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Abstract

Safety verification of hybrid systems is undecidable, except for very
special cases. In this paper, we circumvent undecidability by providing
a verification algorithm that provably terminates for all robust problem
instances, but need not necessarily terminate for non-robust problem
instances. A problem instance x is robust iff the given property holds
not only for x itself, but also when x is perturbed a little bit. Since, in
practice, well-designed hybrid systems are usually robust, this implies
that the algorithm terminates for the cases occurring in practice. In
contrast to earlier work, our result holds for a very general class of
hybrid systems, and it uses a continuous time model.

1 Introduction

Terminating algorithms for the verification of hybrid systems are known
only for very special cases. In fact, most classes of hybrid systems verifica-
tion problems are known to be undecidable [15]. Recently, there have been
attempts at circumventing this [10, 11, 9] by observing that, in practice,
hybrid systems can never model a given real system precisely, but only up
to perturbations. Hence it suffices to verify robust systems, that is, systems
that do not change the desired property under perturbations1.

We say that a problem is quasi-decidable iff a (possibly non-terminating)
algorithm exists whose result is always correct, but which is required to ter-
minate only for robust inputs. We show quasi-decidability of safety verifica-
tion of a class of hybrid systems that allows arbitrary Boolean combinations
of non-linear differential equalities and inequalities for defining the contin-
uous flow, and arbitrary Boolean combinations of non-linear equalities and

∗This is an extended version of a conference paper [23]. This work was supported by
the Czech Science Foundation (GACR) grant number P202/12/J060 with institutional
support RVO:67985807.

1In fact, in the special case of timed automata, there is a whole stream of work on
avoiding the verification of non-robust properties, see for example [20, 25].
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inequalities for defining the set of initial and unsafe states, and for defining
the set of possible discontinuous jumps of the system.

Theoretical results such as this one (see also [21, 10, 11, 7, 8, 9]) have
heavy practical consequences: Up to now, hybrid systems verification algo-
rithms have been evaluated purely experimentally, on finitely many bench-
mark examples. However, one would like a practical verification algorithm
to terminate for all robust inputs. Hence we now have a formal tool to
evaluate the power of practical verification algorithms.

Our result holds for a very general class of hybrid systems that includes
non-linear differential equalities and inequalities. In contrast to that, in
Fränzle’s result [10] all defining constraints have to be polynomial and es-
pecially, the continuous flow has to be given not in the form of differential
equations but in the form of polynomial flows which, in general, does not
even allow the modeling of linear differential equations. In the case where
the safety property does not hold (i.e., falsification of the safety property),
we in fact also restrict ourselves to polynomials, however, this includes poly-
nomial differential equations (in contrast to polynomial flows). In the case
where the safety property holds (i.e., verification of the safety property),
we even allow the constraints defining the differential equations to contain
transcendental function symbols such as sin and exp.

In contrast to our earlier work [9], for the result in this paper we use a
continuous time model which results in fundamental additional difficulties
which we will discuss in detail in Section 5, along with further related work.

The content of the paper is as follows: In Section 2 we define our basic
notions and the main theorem of the paper. In the following two sections
we prove this theorem by providing both an algorithm for verification (Sec-
tion 3) and falsification (Section 4). In Section 5 we discuss related work,
and in Section 6 we conclude the paper.

2 Hybrid Systems and Their Quasi-Decidability

In this section we describe the solved problem in detail. In the literature,
state spaces of dynamical systems are usually defined using tuples (for ex-
ample, tuples in R

n). Here, we take a little bit more flexible approach, that
allows us to directly access the individual tuple elements using names. For
these names we use a finite set V whose elements we call variables. More-
over, we use the set V̇

.
= {v̇ | v ∈ V } to access the values of derivatives, and

the set V ′ .= {v′ | v ∈ V } to access the result of a discrete state change (i.e.,
of jumps).

Moreover, we fix a finite set M whose elements we call modes, and use
the additional specific variable name mode to access them, and the variable
name mode′ to access them in the case of the result of a discrete jump.

Now we call a function that assigns to some symbols from {mode, mode′}
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a value from M and to some elements of V ∪ V̇ ∪V ′ a real value a valuation.
These valuations will take the role of tuples to form the state space of hybrid
systems. For a subset X of {mode, mode′} ∪ V ∪ V̇ ∪ V ′ we denote the set of
valuations that assigns values exactly to the elements of X by Γ(X).

For every valuation σ in Γ({mode}∪V ), we denote by Prime(σ) the cor-
responding valuation with primed variables, that is, Prime(σ) is a valuation
in Γ({mode′} ∪ V ′), and for all v ∈ {mode} ∪ V , Prime(σ)(v′) = σ(v).

For two valuations σ1, σ2 that coincide on joint variables, we define their
concatenation σ1•σ2 as the valuation that is defined on the union of the two
domains of definition and always assigns the corresponding value. That is,
for σ1 ∈ Γ(X1) and σ2 ∈ Γ(X2) such that for all v ∈ X1∩X2, σ1(v) = σ2(v),
we have that for all v ∈ X1, (σ1 • σ2)(v) = σ1(v), and for all v ∈ X2,
(σ1 • σ2)(v) = σ2(v).

Definition 1 A hybrid system is a tuple of the form (S, Init ,Flow , Jump,Unsafe)
where S (the state space of the hybrid system) is a subset of Γ({mode} ∪ V )
such that for every v ∈ V we have a non-empty closed real interval Iv such
that S = {σ | σ ∈ Γ({mode} ∪ V ), ∀v ∈ V, σ(v) ∈ Iv}. In other words,
the continuous part of the state space has the form of a hyper-rectangle. In
addition,

• Init ⊆ S,

• Flow ⊆ Γ({mode} ∪ V ∪ V̇ ), such that for all σ ∈ Flow, for all v ∈ V ,
σ(v) ∈ Iv,

• Jump ⊆ Γ({mode}∪V ∪{mode′}∪V ′), such that for all σ ∈ Jump, for
all v ∈ V , σ(v) ∈ Iv and σ(v′) ∈ Iv, and

• Unsafe ⊆ S.

That is, a hybrid system has a set of initial and unsafe elements that are
sub-sets of the state space. Moreover, it relates derivatives to state space
elements, and relates state space elements to primed versions of state space
elements. Note that the set Flow does not necessarily relate a derivative
to all state space elements. The case where no derivative is related to a
certain state space element simply expresses the fact that no flow is possible,
and hence a jump has to be taken (viz. the notion of a forced or urgent
transition).

We will use the following objects to describe continuous evolution of
hybrid systems:

Definition 2 A flow of length t over S ⊆ Γ({mode} ∪ V ) is a function
φ : [0, t]→ S such that

• φ(s)(mode) is constant over all s ∈ [0, t], and
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• for every v ∈ V , the function φv that assigns to every s ∈ [0, t] the
value φ(s)(v), is differentiable.

Based on this, we define φ̇ : [0, t] → Γ(V̇ ) in such a way that for every
s ∈ [0, t], v ∈ V , φ̇(s)(v̇) = φ̇v(s).

