
PROVIDING A BASIN OF ATTRACTION TO A TARGET REGION

OF POLYNOMIAL SYSTEMS BY COMPUTATION OF

LYAPUNOV-LIKE FUNCTIONS∗

STEFAN RATSCHAN † AND ZHIKUN SHE ‡

Abstract. In this paper, we present a method for computing a basin of attraction to a tar-
get region for polynomial ordinary differential equations. This basin of attraction is ensured by a
Lyapunov-like polynomial function that we compute using an interval based branch-and-relax al-
gorithm. This algorithm relaxes the necessary conditions on the coefficients of the Lyapunov-like
function to a system of linear interval inequalities that can then be solved exactly. It iteratively
refines these relaxations in order to ensure that, whenever a non-degenerate solution exists, it will
eventually be found by the algorithm. Application of an implementation to a range of benchmark
problems shows the usefulness of the approach.

Key words. basin of attraction, stability, constraint solving, interval computation, algorithms

AMS subject classifications. 65G40, 68U99, 65P40

1. Introduction. A sufficient condition for verifying stability of ordinary dif-
ferential equations is the existence of a Lyapunov function [16]. In cases where the
differential equation is polynomial, due to decidability of the theory of real-closed
fields [44], there is an algorithm that, for a given polynomial with parametric coef-
ficients, decides whether there are instantiations of these parameters resulting in a
Lyapunov function. However, all the existing decision procedures (e.g., implemented
in the software packages QEPCAD [4] or REDLOG [11]), while being able to solve im-
pressively difficult examples, are not efficient enough to be able to solve this problem
in practice.

Recently, a method based on sum of squares decomposition [26, 27] has appeared
that can compute Lyapunov functions for some realistic examples. However, being
based on the classical stability, it does not allow reasoning about target regions (and
hence it requires an equilibrium), and only results in Lyapunov functions that char-
acterize the behavior of the given system locally (around the equilibrium) or globally
(on the whole state space).

Another option is to try to compute a Lyapunov function of a linearization of
the non-linear problem around a given equilibrium point, and compute a basin of
attraction for this Lyapunov function with respect to the original, non-linear prob-
lem [13, 10]. However, due to the information loss introduced by the linearization
process, this basin of attraction will usually be very small.

In this paper we will provide an algorithm for computing a Lyapunov-like function
for the original, non-linear problem, which will provide us with a basin of attraction
to a given target region. This target region can, for example, be the smaller basin
of attraction obtained by linearization, hence ensuring attraction to the equilibrium.
This algorithm is also fit to deal with systems with small interval uncertainties—
a corresponding extension of the algorithms with the necessary interval arithmetic

∗This is an extended and revised version of an earlier conference paper [37].
†Stefan Ratschan is with the Institute of Computer Science, Czech Academy of Sciences, Prague,

Czech Republic. He has been supported by GAČR grant 201/08/J020 and by the institutional
research plan AV0Z100300504.

‡Zhikun She is with the LMIB and School of Mathematics and Systems Science, Beihang Univer-
sity, Beijing, China. He was supported by NKBRPC-2005CB321902 and Beijing Nova Program.

1

computations is a simple homework exercise.
Our approach sets up a polynomial with parametric coefficients, substitutes this

polynomial into a constraint that formalizes Lyapunov style conditions, and then
solves this constraint for the parameters that form the coefficients of the polynomial.

The algorithm for solving this constraint employs a branch-and-relax scheme. It
relaxes the constraint to a system of linear interval inequalities that can then be solved
exactly [40]. Using a recursive decomposition of the state space into hyper-rectangles,
it iteratively refines these relaxations. This ensures that, whenever a non-degenerate
solution exists, it will eventually be found by the algorithm.

We implemented our algorithm and tested our implementation on several exam-
ples.

The structure of the paper is as follows: in Section 2 we show how to compute
a basin of attraction using an adapted version of the notion of a Lyapunov function;
in Section 3 we describe our algorithm for computing such Lyapunov-like functions;
in Section 4 we describe three improvements to the basic algorithm; in Section 5 we
provide a rigorous formal efficiency comparison of the algorithm with earlier algo-
rithms, and prove its termination for non-degenerate inputs; in Section 6 we discuss
our implementation; in Section 7 eleven examples are illustrated with computation
results; in Section 8 we discuss related work; and in Section 9 we conclude our paper.

2. Basins of Attraction to a Target Region. In this section we will introduce
the basic mathematical notions used in this paper and show how attraction to a target
region can be ensured by certain Lyapunov-like functions. The techniques used in
the proofs are variations of techniques well-known in the literature [19, e.g.]. But to
provide clear and self-contained insight into the theoretical background of our method
we provide our own proofs instead of deriving the results as corollaries of results from
the literature (whose proofs would then be highly technical and lack insight).

For an ordinary differential equation ẋ = f(x), where x ∈ R
n we denote by

x(·, x0) : R≥0 → R
n a trajectory of the differential equation starting from x0.

The definition of stability that we will use, allows us to explicitly specify a target
region and the basin of attraction:

Definition 2.1. Given an n-dimensional differential equation ẋ = f(x), and sets
U and TR such that TR ⊂ U ⊆ R

n, the differential equation is stable with respect to
U and the target region TR if for every point x0 ∈ U , the trajectory x(·, x0) will

• always stay in U (for all t ∈ R≥0, x(t, x0) ∈ U),
• and eventually reach TR (there is a t1 ∈ R≥0 such that x(t1, x0) ∈ TR)

By allowing an explicit parameter U in this definition, one can explicitly specify
a desired basin of attraction. This helps to avoid situations, where a differential
equation is stable, but where the found Lyapunov-like function only proves attraction
with a tiny region.

By allowing a target region instead of a single equilibrium point, the method can
also be applied in cases where no equilibrium exists (e.g., when we want to study
attraction to a limit cycle, cf. the (weaker) notion of practical stability [19]). In cases
where an equilibrium point exists, one can use as a target region in our method a
small basin of attraction computed from a Lyapunov function of the linearization of
the differential equation [13, 10, 6].

In order to ensure this stability notion, we use the following adaption of the notion
of a Lyapunov function:

Definition 2.2. For a given differential equation ẋ = f(x) with sets B and
TR such that TR ⊂ B, a continuously differentiable function V (x) is called a set

2

Lyapunov function in B with respect to TR if and only if the constraint

∀x ∈ B
[

x /∈ TR ⇒ d

dt
V (x) < 0

]

, (2.1)

holds. Here ⇒ denotes an implication symbol, and d
dt
V (x) < 0 denotes the time-

derivative of V along f , that is, ∂V
∂x

T
f(x).

