QEPCAD on a Linux PC with an Intel Pentium 4 2.7 GHz CPU and 1 GB
memory. For the RSolver calculations, the execution time depends highly
on the boxes B restricting the domain for the bound variable x and the free
variable c, so they are also listed.

5.1 Example 1

This is an example where the optimization problem (1) has more than one
local minimum. The system dynamics is given by the differential equation

ẋ =
[

−x2 − x1x2 + x2

1x2, 2x1 − x2

]T
(6)

If the system is linearized at the origin, the right-hand side of (6) becomes
[−x2, 2x1 − x2]

T . Stability of the linearized system can be shown by using
the Lyapunov function

V (x) = 7x2

1 − 2x1x2 + 3x2

2

For this example, we define

Region(c, x)
.
= V (x) ≤ c

As Figure 1 indicates, the optimization problem (1) has two local minima,
one on the component of V̇ = 0 in the lower left part of the figure (c ≈ 1.5),
and one on the component in the upper right part of the figure (c ≈ 15).
Using a remnant value of 0.001 and the restrictions x ∈ [−5, 5] × [−5, 5],
c ∈ [0, 20], RSolver requires a time of about 28 seconds to prove constraint
(4) for c ∈ [0, 1.495] and to disprove it for c ∈ [1.512, 20]. As the volume of
R = {x | Region(c, x)} grows with increasing value c, the optimal solution
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Figure 1: Attraction Region for Example 1

has to lie in the interval [1.495, 1.512]. Figure 1 shows the set R for the
value c = 1.5.

QEPCAD computes in approximately one second the equivalent, but
quantifier free constraint

[[C1 ≤ 0 ∧ C2 ≥ 0] ∨ [C3 > 0 ∧ C2 ≤ 0]],

where

C1 = 3c − 20,

C2 = 194481c4 − 3016440c3 + 6051600c2 − 33024000c

+ 40960000,

C3 = 1058841c10 + 3756465342c9 + 3924133090465c8

− 89272758849652c7 + 652631620171440c6

− 4245121175691200c5 + 19742893494400000c4

− 54774380646400000c3 + 49295495987200000c2

+ 150798336000000c + 152043520000000

The solution set of the above constraint can be closely approximated by
RSolver in negligible time. Moreover, QEPCAD can compute a similar
quantifier-free constraint in the case where the target set consists of a single
point.
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5.2 Example 2

Our method can also be applied when no stable equilibrium exists, like in
the following example. Let the system dynamics be given by

ẋ =
[

x2 + 0.2x1 − 0.1x3

1 + 0.01x2

1x
2

2,−x1

]T

and let further be

V (x) = 7x2

1 − 2x1x2 + 3x2

2 and

Region(c, x)
.
= V (x) ≤ c

We define not only the attraction region but also the target region as a
sublevel set of this Lyapunov function. Hence the target region is defined
by a constraint of the form V (x) < d, where d is a new parameter, and the
full constraint we try to solve is

∀x ∈ B : d ≤ V (x) ≤ c ⇒ V̇ < 0. (7)

We will use the constraint solvers to find a c that is as large as possible and
a d that is as small as possible. In order to reduce the problem dimension
we split the problem into three subproblems:

1. Determine a value c0 such that the constraint ∀x ∈ B : V (x) = c0 ⇒
V̇ < 0 holds,

2. determine the possible values for d by solving

∀x ∈ B : d ≤ V (x) ≤ c0 ⇒ V̇ < 0 (8)

3. and for c by solving

∀x ∈ B : c0 ≤ V (x) ≤ c ⇒ V̇ < 0. (9)