The property we study in this paper is reachability of the set of unsafe
states:

Definition 3 For a given hybrid system (S, Init, Flow, Jump, Unsafe),
an error trajectory is a sequence of flows (φ0, . . . , φn) over S of lengths
(t1, . . . , tn) such that, for all i ∈ {0, . . . , n}

• if i < n, then φi(ti) • Prime(φi+1(0)) ∈ Jump or φi(ti) = φi+1(0)

• for all s ∈ [0, ti], φi(s) • φ̇i(s) ∈ Flow,

and φ0(0) ∈ Init, φn(tn) ∈ Unsafe. A hybrid system is safe if it does not
have an error trajectory.

A notion of solution of a hybrid system immediately follows from this
definition after dropping the condition that φn(tn) ∈ Unsafe. However, we
will not need an explicit definition of solution in this paper, since the notion
of error trajectory is precisely what is needed for defining safety of a hybrid
system.

For describing hybrid systems we use constraints. We define an arith-
metical term to be an expression that may contain variables in V , rational
constants, and function symbols in {+,×, sin, cos, exp, . . . }2. Now we define
a constraint to be a Boolean combination of two types of atomic constraints:

• equalities and inequalities of the form t r c, where t is an arithmetical
term, r ∈ {=,≤,≥}, and c is a rational number.

• equalities and inequalities of the form mode = m or mode 6= m, where
m ∈M (we call this a mode constraint).

A flow constraint is a constraint that, in addition to the above, allows atomic
constraints of the form v̇ r t, where r ∈ {=,≤}, v is a variable from V , and
t is an arithmetical term over V . A jump constraint is a constraint that, in
addition to the variables in {mode} ∪ V , allows their primed versions, that
is, variables in {mode′} ∪ V ′.

The definition of the semantics of such constraints is straight-forward.
We denote the function from valuations to real numbers described by a

2For a function f : Rn → R, compact intervals I1, . . . , In, we need to be able to compute
an interval J ⊇ f(I1, . . . , In) such that the over-approximation of J over f(I1, . . . , In) can
be made arbitrarily small. Note that this requires continuity of f but not Lipschitz
continuity. For example, we could include

√

|x|, which is not Lipschitz continuous.
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term t by [[t]]. We write σ |= C for the fact that a valuation σ satisfies a
constraint C, and we write [[C]] for the set of valuations satisfying C. We
use corresponding definitions for flow and jump constraints in analogy.

Now we have a way of syntactically describing hybrid systems using
constraints:

Definition 4 For a given state space S, and constraints Init, Flow, Jump,
and Unsafe we call the tuple (S, Init ,Flow , Jump,Unsafe) a hybrid systems
description. Furthermore we denote by

[[(S, Init ,Flow , Jump,Unsafe)]]

the hybrid system (S, [[Init]], [[Flow ]], [[Jump]], [[Unsafe]]).

In this case we also say that the hybrid system fulfills the correspond-
ing hybrid systems description. We straightforwardly lift Definition 3 from
hybrid systems to hybrid system descriptions.

Example 1 For illustrating the above definitions, consider the following
simple hybrid system. We assume a set of variables V = {x1, x2}, and a set
of modes M = {m1,m2}. The hybrid system has a state space S = {σ | σ ∈
Γ({mode} ∪ V ), σ(mode) ∈ {m1,m2}, σ(x1) ∈ [0, 1], σ(x2) ∈ [0, 1]}. The set
of initial states are given by the constraint

mode = m1 ∧ x1 = 0 ∧ x2 = 0.

The constraint x2 ≥ 1 describes the unsafe states, and hence, safety of a
state does not depend on the mode of this state. The hybrid system may
switch modes from m1 to m2 if x1 ≥ 0.4, that is, the constraint Jump is of
the form

mode = m1 ∧ x1 ≥ 0.4 ∧ mode′ = m2 ∧ x
′
1 = x1 ∧ x

′
2 = x2 .

The continuous behavior is quite simple: In mode m1 a flow is only possible
as long as x1 ≤ 0.5. In both modes, x1 evolves with a derivative in the
interval [0.9, 1.1], while x2 evolves deterministically with slope 1 in mode m1

and −1 in mode m2. So we have the flow constraint

(mode = m1 ∧ ẋ1 ≥ 0.9 ∧ ẋ1 ≤ 1.1 ∧ ẋ2 = 1 ∧ x1 ≤ 0.5)∨
(mode = m2 ∧ ẋ1 ≥ 0.9 ∧ ẋ1 ≤ 1.1 ∧ ẋ2 = −1) .

Observe that in mode m2, the value of variable x2 decreases. Moreover,
the system can stay in mode m1 only as long as x1 ≤ 0.5, and so x2 can
increase only for a limited time. So this hybrid system does not have an
error trajectory, and hence it is safe.
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It is well-known that—except for very special cases—checking whether
a hybrid system is safe is an undecidable problem [15]. However, in the
real world, we will not be able to implement a hybrid system description
exactly and we do not want to prove a hybrid systems description safe, if
the system fulfilling this description is safe but there is a system that fulfills
the description up to small perturbations and is unsafe. Hence it suffices to
have an algorithm that can prove safety of hybrid systems descriptions for
which all hybrid systems that fulfill the description up to small perturbations
are safe (such as the example above).3.

This is a general situation for undecidable problems in domains prone
to perturbations. Hence it is worthy to discuss the problem description in a
general form, independent of a specific definition of the notion of ”to fulfill
up to small perturbations”. We will only later (Definition 9) formalize what
we exactly mean by that notion in our domain of hybrid systems. Moreover,
by delaying that definition (which is quite involved), the reader can grasp
the essence of the problem before delving into details.

L

[[L]]

[[D2]]ε

D1

[[P ]]

[[D1]]ε

D2

P

Figure 1: Robustness

In general, we have the situation illustrated in Figure 1. Here the syn-
tactic level is depicted on the top, and the semantic level on the bottom. We
have a language L (in our case, the set of all hybrid systems descriptions)
describing corresponding objects in [[L]] (in our case hybrid systems). We
have some property P (in our case, safety of hybrid system descriptions) on
L such that for a language element D ∈ L, P (D) holds iff [[P ]]([[D]]) holds
for a certain property [[P ]] (in our case, safety of a hybrid system). However,
when we try to implement D in the real world, the result will not precisely

3Here it does not suffice to perturb hybrid systems without regard to the constraint
language they are described in. The reason for this can be seen in the example of a
constraint 0 = 0. This constraint has the same solution set as the constraint 1 ≥ 0.
However, in the case 0 = 0 small perturbations of the constraint itself change the solution
set essentially [22] whereas in the case 1 ≥ 0 they do not. The solution we take here, is
to not only consider perturbations on the semantic level, but to also take into account
syntactic perturbations. Another solution is, to base the definition of hybrid systems on
set-valued functions, and then to perturb those functions. See, for-example, Definition 6.27
in the book by Goebel and others [12].
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fulfill the hybrid systems description D, but will fulfill D only up to some
perturbation of size ε. Hence, we will have a set [[D]]ε of objects fulfilling
D up to perturbations of size ε. It can be the case that [[P ]] holds on all
elements of [[D]]ε (this is the case for D1 in the figure), or only on some
elements (D2 in the figure). This difference is described by the following
definition.