What exactly is guaranteed by a set Lyapunov function V ? First of all, it ensures
that sub-level sets of V in B are never left. Here, given a closed set B and a set
Lyapunov function V , we define an s-sub-level set of V in B to be {x ∈ B : V (x) < s}
and denote this set by V B

<s.
Theorem 2.3. The existence of a set Lyapunov function V (x) in a closed set

B with respect to a target region TR guarantees that for every s, every trajectory
starting in a connected component C of the s-sub-level set V B

<s that does not intersect
the boundary of B, will not leave C without reaching TR. Moreover, if the closure of
TR does not intersect the boundary of C the trajectory will not leave C at all.

Proof. For every element of the boundary ∂C of C that is not in TR, d
dt
V (x) < 0.

Thus, trajectories can leave C only through an element of ∂C that is in TR. Such an
element does not exist if the closure of TR does not intersect the boundary of C.

In Figure 2.1 we illustrate the only possibility how a trajectory can leave C: if
the closure of TR intersects the boundary of C, then a trajectory may enter TR, and
then leave C within TR, since V can be positive in TR.

TR

C

B

Fig. 2.1. Necessity of condition in Theorem 2.3

Moreover, a set Lyapunov function ensures that the target region is eventually
reached:

Theorem 2.4. The existence of a set Lyapunov function V (x) in a closed set B
with respect to an open target region TR guarantees that every trajectory starting in a
connected component C of the s-sub-level set V B

<s that does not intersect the boundary
of B, will enter TR.

Proof. Since B is bounded and B\TR is closed, due to the continuity of V and
d
dt
V , we know that V is bounded in B\TR, and that d

dt
V has a maximum ε in B\TR.

Obviously, this maximum ǫ is a negative real number.
Let x0 be an arbitrary, but fixed point in C. It is sufficient to only consider the

case x0 ∈ C\TR.

3

We assume that for all t ∈ R≥0, x(t, x0) /∈ TR, and derive a contradiction. From
Theorem 2.3 and our assumption, for all t ∈ R≥0, x(t, x0) ∈ C \ TR. Thus, for all
t ∈ R≥0,

d
dt
V ≤ ǫ. Since ε is negative, this implies that as t goes to infinity, V (x(t, x0))

goes to minus infinity, contradicting the fact that V is bounded in B \ TR.
Thus, there exists a t ∈ R≥0 such that x(t, x0) ∈ TR.
Note that without the requirement that the target region TR be open, the bound-

ary of TR could form a limit cycle. In such a case, trajectories could come arbitrarily
close to the target region, but not enter it.

So our stability notion can be proved by computation of set Lyapunov functions:
Corollary 2.5. The existence of a set Lyapunov function V (x) in a closed

set B with respect to an open set TR guarantees stability with respect to a connected
component C of a given s-sub-level set V B

<s provided that
• the component C does not intersect the boundary of B, and
• the closure of TR does not intersect the boundary of C.

Does the existence of a set Lyapunov function V (x) guarantee that every trajec-
tory starting in such a sub-level set will reach and eventually stay in TR? No! The
reason is that this will not prohibit that a trajectory infinitely often enters TR, stays
within TR for a period of time and then leaves TR again. This intuition is illustrated
in the two-dimensional case in Figure 2.2.

TR

B

V B
<s

Fig. 2.2. An example with a cycle

However, since TR will usually be small, one can usually proceed with other
techniques based on local reasoning: On the one hand, one can use a Lyapunov
function of the linearized system to show asymptotic stability [13, 10]. On the other
hand, one can use techniques to prove that an invariant set of the system has been
reached [3].

The question remains, how for a given set Lyapunov Function V (x) to find an
s-sub-level set to which one can apply Corollary 2.5 to arrive at a basin of attraction.
One approach follows an analogy of a classical approach for computing the basin of
attraction based on Lyapunov functions [6]: Minimize V (x) on the boundary ∂B of B
and use the sub-level set V B

minx∈∂BV (x)
. Another approach is, to guess a value for s, and

check whether there is a connected component of V B
s that does not intersect ∂B (in

Section 7 we will illustrate this on an example—using the constraint solver RSolver

to do the according test). If the resulting basin of attraction is too small, one can
iteratively choose larger values for s, thereby enlarging the basin of attraction.

Note that—in the case where both f and V are polynomials—Constraint 2.1

4

is a formula in the predicate logical theory of the real numbers with addition and
multiplication [31]. Hence, in theory, as for classical Lyapunov functions, one could
compute set Lyapunov functions using decision procedures for the theory of real-closed
fields [44]. However, the current methods are by far not efficient enough to solve this
problem in practice. Another approach would be to use an interval arithmetic based
branch-and-bound or branch-and-prune scheme [32, 36]. However, one can do even
better, as will be shown in the next section.

3. Algorithm. In this section, we present a method for finding a polynomial
set Lyapunov function, provided that f is a polynomial. Let V be a polynomial with
parametric coefficients. Let d

dt
V be the time-derivative of V along f , represented as a

polynomial whose coefficients are linear combinations of the parameters that form the
coefficients of V . We substitute the resulting time-derivative d

dt
V into Constraint 2.1

and denote the result by Λf,V . Then we solve Λf,V for the parameters that form the
coefficients of V .

For solving the constraint Λf,V we use the convention that an interval occurring
in a constraint represents a fresh, universally quantified variable ranging over that
interval (e.g., [0, 1]a ≤ 1 represents ∀v ∈ [0, 1] va ≤ 1, where v is a new variable).
Also, we assume that V is of the form

∑m
j=1

ajx
αj (the powers occurring in the tuple

αj are applied element-wise to the tuple of variables x). We view the resulting time-

derivative d
dt
V as having the form

∑l
i=1

gi(a1, . . . , am)xγi , where the a1, . . . , am occur
linearly in the gi(a1, . . . , am). So the constraint Λf,V , resulting from the substitution
of d

dt
V into Constraint 2.1 has the form

∀x ∈ B
[

x /∈ TR ⇒
l

∑

i=1

gi(a1, . . . , am)xγi < 0

]

.

To solve this constraint for a1, . . . , am, we compute a constraint that is a relaxation
of Λf,V in the sense that

• every solution of the relaxation is also a solution of the original constraint
Λf,V ,

• the relaxation is easier to solve than the original constraint.
A first approach to arrive at this relaxation is as follows:
1. drop the constraint on the left-hand side of the implication sign of Λf,V

2. replace every monomial xγi by an interval bounding its range over B (the

result is a constraint of the form
∑l

i=1
gi(a1, . . . , am)Ii < 0, where the Ii’s

are intervals),

3. rewrite
∑l

i=1
gi(a1, . . . , am)Ii to an expression of the form

∑m
j=1

I ′jaj by dis-
tributing each interval Ii over the linear combination gi(a1, . . . , am), collect-
ing the coefficients of each aj , and computing a single interval for each such
coefficient.