Note that the number of free variables of both (8) and (9) is only half the
number of free variables of the original problem (7). For each subproblem
the remnant value was set to a value of 0.01 and x was restricted to the
interval [−10, 10] × [−10, 10]. The variables c0, d and c were bounded by
the intervals [0, 500], [0, 100] and [100, 500], respectively. After a negligable
computation time RSolver came up with some boxes solving the first prob-
lem, from which we chose the value 100 for c0. RSolver needed 26 minutes
in total to prove constraint (8) for d ∈ [34.32, 100] and constraint (9) for
c ∈ [100, 220.1]. RSolver also disproved (8) for d ∈ [0, 33.09] and (9) for
c ∈ [223.8, 500], so – with a similar reasoning as for example 1 – the optimal
solution for d lies inside interval [33.09, 34.32] and the optimal solution for c

lies inside [220.1, 223.8]. Figure 2 shows the target region and the attraction
region for the values c = 222 and d = 34: The light shaded area depicts the
target region, while the union of the light shaded area and the dark shaded
area depicts the attraction region. Unlike RSolver, QEPCAD could not
solve this problem.
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Figure 2: Attraction Region for Example 2

5.3 Example 3

The following example illustrates how to approximate the region of attrac-
tion in a better way than with sublevel sets.

Consider the differential equation

ẋ =
[

−2x1, −x2 + x2

2

]T

Furthermore, let

Region(r, x)
.
= V (x) ≤ r ∧ g(x) ≤ 0,

where g(x) = x2
1
+ x2, V (x) = x2

1
+ x2

2
.

For a given r, the set R
.
= {x | Region(r, x)} is bounded because it is a

subset of the bounded set {x | V (x) ≤ r} and it is closed because it is an
intersection of the two closed sets {x | V (x) ≤ r} and {x | g(x) ≤ 0}. We
try to find the maximum r that fulfills the following conditions:

∀x ∈ B : Region(r, x) ∧ ¬Target(x)

⇒ V̇ (x) < 0 (10)

∀x ∈ B : V (x) ≤ r ∧ g(x) = 0 ∧ ¬Target(x)

⇒ ġ(x) =
∂g

∂x
f(x) ≤ 0 (11)

Constraint (11) models the invariance requirement of Theorem 2. The union
of R and {x | V ≤ c} – where c is the maximum value satisfying (4) – can be

9



0

0 5-5

-5

5

Figure 3: Attraction Region for Example 3

used as a approximation of the region of attraction. Letting x be bounded
by the interval [−5, 5] × [−5, 5] and c and r bounded by [0, 20], RSolver

needed less than one second to solve (4) and about 86 seconds to solve (10-
11). In both cases, a remnant value of 0.01 was used. Before solving (10-11),
the equality g(x) = 0 in (11) was replaced by g(x) < 10−4 ∧ g(x) > −104.
Following the procedure described in sections 5.1 and 5.2, the maximum
value for c and r could be shown to lie in the intervals [0.999, 1.145] and
[11.999, 12.005], respectively. Refer to Figure 3 for a visualization of set
{x | V ≤ c} ∪ R for c = 1 and r = 12: The small ellipse depicts the set
{x | V (x) = c}, the large ellipse the set {x | V (x) = r} and the parabola-
shaped curve depicts the set {x | g(x) = 0}. The set {x | V ≤ c} ∪ R is
indicated by the shaded area.

QEPCAD computes in 4min 20s the equivalent, but quantifier free for-
mula

400d2 − 4760d + 17 < 0 ∨ d3 − 10d2 + 21d − 36 ≤ 0,

whose solution set can be closely approximated by RSolver in neglible
time.

6 Conclusion

We have provided a method for estimating the region of attraction of or-
dinary differential equations, that removes some of the drawbacks of the
classical approach by formulating the problem as a quantified constraint
solving problem. As the examples in the previous section show, we always
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computed the whole set of feasible values for the free variables instead of
calculating only the optimal value. In future work we will exclude solutions
that are known not to be optimal from the beginning, so problems with more
variables and more complex dynamics can be handled. A possible means to
achieve this goal is the method of Lagrange multipliers. Another possible
extension of our approach is to estimate regions of attraction for hybrid
systems, i.e., systems with modes each of which having different dynamics.
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