Definition 5 Let L be a language describing elements of a set [[L]], and let
P be a property on L, and [[P ]] a property on [[L]], such that for all D ∈ L,
P (D) iff [[P ]]([[D]]). Let D ∈ L, and let [[D]]ε be the set of all elements of [[L]]
fulfilling D up to ε. Then P holds robustly on D iff there is a real number
ε > 0 (the robustness margin) such that [[P ]] holds on all elements of [[D]]ε.

In the figure, P holds robustly on D1. For D2, the value ε is not a
robustness margin. There might be a smaller value ε′, and a smaller cor-
responding set [[D2]]ε′ such that [[P ]] holds on all its elements. If, however
small we choose ε′, some elements of [[D2]]ε′ still do not fulfill [[P ]], P does
not hold robustly on D2. Only in that case we do not require our algorithms
to terminate, that is, in that case an algorithm trying to verify safety of a
given hybrid system is allowed to run forever. This is the essential point,
why the following notion of quasi-decidability is weaker than decidability.

Definition 6 We call a given property P on a language L quasi-semidecidable
iff there is an algorithm A such that for a given D ∈ L,

• if A(D) terminates then P (D) (i.e., A is correct),

• A(D) terminates if P holds robustly on D.

If both P and ¬P are quasi-semidecidable then P is quasi-decidable.

The definitions above depend on the notion of ”fulfilling a language ele-
ment L up to ε”. We will spend the rest of this section on defining this in
our case, that is, defining the notion of a hybrid system fulfilling a hybrid
systems description up to ε.

Due to reasons discussed in Footnote 3, we have to take into account
syntactic perturbations here. We define this using a distance measure on
constraints. Note however, that in the following only the limit case of this
definition is relevant, since Definition 5 does not consider a fixed robustness
margin ε, but only requires existence of an ε > 0.

The basic idea for defining this distance measure is, that two constraints
are the same up to ”addition of constants up to a certain size”:

Definition 7
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• We call a term basic, if it is either a variable, or a constant, or a
term of the form x + c, where x is a variable, and c a constant. If
the set of variables contained in a basic term (this is either a singleton
set or the empty set) is the same in two basic terms, we define the
distance between these terms as the distance between the corresponding
constants, using the constant 0 if one of the terms does not contain a
constant. If the set of contained variables is not the same in both basic
terms, their distance is ∞.

• The distance d(C,C ′) between two constraints C and C ′ is ε iff C ′ can
be obtained from C by replacing some basic terms by basic terms of
finite distance and ε is the maximum of these distances. Otherwise,
the distance is ∞.

Example 2 For measuring the distance between the constraint (x + 2)2 +
1x ≤ 0 and x2 + 2x ≤ 0 we observe that for getting from the first to the
second constraint we have to replace the basic term x+2 by x, and the basic
term 1 by the basic term 2. The distance is the maximum of the distances
of corresponding basic terms, that is, the distance is 2.

Example 3 The constraints (x − 2)2 − 1 ≤ 0 and x2 − 4x + 4 − 1 ≤ 0,
although semantically equivalent, have infinite distance. This does not pose
any problem here. On the contrary, this makes our result stronger, since
it leads to many hybrid systems descriptions being robust, and hence to a
strong termination condition for our algorithms (in Figure 1 the blobs in the
lower part become smaller, resulting in more blobs to completely lie in P ).

We continue with defining an analogon of the notion of ”fulfilling a hybrid
systems description up to ε” for our constraint language.

Definition 8 A set P of valuations is an ε-perturbed solution set of a
constraint C iff

• for every valuation σ ∈ P , there is a constraint C∗ with d(C,C∗) ≤ ε
such that σ |= C∗, and

• for every valuation σ 6∈ P , there is a constraint C∗ with d(C,C∗) ≤ ε
such that σ 6|= C∗.

In other words, the set P may contain valuations that do not satisfy the
constraint, and may not contain valuations that do satisfy constraint, but
we have to make sure that in both cases the error that we make is not too
large. Note that this does not necessarily mean that P is the solution set of
a perturbed constraint C∗:
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Example 4 The interval [−1, 1] is a 1-perturbed solution set of the con-
straint x = 0. However, there is no ε such that x = ε has the solution set
[−1, 1].

Lifting this definition to hybrid systems is straightforward:

Definition 9 Given a hybrid system description (InitC ,FlowC , JumpC ,UnsafeC),
a hybrid system (Init ,Flow , Jump,Unsafe) fulfills (InitC ,FlowC , JumpC ,UnsafeC)
up to ε iff

• Init is an ε-perturbed solution set of InitC ,

• Flow is an ε-perturbed solution set of FlowC ,

• Jump is an ε-perturbed solution set of JumpC , and

• Unsafe is an ε-perturbed solution set of UnsafeC .

Note that—in analogy to individual constraints—a hybrid system H
fulfilling a hybrid system description D up to ε does not necessarily mean
that H fulfills a hybrid system description that is a perturbation of D (see
Example 4 above).

Since Definition 9 was the last missing element of the definition of quasi-
decidability, after setting L to the set of hybrid system descriptions, and P
to their safety in Definition 6, we now have a complete formalization of the
notion of quasi-decidability of hybrid systems. So we are ready to formulate
the main theorem of this paper:

Theorem 1 Safety of hybrid system descriptions is quasi-semidecidable.
Moreover, it is quasi-decidable in the case where we allow only addition
and multiplication as function symbols in hybrid system descriptions.

A proof of this theorem consists of two quasi-semidecidability proofs, one
for the positive case of verification of the safety property, and one for the
negative case of falsification of the safety property. We will use the following
two sections for the two corresponding parts of the proof. Within these
sections we will provide respective algorithms for verifying and falsifying
hybrid systems.

3 Quasi-semidecidability of Verification

For proving quasi-semidecidability of verification we use the fact that for
every hybrid system there is a rectangular ε-approximation [14]. Here we
have to overcome two major obstacles:

• The original proof of this existence property was not constructive.
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• Although rectangular automata have a much simpler structure than
general hybrid systems, their safety is still undecidable.

Before solving these problems, we introduce a representation of rectan-
gular sets: A box is a function that assigns to some variables in V ∪ V̇ ∪ V ′

a non-empty closed real interval, and to some variables in {mode, mode′} a
subset of modes from M . Throughout the paper we use the situation that a
box B does not assign a value to a given variable as a shortcut for the value
B(v) being M , if v ∈ {mode, mode′}, and being [−∞,∞], otherwise. We will
say that a box has dimension d iff it assigns d real intervals (i.e., d inter-
vals not equal to [−∞,∞]). We lift set membership to boxes by defining a
valuation σ to be element of a box B iff for every variable v on which σ is
defined, σ(v) ∈ B(v). Analogously we lift other set operations such as ⊆
and ∩ using the corresponding variable-wise operations on intervals and sets
of modes, respectively. Box union ⊎ is defined by lifting union for variables
in {mode, mode′}, and interval union (the smallest interval containing both
arguments) for the other variables. For boxes we define concatenation anal-
ogously as for valuations. We call a box proper, if it only assigns intervals
(and no modes).