The interval calculations of Steps 2 and 3 can be done using interval arithmetic.
The resulting constraint over-approximates the original constraint Λf,V (resulting in a
smaller set of a1, . . . , am on which it holds). Moreover it is a linear inequality with in-
terval coefficients (i.e., a linear interval inequality), which can be solved exactly (to be
shown later). However, each of the above steps introduces some over-approximation.
Our algorithm will iteratively reduce this over-approximation as follows.

Consider the over-approximation introduced by Step 2. Even if the bounds on the
monomials are exact, this step loses the dependency between the different monomials.
For reducing this problem, we rewrite the universal quantifier ∀x ∈ B φ of Λf,V to a

5

Algorithm 1 Computing a Set Lyapunov function

Input: a polynomial differential system ẋ = f(x), sets B and TR
Output: if the algorithm terminates, a set Lyapunov function with respect to B

and TR
1: choose a polynomial V with parametric coefficients a1, . . . , am

2: let φ←
∧

Λf,V

3: while relax (φ) does not have a solution do

4: branch a universal quantifier in φ
5: end while

6: return V with the solution of relax (φ) substituted for a1, . . . , am

conjunction of the form ∀x ∈ B1 φ ∧ ∀x ∈ B2 φ, where B1 ∪B2 = B, and B1 and B2

non-overlapping. We can apply the above relaxation process to every branch of the
resulting constraint, again arriving at a system of linear interval inequalities that can
be solved exactly (see the discussion below). We continue with this branching process
until a solution can be found.

For reducing the over-approximation introduced by Step 1, we observe that the
above branching process results in smaller bounds for the universal quantifiers. This
allows us, for some branches of the form ∀x ∈ B′

[

x /∈ TR ⇒ d
dt
V (x) < 0

]

to prove
∀x ∈ B′[x ∈ TR], which also proves the full branch. Hence we can drop the branch
from the conjunction.

For a constraint φ, we denote the result of the relaxation process, as described
until now by relax (φ), and arrive at the branch-and-relax Algorithm 1.

Since every step for arriving at the relaxation is an over-approximation, we have:

Property 1. Every solution (a1, . . . , ak) of relax (φ) is a solution of φ but not
vice versa.

The correctness of Algorithm 1 follows from this property and the fact that
branching is an equivalence transformation.

The system of linear interval inequalities formed by relax (φ) can be solved as
follows: First replace each strict inequality < 0 by a non-strict inequality ≤ −ε,
with ε positive but small. This introduces some over-approximation, but this over-
approximation can easily be made arbitrarily small.

Now we can proceed using a method due to Rohn and Kreslová [40]: we can
replace each variable a we want to solve for, by a difference of two positive variables
a1 − a2, and replace expressions of the form I(a1 − a2) by Ia1 − Ia2. Since a1 and
a2 are positive, and I represents a universally quantified variables in an inequality,
we can replace the interval I = [I−, I+] by its bounds to arrive at I+a1 − I−a2. The
result is a system of linear inequalities that can be solved by linear programming.

According to a proof by Rohn and Kreslová this procedure does not introduce
over-approximation [40]. In other words, this procedure does not lose solutions of
the original system. To see this, take an inequality of the original system, say
∑

i∈{1,...,n} Iixi ≤ b, and denote the resulting linear inequality by
∑

i∈{1,...,n} I
+
i a

1
i −

I−a2
i ≤ b. Let x1, . . . , xn be an arbitrary, but fixed solution of the original inter-

val inequality. We get a solution of the resulting linear inequality as follows: Let
a+
1 , . . . , a

+
n be such that a+

i is equal to xi if xi is positive, and zero, otherwise. Let
a−1 , . . . , a

−
n be such that a−i is equal to −xi if xi is negative, and zero, otherwise.

Then I+
i a

+
i − I−a−i = rixi, where ri is equal to I+ if x is positive, and equal to I−,

otherwise. Hence ri ∈ Ii. Since intervals represent universally quantified variables,

6

we have
∑

rixi ≤ b. As a result, also
∑

i∈{1,...,n} I
+
i a

+
i − I−a−i ≤ b.

4. Improvements. In this section we describe three improvements to the basic
algorithm described in the previous section.

4.1. Initial Partition. Especially in higher dimensions, branching needs a lot
of time to separate the target region from the rest of the state space. Hence we start
the algorithm with an initial partition that fulfills this separation. In all our examples
we use a target region of the form {x ∈ B : |xi − x∗i | < δ, 1 ≤ i ≤ n}, where x∗i is the
equilibrium, and so we use a partition that consists of 1 + 2n elements in one of the
two following forms:

• [x1, x1]× · · · × [xi, x
∗
i − δ]× [x∗i+1 − δ, x∗i+1 + δ] · · · × [x∗n − δ, x∗n + δ]

• [x1, x1]× · · · × [x∗i + δ, xi]× [x∗i+1 − δ, x∗i+1 + δ] · · · × [x∗n − δ, x∗n + δ],

where i ∈ {0, . . . , n} (see Figure 4.1 for a 2-dimensional example)

Fig. 4.1. Initial Partitioning

Note that in the case i = 0 both forms coincide. Moreover, in this case the branch
is completely contained in the target region and hence the branch holds trivially.

4.2. Additional Constraints. For reducing the over-approximation introduced
by Step 3 in Section 3, instead of distributing the intervals over the linear combinations
gi(a1, . . . , am), we introduce for each linear combination gi(a1, . . . , am) a new variable
a′i, and relate it to the variables a1, . . . , am by adding the equation a′i = gi(a1, . . . , am).
In fact, we rewrite this equation to two inequalities a′i ≤ gi(a1, . . . , am) and −a′i ≤
−gi(a1, . . . , am) to again arrive at linear interval inequalities. Note that the new
constraints do not contain the state space variables, hence they only have to be added
once—and not for every branch.

For a constraint φ, we denote the result of the relaxation process that uses the
construction of the previous paragraph in Step 3 by relax=(φ). It can be used in
Algorithm 1 instead of relax (φ). This keeps the correctness of the algorithm due to

Property 2. Every solution (a1, . . . , am) of relax=(φ) is a solution of φ.

Moreover, the new algorithm does not need more branching steps than the old
one due to

Property 3. Every solution (a1, . . . , am) of relax (φ) is a solution of relax=(φ).