A sat-box (for satisfiability box) is either a box, or the value ⊥ which
we call the empty box. Such sat-boxes will be used for flow constraints
where we either deduce unsatisfiability or a box bounding the set of possible
derivatives. A sat-box has dimension d iff it is equal to ⊥ or if it is a box of
dimension d (hence ⊥ can have any dimension). Sometimes we will write F

for ⊥ and T for the unique zero-dimensional box, and use them in the role
of the corresponding Boolean constants. The box operations ∩ and ⊎ can
be easily lifted from boxes to sat-boxes by considering ⊥ to be the smallest
element in the ⊆ order. Also, the element relation ∈ can be naturally lifted
by defining ⊥ to have no element (which, of course, corresponds to its name
”empty box”).

Now we start with removing the first obstacle mentioned at the beginning
of this section: computing a rectangular over-approximation of a hybrid
system such that the over-approximation error is smaller than a given bound.

The algorithm uses interval arithmetic as its basis. For a term t, and
proper box B, let I(t)(B) denote the evaluation of t on B using interval
arithmetic [19]. For polynomials, computation with interval endpoints can
be implemented exactly, in rational number arithmetic. For terms contain-
ing transcendental function symbols such as sin, however, one has to use
(conservative) rounding [24]. Here we assume the usage of fixed-precision
floating-point arithmetic. Moreover, to ensure convergencence (see Lemma 1
below for details), we assume that the used precision goes to infinity as the
size of the box B goes to zero.

The result of interval arithmetic over-approximates the set of all values
the term t takes in the box B, due to the so-called Fundamental Theorem
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of Interval Arithmetic [18].

Property 1

I(t)(B) ⊇ {[[t]](σ) | σ ∈ B}

Now we can over-approximate the satisfiability information of constraints
by defining the symbol |=I (interval satisfiability check) for a box B as
follows:

• B |=I mode = m is T if m ∈ B(mode), and F otherwise,

• B |=I t r 0, where t does not contain dotted variables, is T iff there
exists a real value x ∈ I(t)(B) such that x r 0, and F, otherwise,

• B |=I C1 ∧ C2 is B |=I C1 ∩B |=I C2, and

• B |=I C1 ∨ C2 is B |=I C1 ⊎B |=I C2.

Example 5 Let C be the constraint x2−1 = 0∧x−2 ≥ 0, and let B be the
box x 7→ [−10, 0]. Interval arithmetic evaluates the terms in C recursively.
So I(x2)(B) = [0, 100], and I(x2 − 1)(B) = [−1, 99]. Since this interval
contains zero, (B |=I x

2 − 1 = 0) = T. Moreover, I(x− 2)(B) = [−12,−2],
and (B |=I x − 2 ≥ 0) = F. In the zero-dimensional case, intersection and
union of boxes implements conjunction and disjunction of the corresponding
Boolean values. So (B |=I C) = T ∩ F = F.

Remember that, by default, variables are assigned the interval [−∞,∞].
Hence the semantics is also well-defined in cases where the branches of a
conjunction (or disjunction) contain different variables.

We generalize the interval satisfiability check to constraints containing
dotted variables (denoting derivatives). In this case, the result is a sat-box,
whose dimension (if containing a box) is equal to the number of dotted vari-
ables. The purpose of this definition is to over-approximate the projection
of the solution set of the constraint to these variables:

• B |=I ȧ = t is defined as {ȧ 7→ I(t)(B)}

• B |=I ȧ ≤ t is defined as {ȧ 7→ [−∞, I(t)(B)]}

• B |=I ȧ ≥ t is defined as {ȧ 7→ [I(t)(B),∞]}

The rest of the definition is kept unchanged.

Example 6 Let C be the flow constraint ẋ = x2 ∧ x − 2 ≥ 0, and let B
be the box x 7→ [1, 3]. Then B |=I ẋ = x2 is the box {ẋ 7→ [1, 9]} and
(B |=I x − 2 ≥ 0) = T. Hence {ẋ 7→ [1, 9]} ∩ T = {ẋ 7→ [1, 9]} (remember
that T is the unique zero dimensional box that assigns to every variable the
default interval [−∞,∞]).

For the slightly modified constraint x2 − 1 = 0 ∧ x − 10 ≥ 0, however,
B |=I x− 10 ≥ 0 evaluates to F, and hence also the whole constraint.
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This definition fulfills its purpose due to the following generalization of
the fundamental theorem of interval arithmetic to our constraints:

Theorem 2 For every constraint C, box B on the un-dotted variables of
C, valuation σ ∈ B, and valuation σ̇ on the dotted variables of C such that
σ • σ̇ |= C, we have σ̇ ∈ B |=I C.

Proof. Let B, σ, σ̇ arbitrary, but fixed, fulfilling the assumptions above.
We prove that σ̇ ∈ B |=I C. We proceed by induction over the structure of
C. We have the following base cases:

• C is of the form t = 0. We have σ • σ̇ |= t = 0, and hence [[t]](σ • σ̇) = 0
and since t does not contain dotted variables, also [[t]](σ) = 0. To
prove that σ̇ ∈ B |=I C, we have to prove that 0 ∈ I(t)(B). This
holds, since due to the fundamental theorem of interval arithmetic,
[[t]](σ) ∈ I(t)(B) for σ ∈ B.

• C is of the form ẋ = t. In this case, since σ • σ̇ |= ẋ = t, it holds
that σ̇ = [[t]](σ). To prove that σ̇ ∈ B |=I C, we have to prove that
σ̇ ∈ I(t)(B). This holds since due to the fundamental theorem of
interval arithmetic, [[t]](σ) ∈ I(t)(B) for σ ∈ B.

• C is of the form ẋ ≤ t. In this case, since σ • σ̇ |= ẋ ≤ t, it holds
that σ̇ ≤ [[t]](σ). To prove that σ̇ ∈ B |=I C, we have to prove that
σ̇ ∈ [−∞, I(t)(B)], that is, σ̇ ≤ I(t)(B) . This holds since due to the
fundamental theorem of interval arithmetic, for all x, t(x) ∈ I(t)(B),
and hence t(x) ≤ I(t)(B).

• the other cases of atomic constraint are analogous to the previous
cases.

The induction step is easy. �

Example 7 Continuing Example 6, let in addition σ be the valuation {x 7→
2} (which is an element of B), and let σ̇ be the valuation {ẋ 7→ 4} (for
which σ • σ̇ |= C). Then the box B |=I C which is {ẋ 7→ [1, 9]} contains the
valuation {ẋ 7→ 4}.

In the special case of constraints without dotted variables, interval sat-
isfiability just over-approximates satisfiability:

Corollary 1 For every constraint C without dotted variables, box B on
the variables of C, if B contains a valuation σ such that σ |= C, then
(B |=I C) = T.

12



Equivalently, (B |=I C) = F implies that there is no valuation σ ∈ B
such that σ |= C. Since the implication only points in one direction, in the
case of (B |=I C) = T one cannot conclude anything about the satisfiability
of C, and in the case of an unsatisfiable constraint one cannot conclude
anything about (B |=I C). In particular, it can, but need not necessarily
happen that for a non-robust constraint unsatisfiable C, (B |=I C) gives the
precise result:

Example 8 For the term x2 and the box [−10, 10] interval arithmetic I(x2)([−10, 10])
may compute the precise result [0, 100]. Then, for the unsatisfiable but not
robust constraint x2 < 0, we get the precise result (B |=I x

2 < 0) = F. If
however, I(x2)([−10, 10]) is computed as [−0.00001, 100] then the result is
(B |=I x

2 < 0) = T.