Both properties follow from the fact that the constraint relax=(φ) is equivalent
to the constraint resulting from the first two relaxation steps in the computation of
relax (φ). Since the second and the third relaxation step are not an equivalence trans-
formation (the distribution of an interval Ii over the linear combination gi(a1, . . . , am)

7

creates several copies of Ii, this loses the dependency between them), the reverse impli-
cations of Property 3 does not hold. Hence, for some cases, the algorithm will already
terminate when using relax=(φ) but will have to branch further using relax (φ).

4.3. Pre-and Post-processing Based on Linear Algebra. The relaxation
relax=(φ) consist of two parts: first, a set of linear interval inequalities in the variables
a′1, . . . , a

′
l, and second, a set of l linear equations of the form a′i = gi(a1, . . . , am). Note

that l > m, and hence an attempt to substitute a fixed solution a′1, . . . , a
′
l of the first

part (the linear interval inequalities) into the second part, would result in a linear
system with more equations than variables which, in general, would not be solvable.

However, we can eliminate the a1, . . . , am from the equations. The result is a
system of l −m linear equations in the variables a′1, . . . , a

′
l. We can use this system

of linear equations instead of original linear equations a′i = gi(a1, . . . , am), where
i = 1, . . . , l. Since l will usually be only slightly larger than m, the resulting overall
constraint system will in general have much less equations than in the original form
relax=(φ). After solving this constraint, we can compute the a1, . . . , am from the
a′1, . . . , a

′
l in a post-processing step.

5. Theoretical Comparison and Termination Analysis. In this section we
prove that in a certain, formally defined, sense the algorithm introduced in this paper
is more efficient than earlier algorithms using an interval arithmetic based branch-
and-bound or branch-and-prune scheme [32, 36]. This will allow us to prove that the
algorithm successfully terminates for all inputs that are non-degenerate in a sense to
be defined below.

We start with describing a specialization of earlier interval arithmetic based
branch-and-bound or branch-and-prune algorithms [32, 36] to the special case of the
constraint Λf,V . Here one would search for solutions by gridding a compact area.
For a given grid point (a1, . . . , am), representing a certain choice for the parameters
occurring in constraint Λf,V , one checks—using interval arithmetic—whether for all
values of x ∈ B, the implication holds. Here, interval arithmetic computes an in-
terval [v, v] over-approximating the set {∑l

i=1
gi(a1, . . . , am)xγi | x ∈ B}. Then the

constraint is determined to hold on the grid point (a1, . . . , am), if either B ⊆ TR, or
v < 0. In order to reduce the over-approximation introduced by interval arithmetic,
one iteratively divides the box B into smaller pieces, and checks, whether the above
tests holds on all resulting pieces.

Theorem 5.1. The number of branchings (loop iterations) of Algorithm 1, when
using the improved relaxation method relax=(), is smaller than the smallest number
of splittings the interval method needs for proving that constraint Λf,V holds on any
grid point, provided the same heuristics are used for branching and splitting.

Proof. Let (a1, . . . , am) be an arbitrary, but fixed grid point. Assume that the
interval method can prove constraint Λf,V for this grid point after a splitting of the
original box B into sub-boxes B1, . . . , Bk. So we know that for all r ∈ {1, . . . , k},
interval arithmetic proves

∀x ∈ Br

[

x /∈ TR ⇒
l

∑

i=1

gi(a1, . . . , am)xγi < 0

]

,

which we denote by φr. We prove that (a1, . . . , am) can be extended to a solution
of relax=(

∧

r∈{1,...,k} φr). Observe that the latter constraint is a conjunction of two
types of constraints:

• constraints of the form
∑l

i=1
a′iIi < 0, and

8

• constraints of the form a′i = gi(a1, . . . , am).

Let (a′1, . . . , a
′
l) be the unique solution of the second type of constraints for

(a1, . . . , am). We prove that (a′1, . . . , a
′
l) is a solution of every constraint of the first

type. Let ψ be an arbitrary, but fixed constraint of the first type. This constraint
ψ is the result of relaxing a certain φr, where r ∈ {1, . . . , k}. Interval arithmetic
proves this φr. We know that not Br ⊆ TR, because otherwise relaxation would have
dropped the constraint. Hence, interval evaluation of

∑l
i=1

gi(a1, . . . , am)xγi on Br

results in an interval that is strictly less than zero. By the choice of (a′1, . . . , a
′
l), this

∑l
i=1

gi(a1, . . . , am)xγi is equal to
∑l

i=1
a′ix

γi . By the over-approximation property
of interval arithmetic, and the semantics of our interval notation (fresh universally
quantified variable) this proves that (a′1, . . . , a

′
l) is a solution of ψ.

An essential question for such an algorithm is, whether it can find a solution in
all cases where a solution exists. For algorithms based on approximation one usually
does not consider degenerate cases, and only requires that a solution is found for all
problems that are robust in the following sense [33, 36]:

Definition 5.2. The value x ∈ R
n is a robust solution of a constraint φ if and

only if there is an ε > 0 such that x is a solution of every constraint φ′ that results
from φ by perturbing some constants by not more than ε (i.e., φ are the same with
the exception of constants, and for every constant c in φ and corresponding constant
c′ in φ′, |c− c′| ≤ ε).

Of course, the success of the algorithm depends on the branching strategy used in
Step 4 of the algorithm. Under the natural assumption that the employed branching
strategy lets the width of the bounds of the universal quantifiers go to zero we can
now prove success for robust solutions:

Theorem 5.3. If

• The constraint Λf,V has a robust solution, and
• Algorithm 1 employs a branching strategy such that for every ε > 0, there is

an integer n such that after n branching steps the width of the largest bound
of universal quantifier is smaller than ε,

then Algorithm 1, using the improved relaxation method relax=(), successfully termi-
nates with a solution.

Proof. Due to Lemma 2 of [36], an interval arithmetic based branch-and-bound
process using such a branching strategy succeeds in finding a solution for which the
degree of truth [33] is positive. This precisely corresponds to robustness of the so-
lution [33]. Since due to Theorem 5.1 our algorithm using the improved relaxation
method relax=() needs less iterations, it terminates under the above assumptions.

Note that, up to our knowledge, all complete heuristics for interval-based branch-
and-bound methods discussed in the literature [20, 9, 8, 34, . . .] fulfill the requirements
of the second item of Theorem 5.3. Hence, the theorem encompasses all sensible
implementations of the algorithm.

However, since actual implementations usually do not use the abstract form of
the algorithm (e.g., using rational number computation), but some floating-point
approximation, additionally one would have to demand sufficient float-point preci-
sion. However, experience with similar branch-and-relax algorithms and with our
own implementation of the algorithm (see Section 7) has shown that usually the over-
approximation introduced by employing floating point computation is small compared
to the over-approximation introduced by relaxation. So, in practice, the termination
property also applies to practical implementations using the common 64 bit floating
arithmetic.

9

6. Implementation. We implemented the method within the framework of our
constraint solver RSolver [35, 32] that allows solving of quantified constraints using
a branch-and-prune algorithm. This solver has a branching loop of the same form as
Algorithm 1, but instead of using the relaxation technique described in this paper,
it deduces information from the input constraints using a generalization of interval
arithmetic called interval constraint propagation [2].

We simply added our relaxation technique to the branching loop of RSolver. As
a result, we have an algorithm that can in some cases infer slightly more information
from the input than Algorithm 1 due to its use of interval constraint propagation. We
solve the resulting linear programs using the GNU linear programming kit (GLPK). A
user worried by resulting rounding errors could easily add verification techniques [23,
17] or use a linear programming implementation based on rational number arithmetic,
instead.

We use the following heuristic for branching: Choose the widest box, and bisect
it into two boxes along the variable along which this variable has not been split for
the longest time. This is a widely used, simple, and robust strategy that fulfills
the requirements of Theorem 5.3. Dependent on certain application areas one could
try to come up with more sophistical strategies based on previous work from the
literature [20, 9, 8, 34, . . .].

7. Examples. In this section, eleven examples will be presented, for which we
computed set Lyapunov functions by the version of Algorithm 1 that includes all
improvements described in Section 4. Here the target region TR is the set {x ∈ B :
|xi − x∗i | < δ, 1 ≤ i ≤ n}, where B is a given box containing the equilibrium x∗, and
δ > 0 is a constant.

Although we solve a different problem than methods based on sum of squares
decomposition [26, 27], we took all the examples that we found in the corresponding
literature (unfortunately without precise run-times), and derived our Examples 1, 5
and 8 from them.

Example 1. This is a simplified model of a chemical oscillator [26]:

{

ẋ1 = 0.5− x1 + x2
1x2

ẋ2 = 0.5− x2
1x2

.

The equilibrium is (1, 0.5). Let V (x1, x2) = ax2
1 + bx1 + cx1x2 + dx2 + ex2

2 + f ,
then d

dt
V (x1, x2) = 2ax3

1x2 + (c− 2e)x2
1x

2
2 − cx3

1x2 + bx2
1x2 − dx1x

2
2 − 2ax2

1 − cx1x2 +
(a− b+ 0.5c)x1 + (0.5c+ e)x2 + 0.5b+ 0.5d.

Choosing B = [0.8, 1.2]×[0.3, 0.7], δ = 0.01 and ε = 0.0001, we get a set Lyapunov
function V (x1, x2) = x2

1 − 30.1033994112x1 − 72.5637083605x2 + 19.8772784884x2
2.

Example 2. This is the well-known Van-der-pol equation:

{

ẋ1 = −x2

ẋ2 = x1 − (1− x2
1)x2

.

Let V (x1, x2) = ax2
1 +bx1x2 +cx2

2, then d
dt
V (x1, x2) = (−2a−b+2c)x1x2 +bx2

1 +
(−b− 2c)x2

2 + bx3
1x2 + 2cx2

1x
2
2.

Choosing B = [−0.8, 0.8] × [−0.8, 0.8], δ = 0.1 and ε = 0.0001, we get a set
Lyapunov function V (x1, x2) = x2

1 − 0.344917218515x1x2 + 0.858976611479x2
2.

10

Example 3. This is an example from an survey on the estimation of stability
regions [13]:

{

ẋ1 = −x1 + x2

ẋ2 = 0.1x1 − 2x2 − x2
1 − 0.1x3

1

.

Let V (x1, x2) = ax2
1 + bx2

2, then d
dt
V (x1, x2) = −2ax2

1 + (2a+ 0.2b)x1x2 − 4bx2
2 −

2bx2
1x2 − 0.2bx3

1x2.
If we choose B = [−0.8, 0.8] × [−0.8, 0.8], δ = 0.1 and ε = 0.0001, we get a set

Lyapunov function V (x1, x2) = x2
1 + 1.65129556434x2

2.
Example 4. This is an example from a Chinese textbook on ODEs:

{

ẋ = −4x3 + 6x2 − 2x

ẏ = −2y
.

Let V (x, y) = ax4 + bx3 + cx2 + dy2, then d
dt
V (x, y) = −16ax6 + (24a− 12b)x5 +

(−8a+ 18b− 8c)x4 + (−6b+ 12c)x3 − 4cx2 − 4dy2.
If we choose B = [−0.4, 0.4] × [−0.4, 0.4], δ = 0.1 and ε = 0.000001, we get

a set Lyapunov function V (x, y) = x4 + 0.571428571429x3 + 0.285714285714x2 +
1.52556785714y2.

Example 5. This is an example from a paper [27] on computing Lyapunov
functions using sum of squares decomposition

{

ẋ = −x+ (1 + x)y

ẏ = −(1 + x)x

Let V (x, y) = ax2 + bxy + cy2 + dy3 + ex4 + fx2y2 + gy4, then d
dt
V (x, y) =

(−2a− b)x2 + (2a− b− 2c)xy + by2 − bx3 + (2a− 2c)x2y + (b− 3d)xy2 + (−4e)x4 +
(4e− 2f)x3y + (−3d− 2f)x2y2 + (2f − 4g)xy3 + (4e− 2f)x4y + (2f − 4g)x2y3.

If we choose B = [−0.7, 0.9] × [−0.7, 0.9], δ = 0.1 and ε = 0.0001, we get
a set Lyapunov function V (x, y) = x2 − 0.160613397902xy + 1.08030669895y2 −
0.0535377993005y3+0.0401533494754x4+0.0803066989508x2y2+0.0401533494754y4.

Example 6. A two-dimensional example with an equilibrium and a limit cycle:
{

ẋ1 = x2 + (1− x2
1 − x2

2)x1

ẋ2 = −x1 + (1− x2
1 − x2

2)x2

.

For this example, the equilibrium (0, 0) is an unstable focus and the curve x2
1+x

2
2 =

1 is a stable limit cycle. Taking δ = 1.2, the target region contains both the unstable
equilibrium and the stable limit cycle.

Let V (x1, x2) = (ax2
1 +bx2

2)/2, then d
dt
V (x1, x2) = (a−b)x1x2 +ax2

1 +bx2
2−ax4

1−
bx4

2 − (a+ b)x2
1x

2
2.