Now we present an algorithm for which we will prove that it over-
approximates a given hybrid system arbitrarily closely. For bounding the
over-approximation error we use a bound on the size of the boxes. For a
non-empty interval [a, b], its width is defined to be b−a, and for a non-empty
set of modes M∗ ⊆ M , we define its width to be zero if M∗ is a singleton
set, and ∞, otherwise. We define the diameter diam(B) of a box B to be
the maximum width of B(v) over all variables v on which B is defined (i.e.,
not equal [−∞,∞]).

The algorithm in Figure 2 approximates a given hybrid systems descrip-
tion using a hybrid systems description completely defined by boxes. Here
we use the notation x ∈ [a, a] as a short-cut for the constraint a ≤ x∧x ≤ a.
The idea is to put a grid of boxes onto the state space, and then

• to test on each box using the interval satisfiability check, whether it
might contain an initial or unsafe state,

• to test for every pair of boxes whether it might contain a jump between
them, and

• to compute an interval containing the possible derivatives for each box.

In contrast to the discrete time case [9], here it does not suffice to abstract
to a purely discrete system. The reason is that in discrete time, if the hyper-
rectangles are sufficiently small, they can separate two subsequent steps of
the system. However, for continuous evolution, this is not possible.

We denote the result computed by the algorithm in Figure 2 by A(H, δ).
This is again a hybrid system description, and from Theorem 2 it easily
follows that A(H, δ) over-approximates H:

Theorem 3 For the result (S, InitR, FlowR, JumpR, UnsafeR) of the algo-
rithm application A((S, Init, Flow, Jump, Unsafe), δ), Init implies InitR,
Flow implies FlowR, Jump implies JumpR, and Unsafe implies UnsafeR.

13



Input:

• a hybrid systems description
(S, Init ,Flow , Jump,Unsafe),

• a strictly positive real value δ

G← set of boxes of diameter δ covering the state space S
InitR ←

∨

B∈G,B|=IInit

[

mode = B(mode) ∧
∧

v∈V v ∈ B(v)
]

FlowR ←
∨

B∈G[mode = B(mode)∧
∧

v∈V v ∈ B(v) ∧
∧

v∈V v̇ ∈ (B |=I Flow)]
JumpR ←

∨

B,B′∈G,〈B,B′〉|=IJump [

mode = B(mode) ∧
∧

v∈V v ∈ B(v)∧
mode

′ = B′(mode) ∧
∧

v∈V v
′ ∈ B′(v)]

UnsafeR ←
∨

B∈G,B|=IUnsafe [

mode = B(mode) ∧
∧

v∈V v ∈ B(v)]
(S, InitR,FlowR, JumpR,UnsafeR)

Figure 2: Over-approximating Abstraction

And hence the result of the algorithm in Figure 2 can be used to prove
safety of the original system.

Corollary 2 If [[A((S, Init ,Flow , Jump,Unsafe), δ)]] is safe, then [[(S, Init ,Flow , Jump,Unsafe)]]
is also safe.

However, this does not guarantee anything about the amount of over-
approximation of the algorithm. In order to arrive at bounds for this over-
approximation, we first study such bounds for constraints. In earlier work [9]
we proved results bounding the over-approximation of |=I for constraints
without dotted variables. We generalize those results here to the case with
dotted variables:

Lemma 1 For every constraint C, box B defined on all undotted variables
of C, for all ε > 0 there is a δ > 0 such that for every box B′ with B′ ⊆ B,
diam(B′) < δ, for every σ ∈ B′, and for every σ̇ ∈ (B′ |=I C), there is a
C∗ with d(C,C∗) ≤ ε, such that

σ • σ̇ |= C∗.

Proof. For proving this lemma we use the fact (which we will call conver-
gence of interval arithmetic in the rest of the proof) that for every arithmeti-
cal term e with function symbols in the set {+, ∗, ,̂ exp, sin, cos}, denoting a
function [[e]] and box S, for every ε > 0 there is a δ > 0 such that for every
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box B with B ⊆ S, diam(B) < δ, for all y ∈ I(e)(B), there is an x ∈ B such
that d([[e]](x), y) ≤ ε. This fact follows from Lipschitz continuity of interval
arithmetic (e.g., Theorem 2.1.1 in Neumaier’s book [19]). Moreover, due to
Theorem 2.1.5 in the same book, this holds even in rounded interval arith-
metic, as long as we let the used precision go to infinity as the size of the
box B goes to zero which is precisely how we defined evaluation of terms in
interval arithmetic.

Now let C, B, ε be as required by the assumptions of the lemma. We
start with proving the special case that C is of the form: t = 0:

Let δt be the value ensured for t, B, and ε by convergence of interval
arithmetic. We choose δ as min{δt, ε}, and assume an arbitrary, but fixed
box B′, σ, and σ̇ with B′ ⊆ B, diam(B′) < δ, σ ∈ B′, and σ̇ ∈ (B′ |=I t = 0).

From σ̇ ∈ (B′ |=I t = 0) we know that 0 ∈ I(t)(B′). We construct a C∗

with d(C,C∗) ≤ ε, σ • σ̇ |= C∗ by providing the necessary perturbations of
C.

Let x be an element of B′ such that d([[t]](x), 0) ≤ ε, as ensured by the
convergence of interval arithmetic. We perturb (by adding corresponding
constants)

• every undotted variable v in C by x(v) − σ(v) (this perturbation is
smaller than ε since d(σ(v), x(v)) ≤ diam(B′) ≤ δ = min{δt, ε} ≤ ε),

• and perturb the right-hand side of the constraint by [[t]](x), which is
smaller than ε by choice of x.

Then σ • σ̇ |= C∗, which is equivalent to σ |= C∗, is equivalent to
x |= t = c, with c = [[t]](x). This holds according to the definition of |=.

Now we look at the case where C is of the form ȧ = t.
Let δt be the value ensured for t, B, and ε by convergence of interval

arithmetic. We choose δ as min{δt, ε}, assume an arbitrary but fixed box
B′, σ, and σ̇ with B′ ⊆ B, diam(B′) < δ, σ ∈ B′, and σ̇ ∈ (B′ |=I ȧ = t).

From σ̇ ∈ B′ |=I ȧ = t we know that σ̇ ∈ I(t)(B′). We construct a C∗

with σ • σ̇ |= C∗ by providing the necessary perturbations. Let x be such
that d([[t]](x), σ̇) ≤ ε, as ensured by the convergence of interval arithmetic.

We perturb

• every undotted variable v of C by x(v) − σ(v) (this perturbation is
smaller than ε since d(σ(v), x(v)) ≤ diam(B′) ≤ δ = min{δt, ε} ≤ ε),

• the dotted variables by [[t]](x)− σ̇ (this perturbation is smaller than ε
by choice of x),

• and do not perturb the right-hand side of the constraint.