Choosing B = [−2, 2] × [−2, 2] and ε = 0.0001, we get a set Lyapunov function
V (x1, x2) = x2

1 + 0.918746330005x2
2.

Example 7. This is a three-dimensional example from [42]:










ẋ1 = −x2

ẋ2 = −x3

ẋ3 = −x1 − 2x2 − x3 + x3
1

.

11

Let V (x1, x2, x3) = ax2
1+bx2

2+cx2
3+dx1x2+ex1x3+fx2x3, then d

dt
V (x1, x2, x3) =

(−d+ e)x2
1− 2fx2

2 + (−2c− f)x2
3 + (−2a− 2e− f)x1x2 + (−2c− d− e)x1x3 + (−2b−

e− f)x2x3 + 2cx3
1x3 + ex4

1 + fx3
1x2.

Choosing B = [−0.2, 0.2]× [−0.2, 0.2]× [−0.2, 0.2], δ = 0.1 and ε = 0.0001, we get
a set Lyapunov function V (x1, x2, x3) = x2

1 +0.477681371524x2
2 +0.964156909889x2

3−
0.883676562827x1x2 − 1.04463725695x1x3 + 0.0892745139034x2x3.

Example 8. This is an example from a Chinese textbook on ODEs:











ẋ = −x− 3y + 2z + yz

ẏ = 3x− y − z + xz

ż = −2x+ y − z + xy

.

Let V (x, y, z) = ax2 +by2 +cz2, then d
dt
V (x, y, z) = −2ax2−2by2−2cz2 +(−6a+

6b)xy + (4a− 4c)xz + (−2b+ 2c)yz + (2a+ 2b+ 2c)xyz

If we choose B = [−0.4, 0.4]× [−0.4, 0.4]× [−0.4, 0.4], δ = 0.1 and ε = 0.0001, we
get a set Lyapunov function V (x, y, z) = x2 + y2 + z2.

Example 9. This is an example with three equilibria and infinitely many limit
cycles:











ẋ1 = x2 − x3 + (1− x2
1 − x2

2 − x2
3)x1

ẋ2 = −x1 + x3 + (1− x2
1 − x2

2 − x2
3)x2

ẋ3 = x1 − x2 + (1− x2
1 − x2

2 − x2
3)x3

.

Clearly, (0, 0, 0) is an unstable equilibrium. Moreover, ±(
√

3/3,
√

3/3,
√

3/3) are
also equilibria. Further, for any arbitrary but fixed constant c ∈ (−

√
3,
√

3), the
intersection of x1 + x2 + x3 = c and x2

1 + x2
2 + x2

3 = 1 is a cycle.

Let V (x1, x2, x3) = (ax2
1 + bx2

2 + cx2
3)/2, then d

dt
V (x1, x2, x3) = (a− b)x1x2 +(c−

a)x1x3 +(b− c)x2x3 +ax2
1 + bx2

2 + cx2
3−ax4

1− bx4
2− cx4

3− (a+ b)x2
1x

2
2− (a+ c)x2

1x
2
3−

(b+ c)x2
2x

2
3.

Choosing B = [−2, 2] × [−2, 2] × [−2, 2], δ = 1.3 and ε = 0.0001, we get a set
Lyapunov function V (x1, x2, x3) = x2

1 + 0.910410691005x2
2 + 0.910410691005x2

3.

Example 10. A four-dimensional example with an unstable equilibrium:























ẋ1 = x2 − x3 − x4 + (1− x2
1 − x2

2 − x2
3 − x2

4)x1

ẋ2 = −x1 + x3 − x4 + (1− x2
1 − x2

2 − x2
3 − x2

4)x2

ẋ3 = x1 − x2 + x4 + (1− x2
1 − x2

2 − x2
3 − x2

4)x3

ẋ4 = x1 + x2 − x3 + (1− x2
1 − x2

2 − x2
3 − x2

4)x4

Clearly, (0, 0, 0, 0) is an unstable equilibrium and there are no other equilibria.

Moreover, the system has several cycles on the surface x2
1 + x2

2 + x2
3 + x2

4 = 1.

Let V (x1, x2, x3, x4) = (ax2
1 + bx2

2 + cx2
3 + dx2

4)/2, then d
dt
V (x1, x2, x3) = (a −

b)x1x2 + (c− a)x1x3 + (d− a)x1x4 + (b− c)x2x3 + (d− b)x2x4 + (c− d)x3x4 + ax2
1 +

bx2
2 + cx2

3 + dx2
4 − ax4

1 − bx4
2 − cx4

3 − dx4
4 − (a+ b)x2

1x
2
2 − (a+ c)x2

1x
2
3 − (a+ d)x2

1x
2
4 −

(b+ c)x2
2x

2
3 − (b+ d)x2

2x
2
4 − (c+ d)x2

3x
2
4.

Choosing B = [−2, 2]× [−2, 2]× [−2, 2]× [−2, 2], δ = 1.6 and ε = 0.0001, we get
a set Lyapunov function V (x1, x2, x3, x4) = 0.00015943877551(x2

1 + x2
2 + x2

3 + x2
4).

12

Example 11. This is a six-dimensional system from [26]:











































ẋ1 = −x3
1 + 4x3

2 − 6x3x4

ẋ2 = −x1 − x2 + x3
5

ẋ3 = x1x4 − x3 + x4x6

ẋ4 = x1x3 + x3x6 − x3
4

ẋ5 = −2x3
2 − x5 + x6

ẋ6 = −3x3x4 − x3
5 − x6

.

Let V (x1, . . . , x6) = ax2
1 + bx4

2 + cx2
3 + dx2

4 + ex4
5 + fx2

6, then d
dt
V (x1, . . . , x6) =

−2ax4
1−4bx4

2−2cx4
3−2dx4

4−4ex2
5−2fx2

6 +(8a−4b)x1x
3
2 +(−12a+2c+2d)x1x3x4 +

(4b− 8e)x3
2x

3
5 + (2c+ 2d− 6f)x3x4x6 + (4e− 2f)x3

5x6.
Choosing B = [−0.8, 0.8]× · · · × [−0.8, 0.8], δ = 0.1 and ε = 0.0001, we can get a

set Lyapunov function V (x1, x2, x3, x4, x5, x6) = x2
1 +2x4

2 +5.5x2
3 +0.5x2

4 +x4
5 +2x2

6.
The computations were performed on an IBM notebook of Pentium IV, 1.70 GHz

with 1 GB RAM, and they were cancelled in cases when computation did not ter-
minate before 8 hours of computation time. The computing times and the number
of branching steps are listed in Table 7.1 (basic algorithm, relaxation relax (φ)), Ta-
ble 7.2 (algorithm with initial partition), Table 7.3 (algorithm with initial partition
and improved relaxation relax=(φ)), and Table 7.4 (algorithm with initial partition
and linear algebra).