Then σ • σ̇ |= C∗ is equivalent to x • {ȧ 7→ [[t]](x)} |= C, that is, x • {ȧ 7→
[[t]](x)} |= ȧ = t which holds according to the definition of |=.

15



In the case where C is an inequality, for example, of the form ȧ ≤ t, we
have to consider two sub-cases:

• σ̇ ∈ I(t)(B′): in this case, the proof for the equality case above works.

• σ̇ 6∈ I(t)(B′): in this case, we choose C∗ as C, and we have: σ• σ̇ |= C∗

is σ • σ̇ |= ȧ ≤ t, which according to the definition of |= is equivalent
to σ̇ ≤ [[t]](σ). This holds since [[t]](σ) ∈ I(t)(B′), σ̇ 6∈ I(t)(B′), and
σ̇ < I(t)(B′).

In the case where C is of the form mode = m, the lemma easily holds by
choosing C∗ to be equal to C, in which case d(C,C∗) = 0.

For considering general constraints with conjunction and disjunction, we
proceed by induction. This easily goes through by choosing the minimum
of the δ for the different atomic constraints and combining the C∗ for the
different branches. �

Using Lemma 1 we can bound the over-approximation of the algorithm
in Figure 2 up to arbitrary precision.

Theorem 4 For every hybrid system description D, for all ε > 0 there is
a δ > 0 such that [[A(D, δ)]] is an ε-perturbed instance of D.

Proof. Let δC,B,ε be the value of δ, as ensured by Lemma 1 for the con-
straint C, the box B, and ε. Let ε > 0 be arbitrary, but fixed. Choose δ
as the minimum of δC,B,ε over all constraints C defining D, and boxes B
forming the state space (one box for each mode).

We assume that D is of the form (S, Init , Flow , Jump, Unsafe), and
[[A(D, δ)]] is of the form (S, [[InitR]], [[FlowR]], [[JumpR]], [[UnsafeR]]). To
prove that [[A(D, δ)]] is an ε-perturbed instance of D we have to prove the
corresponding result for each pair of corresponding constraints of D and
A(D, δ). Here, in each case, Theorem 3 implies the second item of Defini-
tion 8. Hence it suffice to prove the first item for each pair of corresponding
constraints:

• To prove that [[InitR]] is a ε-perturbed instance of Init , we have to
prove that for every σ ∈ [[InitR]], there is a constraint Init∗ with
d(Init , Init∗) ≤ ε such that σ |= Init∗. Let σ be an arbitrary, but
fixed element of [[InitR]]. Then σ satisfies at least one disjunct of
InitR. Let B be the mode/box pair generating this disjunct. Then
σ ∈ B, B |=I Init and diam(B) ≤ δInit ,S,ε ≤ δ, where S is the box
forming the state space of the mode of σ. Then, by Lemma 1, there
is a constraint Init∗ with d(Init , Init∗) ≤ ε, σ |= Init∗.

• Flow: To prove that [[FlowR]] is a ε-perturbed instance of Flow , we
have to prove that for every σ•σ̇ ∈ [[FlowR]], there is a constraint Flow

∗
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with d(Flow ,Flow∗) ≤ ε such that σ • σ̇ |= Flow∗. Let σ • σ̇ be an
arbitrary, but fixed element of [[FlowR]]. Then σ•σ̇ satisfies at least one
disjunct of FlowR. Let B the mode/box pair generating this disjunct.
Hence σ ∈ B, σ̇ ∈ (B |=I Flow) and diam(B) ≤ δFlow ,S,ε ≤ δ, where
S is the box forming the state space of the mode of σ. Then, by
Lemma 1, there is a constraint Flow∗ such that d(Flow ,Flow∗) ≤ ε,
and σ • σ̇ |= Flow∗.

• Jump and Unsafe: analogous to Init

�

The hybrid system A(H, δ) has a very simple form that is equivalent to
a rectangular automaton. Still, this rectangular automaton is not necessar-
ily initialized and hence it belongs to an undecidable class [15]. However,
after explicitly solving the flow constraints, it can be completely defined by
polynomials. Moreover, it has a bounded state space. Hence one can apply
a result by Fränzle [10] which provides an algorithm that, while it does not
terminate always, still terminates for all robust inputs. Hence we have:

Theorem 5 Safety verification of the results of A(H, δ) is quasi-decidable.

However, it is possible that A(H, δ) is not robust—even if H is robust.
In the case of such non-robustness Fränzle’s algorithm does not terminate.
This can be circumvented:

Theorem 6 Safety verification of non-linear hybrid systems is quasi-semidecidable

Proof. Let Ft be a version of Fränzle’s algorithm [10] for safety verifica-
tion that, if it terminates within t time units, it return the corresponding
(Boolean) result, and otherwise returns false. We use the following algo-
rithm:

i← 1
while there is no j ∈ {1, . . . , i} such that F2i(A(H, 1/2

j))
i← i+ 1

return true

This algorithm obviously is correct. It remains to prove termination for
robustly safe H.

Due to Theorem 4, if H is robustly safe, then there is a strictly positive
real number δ such that also [[A(H, δ)]] is robustly safe. Moreover, due to
the nature of Definition 8, also for all δ′ < δ, [[A(H, δ′)]] is robustly safe.
Hence we can choose n such that [[A(H, 1/2n)]] is robustly safe. Assume
that Fränzle’s algorithm (that terminates for all robustly safe inputs) needs
time t to prove safety of [[A(H, 1/2n)]]. Eventually the above algorithm will
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start F2i(A(H, 1/2
n)) with 2i being greater than t which will prove safety.

�

4 Quasi-semidecidability of Falsification

In this section we will present an algorithm for falsifying safety of hybrid
systems. Here we will take the assumption that all terms in the constraints
defining hybrid systems are polynomial (i.e., do not contain any function
symbols distinct from addition and multiplication).

We are looking for an algorithm that terminates for all robustly unsafe
inputs. Recall that robustness is defined based on the notion of ε-perturbed
solution sets of constraints. Note that— as a consequence of Definition 8—
ε-perturbed solution sets of a flow constraint ẋ = f(x) correspond to ε-
perturbed solution sets of ẋ ≥ f(x) ∧ ẋ ≤ f(x) (see also the discussion and
example after the definition). Since in the latter both occurrences of f can
be perturbed independently, the empty set is a ε-perturbed solution set of
ẋ = f(x) and a corresponding perturbed hybrid system may have no flows
at all, and hence be vacuously not unsafe.

This corresponds to the fact that modeling a physical system using ordi-
nary differential equations introduces some modeling error that is not cap-
tured by the plain ODE ẋ = f(x). Hence we expect a user to explicitely
include the possible modeling error, for example, by writing inequalities of
the form ẋ ≥ f(x)− ε∧ ẋ ≤ f(x)+ ε, for a small but non-zero real constant
ε.

For an algorithm for falsifying safety it suffices to abstract to a finite
state system. We approximate trajectories using piecewise affine functions.
We start with showing how to test whether the affine pieces fulfill the given
flow constraint. Here we will use the term ”point” to denote valuations in
the state space of a given hybrid system, and we call a flow C affine iff for
every v ∈ V , Cv is affine (see Definition 2, note that this means that the
derivative of Cv is constant).