Table 7.1

relax(φ)

Example CPU time Branching steps
1 0.92s 49
2 > 8 hours unknown
3 222.71s 1380
4 > 8 hours unknown
5 > 8 hours unknown
6 109.44s 824
7 9782.16s 4041
8 42.26s 507
9 > 8 hours unknown
10 > 8 hours unknown
11 > 8 hours unknown

The timings clearly show that, with minor anomalies due to incidental influences
of the branching heuristics, the improvements of Section 4 really improve the algo-
rithm.

In order to illustrate how to arrive at a basin of attraction from a computed set
Lyapunov function we used RSolver to compute a verified inner and outer approxi-
mation of the level set corresponding to 0.03 for the set Lyapunov function computed
for Example 4. The result can be seen in Figure 7.1, where the whole figure represents
the box B. Since the outer approximation of the level set is a strict subset of the box
B used for computing the set Lyapunov function, all elements of the inner approxi-
mation are elements of the basin of attraction. Note that RSolver allows the user
to arbitrarily decrease the difference between the inner and outer approximation.

13

Table 7.2

Partition+relax(φ)

Example CPU time Branching steps
1 0.78s 48
2 > 8 hours unknown
3 22.49s 545
4 8489.27s 3982
5 > 8 hours unknown
6 156.60s 981
7 4441.92s 2840
8 > 8 hours unknown
9 > 8 hours unknown
10 > 8 hours unknown
11 > 8 hours unknown

Table 7.3

Partition + relax=(φ)

Example CPU time Branching steps
1 0.64s 48
2 2.46s 151
3 41.37s 720
4 16.36s 244
5 9.30s 121
6 7.03s 226
7 0.00s 0
8 157.64s 1265
9 2265.62 2836
10 > 8 hours unknown
11 0.00s 0

Table 7.4

Partition+Linear Algebra

Example CPU time Branching steps
1 0.00s 0
2 2.40s 151
3 41.51s 719
4 16.10s 244
5 6.31s 121
6 7.62s 226
7 0.00s 0
8 127.49s 1265
9 3882.48s 2836
10 2378.52s 2038
11 0.00s 0

14

Fig. 7.1. Basin of Attraction of Example 4

8. Related Work. We are only aware of one method that can compute closed-
form Lyapunov functions of non-linear ODEs in a completely automatic way. This
method is based on sum of squares decomposition using relaxation to linear matrix
inequalities [26, 27]. However, it tries to prove classical stability. This has the ad-
vantage of being in correspondence to classical research and techniques in stability
analysis. But it has two drawbacks compared to our method:

• The resulting Lyapunov function only characterizes the behavior of the given
system locally (around the equilibrium) or globally (on the whole state space).
However, in applications one usually wants a characterization of the behavior
in a subset of the whole state space, as provided by the set B in Definition 2.2
(note however, that SOS can be used to compute a region of attraction with
respect to a given Lyapunov function [27, Section 7.3]).

• The method is not applicable in the case where no equilibrium point exists,
for example in the case of studying attraction to a limit cycle. The method
studied in this paper is still applicable in such a case, since one can freely
choose the target region provided by the set TR in Definition 2.2.

Moreover, the efficiency of Algorithm 1 can be arbitrarily decreased and increased by
changing the size of the sets (B \ TR) and so it can also be made both arbitrarily
slower and arbitrarily faster than any other method.

Hence the efficiency of our method is not directly comparable with the efficiency
of sum-of-squares methods. Still, our results for benchmark examples that we took
from the literature on sums-of-squares methods (Examples 1, 5 and 8) show that the
set Lyapunov functions that result from our method, usually have a similar form to
the classical Lyapunov functions computed by sums-of-squares techniques.

Up to our knowledge, all other techniques for computing Lyapunov functions
for non-linear systems either require manual intervention, and hence are not fully
automatic, or they produce results that are only correct up to discretization errors.

Methods requiring manual intervention are:
• A method that uses Gröbner bases to choose the parameters in Lyapunov

functions in an optimal way [12]. This requires the computation of a Gröbner
basis for an ideal with a large number variables. The user manually has to
distinguish critical points from optima.

15

• A method that computes Lyapunov functions in the form of continuous piece-
wise affine functions [15] based on user-provided bounds on second-order
derivatives.

• Methods that compute piecewise linear Lyapunov function based on some
user-provided polygonal system characterization [24, 25].

Methods that use approximate discretizations are:
• A method based on approximation by radial basis functions [14], and
• a method based on linear programming [18].

Methods for computing the region of attraction can be roughly divided into two
classes: one class maximizes the size of a region of attraction for a certain given Lya-
punov function [42]; another class uses approximation techniques that try to enlarge
a small initial region of attraction [13].

9. Conclusion. In this paper we have provided a method for computing the
basin of attraction to a target region. The method is based on computation of
Lyapunov-like functions using a branch-and-relax constraint solving algorithm. It
seems that similar constraints have to be solved in many other areas (e.g., proving
the termination of term-write systems, computation of barrier certificates [29], invari-
ant generation [41, 38, 22, 39, 30], and analysis of FEM [43]), and it is interesting
work to apply our algorithms in these areas.

The presentation in this paper is restricted to polynomial ordinary differential
equations and polynomial Lyapunov-like functions. However, one of the tools used
in the algorithm, interval arithmetic, also works for expressions that contain function
symbols like sin, cos, exp. In fact, in many such cases, our relaxation technique—
when applied manually—also results in linear interval inequalities, allowing for an
application of the overall algorithm. However, the classification of the cases for which
this can be automatized, depends on the (potentially very complicated) symbolic
manipulation techniques one is willing to use in the algorithm. An exploration of this
issue would require a significant amount of further work.

We will further increase the efficiency of our method, for example, by improv-
ing the used branching heuristics, and we will generalize our results to the stability
analysis of hybrid systems [28, 5].

REFERENCES

[1] R. Alur and G. J. Pappas, editors. HSCC’04, number 2993 in LNCS. Springer, 2004.
[2] F. Benhamou and L. Granvilliers. Continuous and interval constraints. In F. Rossi, P. van Beek,

and T. Walsh, editors, Handbook of Constraint Programming, chapter 16, pages 571–603.
Elsevier, Amsterdam, 2006.