Definition 10 Two non-identical points p and p̃ with p(mode) = p̃(mode)
satisfy a flow constraint Flow iff there exists an affine flow φ of length t,
such that φ(0) = p, φ(t) = p̃, and for all s ∈ [0, t], φ(s) • φ̇(s) |= Flow. In

such a case we also write p
Flow
−−−→ p̃.

This definition requires the existence of functions (flows), that is, it con-
tains higher-order quantifiers. Such quantifiers cannot directly be handled
algorithmically. But, using that fact that the derivative of an affine flow
is constant on the whole corresponding line segment, one can replace the
higher-order quantifier by a first-order quantifier, that is, a quantifier over
real numbers:
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Input:

• a hybrid systems description
(S, Init ,Flow , Jump,Unsafe),

• a strictly positive real value δ

G← set of boxes of diameter δ covering the state space S
Init ′ ← {s(B) | B ∈ G, s(B) |= Init}
Trans ′ ← {〈s(B), s(B′)〉 | B ∈ G,B′ ∈ G,

s(B) • Prime(s(B′)) |= Jump ∨ s(B)
Flow
−−−→ s(B′)}

Unsafe ′ ← {s(B) | B ∈ G, s(B) |= Unsafe}
(Init ′,Trans ′,Unsafe ′)

Figure 3: Under-approximating Abstraction

Lemma 2 For two non-identical points p and p̃ such that p(mode) = p̃(mode),

we have that p
Flow
−−−→ p̃ iff there is a real constant λ > 0, such that for all

points q on the line segment between p and p̃,

q • {v̇ 7→ λ(p̃(v)− p(v)) | v ∈ V } |= Flow .

The check provided by this lemma is decidable due to our assumption
that our constraints defining hybrid systems, and in particular the constraint
Flow , are polynomial [26]. Hence it can serve as a basis for an algorithm for
computing under-approximating abstractions.

In this algorithm—as shown in Figure 3—we again put a grid of a cer-
tain diameter onto the state space. Then, for each box B in this grid we
choose a sample point s(B), for example, the midpoint of B, and check the
constraints defining the hybrid system on these sample points. Again, this
check (which is undecidable for more general constraints [24]) is possible due
to our restriction to polynomials.

We denote the result computed by the algorithm by Ǎ(H, δ). This is
a finite state system (Init ′,Trans ′,Unsafe ′). An error trajectory of such a
system is a sequence x1, . . . , xn, such that x1 ∈ Init ′, xn ∈ Unsafe ′ and for
all i ∈ {1, . . . , n− 1}, 〈xi, xi+1〉 ∈ Trans ′.

The algorithm is sound, that is, it in fact computes an under-approximation:

Theorem 7 For a given hybrid system description H and δ > 0, if Ǎ(H, δ)
has an error trajectory, then also H has one.

For proving a bound on the amount of under-approximation, we use the
following metric on valuations.
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Definition 11 The distance between two valuations σ1 ∈ Γ(X) and σ2 ∈
Γ(X) is defined by

d(σ1, σ2)
.
= max

v∈X
{(d(σ1(v), σ2(v))},

where

• for modesm1,m2 ∈M , d(m1,m2) = 0, ifm1 = m2, and∞, otherwise,
and

• for real numbers a1 and a2, d(a1, a2)
.
= |a1 − a2|.

Now we prove that it is possible to approximate flows arbitrarily closely
by a piecewise affine function with the pieces starting and ending at grid
points.

Lemma 3 Let φ be a flow of length t that is both Lipschitz and differen-
tiable. Then, for every ε > 0 there is a δ > 0 such that for every regular
grid on the state space S of mesh δ > 0 there is a sequence ψ1, . . . , ψk of
affine flows of length t1, . . . , tk such that for all i ∈ {1, . . . , k},

• if i < k, then ψi(ti) = ψi+1(0),

• both ψi(0) and ψi(tk) are grid elements, and

• for every point tψ ∈ [0, ti], there is tφ in [0, t] such that d(ψi(tψ), φ(tφ)) <
ε, and d(ψ̇i(tψ)), φ̇(tφ)) < ε.

The intuition of the proof is the following: We decompose φ into segments
where for each variable, the corresponding slope stays within some interval
of bounded size. As a consequence, every line starting near the beginning
of the segment and ending near its end has bounded distance from φ. This
allows us to construct a sequence of lines being close enough to φ.

For formalizing this idea (see proof below) we will need the following:

Lemma 4 For every δ > 0 there is a bound βδ > 0 such that for every flow φ
of length t with t < δ and every box D of width δ such that for all s ∈ [0, t],
φ̇(s) ∈ D, for every affine flow ψ of length t such that d(φ(0), ψ(0)) < δ
and d(φ(t), ψ(t)) < δ, the distance of φ and ψ, and of their derivatives, is
bounded by βδ. Moreover, the bound βδ goes to zero as δ goes to zero.

Proof. W.l.o.g. we can assume that d(φ(0), ψ(0)) = d(φ(t), ψ(t)) = δ.
Here, we only prove the case where ψ(0) = φ(0) − δ, and ψ(t) = φ(t) − δ,
the other case is dual.

Then (see Figure 4), the maximal distance between φ and ψ is bounded
by the maximal distance of two line segments φa with domain [0, t

2
] and φb

with domain [ t
2
, t], such that φa(0) = φ(0) and φa has slope maxD, and
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Figure 4: Maximal Distance

φb(t) = φ(t) and φb has slope minD (max and min are taken variable-wise).
This maximal distance goes to zero with δ.

Moreover, due to the mean-value theorem, φ attains the slope of ψ some-
where in the interval [0, t]. Hence, for every s ∈ [0, t], ψ̇(s) ∈ D, and since
also φ̇(s) ∈ D the distance d(φ̇(s), ψ̇(s)) is bounded and goes to zero with
δ. �

Now we are ready to prove Lemma 3:
Proof. Let ε > 0 be arbitrary, but fixed. Let δ be such that the βδ ensured
by Lemma 4 is smaller than ε.

Due to Lipschitz continuity of φ there are t1, . . . , tk and boxes Di, . . . , Dk

such that

• 0 = t0 < t1 < · · · < tk = t

• for every i ∈ {1, . . . k}, ti − ti−1 < δ,

• for every i ∈ {1, . . . , k} the box Di has width δ and for all t ∈ [ti−1, ti],
the vector φ̇(t) ∈ Di.

Take a grid of mesh δ, and construct ψ1, . . . , ψk as the sequence of affine
flows such that for every i ∈ {0, . . . , k}, ψi has length ti − ti−1, and the i-th
vertex consists of a grid element close to φ(ti). Due to Lemma 4 the distance
between φ and ψ1, . . . , ψk is bounded by βδ, and hence also by ε. �

Now we observe that if a valuation x′ is sufficiently close to a valuation
x that robustly satisfies a constraint, than x′ satisfies the constraint also:

Lemma 5 Let C be a constraint and let ε > 0. Let x′ be such that there is
an x with d(x, x′) ≤ ε, such that x is an element of all sets that fulfill C up
to ε. Then x′ |= C.