[3] F. Blanchini. Set invariance in control—a survey. Automatica, 35(11):1747–1768, 1999.
[4] C. W. Brown. Qepcad b: a system for computing with semi-algebraic sets via cylindrical

algebraic decomposition. SIGSAM Bull., 38(1):23–24, 2004.
[5] H. Burchardt, J. Oehlerking, and O. Theel. The role of state-space partitioning in automated

verification of affine hybrid system stability. In Proc. of the 3rd Intl. Conf. on Comput-
ing, Communications and Control Technologies, volume 1, pages 187–192. International
Institute of Informatics and Systemics, 2005.

[6] H. Burchardt and S. Ratschan. Estimating the region of attraction of ordinary differential
equations by quantified constraint solving. In Proceedings of the 3rd WSEAS International
Conference on DYNAMICAL SYSTEMS and CONTROL (CONTROL’07), pages 241–
246. WSEAS Press, 2007.

[7] B. F. Caviness and J. R. Johnson, editors. Quantifier Elimination and Cylindrical Algebraic
Decomposition. Springer, Wien, 1998.

[8] T. Csendes, R. Klatte, and D. Ratz. A posteriori direction selection rules for interval optimiza-
tion methods. Central European Journal of Operations Research, 2000.

16

[9] T. Csendes and D. Ratz. Subdivision direction selection in interval methods for global opti-
mization. SIAM Journal on Numerical Analysis, 34(3):922–938, 1997.

[10] N. Delanoue, L. Jaulin, and B. Cottenceau. Stability analysis of a nonlinear system using
interval analysis. submitted.

[11] A. Dolzmann and T. Sturm. Redlog: computer algebra meets computer logic. SIGSAM Bull.,
31(2):2–9, 1997.

[12] K. Forsman. Construction of Lyapunov functions using Gröbner bases. In Proc. of the 30th
Conf. on Decision and Control, pages 798–799, 1991.

[13] R. Genesio, M. Tartaglia, and A. Vicino. On the estimation of asympototic stability regions:
state of the art and new proposals. IEEE Trans. on Automatic Control, 30(8):747–755,
1985.

[14] P. Giesl. Construction of Global Lyapunov Functions Using Radial Basis Functions, volume
1904 of Lecture Notes in Mathematics. Springer, 2007.

[15] S. F. Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete
and Continuous Dynamical Systems, 10(3), 2004.

[16] W. Hahn. Stability of Motion. Springer, 1967.
[17] C. Jansson. Rigorous lower and upper bounds in linear programming. SIAM Journal on

Optimization, 14(3):914–935, 2004.
[18] T. A. Johansen. Computation of lyapunov functions for smooth nonlinear systems using convex

optimization. Automatica, 36(11):1617 – 1626, 2000.
[19] V. Lakshmikantham, S. Leela, and A. A. Martynyuk. Practical Stability of Nonlinear Systems.

World Scientific, 1990.
[20] R. E. Moore and H. Ratschek. Inclusion functions and global optimization II. Mathematical

Programming, 41:341–356, 1988.
[21] M. Morari and L. Thiele, editors. Hybrid Systems: Computation and Control, volume 3414 of

LNCS. Springer, 2005.
[22] M. Müller-Olm and H. Seidl. Computing polynomial program invariants. Inf. Process. Lett.,

91(5):233–244, 2004.
[23] A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer programming. Math.

Programming A, 2003.
[24] Y. Ohta, H. Imanishi, L. Gong, and H. Haneda. Computer generated Lyapunov functions for

a class of nonlinear systems. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 40(5), 1993.

[25] Y. Ohta and M. Onishi. Stability analysis by using piecewise linear lyapunov functions. In
IFAC World Congress, Beijing, 1999.

[26] A. Papachristodoulou and S. Prajna. On the construction of Lyapunov functions using the sum
of squares decomposition. In Proc. of the IEEE Conf. on Decision and Control, 2002.

[27] P. Parrilo and S. Lall. Semidefinite programming relaxations and algebraic optimization in
control. European Journal of Control, 9(2–3), 2003.

[28] A. Podelski and S. Wagner. Model checking of hybrid systems: From reachability towards sta-
bility. In J. Hespanha and A. Tiwari, editors, Hybrid Systems: Computation and Control,
volume 3927 of LNCS. Springer, 2006.

[29] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier certificates. In
Alur and Pappas [1].

[30] S. Prajna and A. Rantzer. Primal-dual tests for safety and reachability. In Morari and Thiele
[21].

[31] M. O. Rabin. Decidable theories. In J. Barwise, editor, Handbook of Mathematical Logic,
chapter C.3, pages 595–629. North-Holland, 1977.

[32] S. Ratschan. Continuous first-order constraint satisfaction. In J. Calmet, B. Benhamou,
O. Caprotti, L. Henocque, and V. Sorge, editors, Artificial Intelligence, Automated Rea-
soning, and Symbolic Computation, number 2385 in LNCS, pages 181–195. Springer, 2002.

[33] S. Ratschan. Quantified constraints under perturbations. Journal of Symbolic Computation,
33(4):493–505, 2002.

[34] S. Ratschan. Search heuristics for box decomposition methods. Journal of Global Optimization,
24(1):51–60, 2002.

[35] S. Ratschan. RSolver. http://rsolver.sourceforge.net, 2004. Software package.
[36] S. Ratschan. Efficient solving of quantified inequality constraints over the real numbers. ACM

Transactions on Computational Logic, 7(4):723–748, 2006.
[37] S. Ratschan and Z. She. Providing a basin of attraction to a target region by computation of

Lyapunov-like functions. In IEEE Int. Conf. on Computational Cybernetics, 2006.
[38] E. Rodriguez-Carbonell and D. Kapur. Automatic generation of polynomial loop invariants: Al-

gebraic foundations. In Proc. Intl. Symp on Symbolic and Algebraic Computation, ISSAC-

17

2004, 2004.
[39] E. Rodriguez-Carbonell and A. Tiwari. Generating polynomial invariants for hybrid systems.

In Morari and Thiele [21].
[40] J. Rohn and J. Kreslová. Linear interval inequalities. Linear and Multilinear Algebra, 38:79–82,

1994.
[41] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constructing invariants for hybrid systems. In

Alur and Pappas [1].
[42] D. N. Shields and C. Storey. The behaviour of optimal Lyapunov functions. Int. J. Control,

21(4):561–573, 1975.
[43] P. Šoĺın and T. Vejchodský. Discrete maximum principle for higher-order finite elements in 1D.

Math. Comp., 76:1833–1846, 2007.
[44] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of California

Press, Berkeley, 1951. Also in [7].

18