Proof. Since x is in all sets that fulfill C up to ε, not only x |= C, but also
x |= C∗, if d(C,C∗) ≤ ε. Hence, for all x′ with d(x, x′) < ε, x′ |= C.�
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Now we can now state the main theorem of this section:

Theorem 8 If a hybrid system description D is robustly unsafe, then there
is a δ > 0 such that Ǎ(D, δ) is unsafe.

Before proceeding with the proof of this theorem we note once more
that—according to Definition 5—a hybrid system description D is robustly
unsafe iff there is a real number ε > 0 such that all elements of [[D]]ε are
unsafe. The elements of [[D]]ε are the hybrid systems H fulfilling a hybrid
system description D up to ε. As already discussed (e.g., directly after
Definition 9), this does not necessarily mean that H fulfills a hybrid system
description that is the result of perturbing D. In particular, as discussed
at the beinning of this section, a flow constraint of the form ẋ = c has the
empty set as a perturbed solution set.

We now prove Theorem 8: Proof. We assume that the finite state
system Ǎ(D, δ) has the form (Init ′,Trans ′,Unsafe ′). Let D be robustly
unsafe with robustness margin ε. Let φ1, . . . , φp be a robust error trajectory
of D, that is, a trajectory that is an error trajectory of all H that fulfill D
up to ε.

Such a robust error trajectory of D exists due to the following ob-
servation: Consider a constraint C. Let x be such that for all C∗ with
d(C,C∗) ≤ ε, x |= C∗. Due to Definition 8, such an x is in every ε-
perturbed solution set of C. The hybrid system containing, for every defining
constraint, all those x, has an error trajectory. This is the common error
trajectory we need.

Now let l1, . . . , lp be the lengths of φ1, . . . , φp. For each i ∈ {1, . . . , p}, φi
satisfies the assumptions of Lemma 3 which ensures a δi > 0 corresponding
to our robustness margin ε. Choose δ as min{δ1, . . . δi}. We will construct
an error trajectory of Ǎ(D, δ).

Take a grid of mesh δ. By Lemma 3 we know that there is a sequence
of affine flows ψ1, . . . , ψk of lengths l′1, . . . , l

′
k whose end-points are grid el-

ements, and such that for every i′ ∈ {1, . . . , k} and t′ ∈ [0, l′i′ ] there is an
i ∈ {1, . . . , p}, t ∈ [0, li] such that d(φi(t), ψi′(t

′)) < ε, and d(φ̇i(t), ψ̇i′(t
′)) <

ε. Hence, by robustness of D, and Lemma 5, ψi(0)
Flow
−−−→ ψi(l

′
i′), and so

〈ψi(0), ψi(l
′
i′)〉 ∈ Trans ′.

Moreover, due to similar reasoning, for every i′ ∈ {1, . . . , k−1}, 〈ψi′(l
′
i′), ψi′+1(0)〉 ∈

Trans ′, ψ0(0) ∈ Init ′, and ψk(l
′
k) ∈ Unsafe ′. Hence the endpoints of

ψ1, . . . , ψk form an error trajectory of Ǎ(H, δ). �

This result, and the fact that Ǎ(H, δ) is a finite system and hence algo-
rithmically checkable, together with Theorem 6 proves the main theorem of
the paper, as stated at the end of Section 2.
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5 Related Work

A recent article [4, Section 5] includes a survey on the role of noise and
robustness in continuous-time dynamical systems.

Similar quasi-decidability results as the ones presented in the present
paper have been obtained (under different names) for systems with simpler
dynamics: Fränzle [10, 11] provides results for the case where the input
system is completely defined by polynomials. Especially, continuous evolu-
tion is given by explicit polynomial flows which, in general, does not even
allow the modeling of linear differential equations, since these can have non-
polynomial flows as solutions.

Puri and co-authors [21] show how to compute an over-approximation of
Lipschitz differential inclusions with known Lipschitz constant over a finite
time horizon. This implies a corresponding quasi-decidability result. In
contrast to that, our result allows unbounded time, and does not require a
previously known Lipschitz constant.

Collins [7] studies approximation of reach sets of dynamical system in an
effective computable analysis framework which again implies a correspond-
ing quasi-decidability result. He uses a discrete time model (such a model
can in certain cases encode a continuous time model). In the continuous
time case there is corresponding work on approximating reach sets over a
finite time horizon [8].

Damm and co-authors [9] provide a similar result as ours for a discrete
time model. The continuous time model employed in this paper, implies
several additional difficulties:

• When considering syntactic descriptions of systems, in a discrete time
model all variables vary over the state space of the system, whereas
in a continuous time model, some variables (describing differentiation)
do not. Hence these variables may take unbounded values even if the
state space is bounded. This needs additional deduction mechanisms
for capturing the set of possible values that these variable may take and
proofs of their correctness (Theorem 2) and convergence (Lemma 1).

• In a discrete time model, a trajectory only reaches finitely many states
in a finite time interval, whereas in a continuous time model it usually
reaches uncountably many. This uncountable set has to be captured
by corresponding algorithms. As a consequence, in the case of verifica-
tion, abstraction to a finite state systems, as used in the earlier paper,
cannot capture system behavior arbitrarily closely, since even arbitrary
refinements cannot separate two sub-sequent steps of the system. In
the case of falsification, instead of just having to consider finitely many
points (due to state space compactness and discrete time), we have to
bound the distance of the abstraction to uncountably many points on
an error trajectory.
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Studying the effect of perturbations on dynamical systems is a classical
research topic for continuous systems, as a summary see for example the
textbook by Khalil [17]. However, only recently such have such questions
received broader attention in the case of hybrid [13] or even completely
discrete systems [1].

On the negative side, Henzinger and Raskin showed that certain unde-
cidability results for hybrid systems continue to hold, even if in the proof one
only allows encodings into robust trajectories [16]. This does not contradict
our result for two reasons: First, quasi-decidability allows an algorithm that
does not always (i.e., for non-robust inputs) terminate, whereas undecidabil-
ity (even when based on robust trajectories) proves non-existence of an algo-
rithm that terminates always. Second, in a similar way as Fränzle [10, 11],
we require a compact state space, whereas Henzinger and Raskin do not
(although their dynamics is much simpler than ours).

Regarding falsification, recent work [3, 6] explores so-called resolution-
complete simulation algorithms. These give some completeness assurance
but miss a few elements for a full quasi-decidability proof (e.g., the algo-
rithms assume a Lipschitz constant on the function defining the differential
equation, and they ignore errors due to time-discretization).

6 Conclusion

We proved that safety-verification of non-linear hybrid systems is quasi-
decidable. Some of the algorithms used in the proof of quasi-decidability
are not efficient in practice (especially checking robust rectangular hybrid
systems). It remains an open problem to find verification algorithms that
terminate for robust hybrid systems and are efficient in practice. Also, it
is open, whether quasi-decidability holds even in the case of a non-compact
state space.

A further interesting question is the precise relationship between the
syntactic perturbations used in this paper and approaches studying per-
turbation of hybrid systems based on set-valued analysis [2], especially the
application of corresponding results around well-posedness questions for hy-
brid systems [12, e.g.].
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