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Abstract

Differential equations are of immense importance for modeling physical phe-
nomena, often in combination with discrete modeling formalisms. In current
industrial practice, properties of the resulting models are checked by testing, us-
ing simulation tools. Research on SAT solvers that are able to handle differential
equations has aimed at replacing tests by correctness proofs. However, there are
fundamental limitations to such approaches in the form of undecidability, and
moreover, the resulting solvers do not scale to problems of the size commonly
handled by simulation tools. Also, in many applications, classical mathematical
semantics of differential equations often does not correspond well to the actual
intended semantics, and hence a correctness proof wrt. mathematical semantics
does not ensure correctness of the intended system.

In this paper, we head at overcoming those limitations by an alternative
approach to handling differential equations within SAT solvers. This approach
is usually based on the semantics used by tests in simulation tools, but still
may result in mathematically precise correctness proofs wrt. that semantics.
Experiments with a prototype implementation confirm the promise of such an
approach.

1 Introduction

The design of cyber-physical systems is more and more being based on models that
can be simulated before the actual system even exists. Here, the most natural way of
modeling the physical part is based on differential equations. The resulting models
can then be simulated using numerical solvers for ordinary differential equations
(ODEs), or tools such as Xcos or Simulink. However, the computational support
for automatically analyzing (e.g., testing, verifying) such models is still far from
satisfactory.

This has been addressed by SAT solvers |10} [11] that do not only offer efficient
discrete (i.e., Boolean) reasoning, but that, in addition, are also able to handle dif-
ferential equations by integrating interval ODE solvers [17, 19]. Handling ODEs in
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such a way is extremely difficult, and most related verification problems are unde-
cidable [5]. The resulting SAT modulo ODE solvers can handle benchmark examples
that are impressive, but still quite far away from the size of the problems that may
occur in industrial practice.

A further reason why such tools are a poor fit to the needs coming from industrial
applications is the fact that classical mathematical solutions usually do not correctly
represent the intended behavior of industrial models [16], since the design process is
based on the results of numerical simulations, and not on a mathematical analysis
of the underlying differential equations. The numerical simulations differ from math-
ematical solutions due to discretization and floating-point computation. Hence, the
output of the used simulation tool is the authoritative description of the behavior of
the model, not traditional mathematical semantics. This holds even in cases when
the model was designed based on ODEs corresponding to physical laws (“from first
principles”), because even in such cases, the parameters of the model are estimated
based on simulations. This is becoming all the more important due to the increas-
ing popularity of data driven modeling approaches, for example, based on machine
learning.

Therefore, the existing SAT modulo ODE approaches prove correctness wrt. se-
mantics that differs from the notion of correctness used during simulation and testing.
We overcome this mismatch by formalizing the semantics of SAT modulo ODE based
on numerical simulations. We prove decidability of the resulting problem, and design
a simple solver. We provide a syntactical characterization of the kind of inputs for
which one can expect an efficient solution from such a solver, and support this by
experiments using a prototype implementation.

We also address another restriction of existing SAT modulo ODE approaches.
Their support for differential equations has the form of monolithic building blocks
that contain a full system of ordinary differential equations within which no Boolean
reasoning is allowed. In contrast to that, in this paper we provide a direct integration
of ODEs into a standard SAT modulo theory (SMT) framework [3], which results in
a tight integration of the syntax of the theory into Boolean formulas, as usual for
theories in SMT-LIB [I].

The problem of verifying differential equations wrt. simulation semantics has been
addressed before [16] [4], but not in a SAT modulo theory context. Also floating point
arithmetic has been realized to be an important domain for verification tools [6} [14],
resulting in a floating point theory in SMT-LIB. However, this concentrates on the
intricacies of floating point arithmetic, which we largely ignore here, and concentrate
instead on the handling of ODEs.

In the next section, we will introduce an illustrative toy example. Then we
will present our integration of ODEs into SMT, first using classical mathematical
semantics (Section [3), then using simulation semantics (Section ). In the next
three sections, we prove decidability of the resulting theory, design a simple solver,
and study its theoretical properties. In Section [8) we present some computational
experiments with a prototype implementation, and in Section [9) we conclude the
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Figure 1: Example Trajectories
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2 Example

For explaining the intuition behind the syntax of our language and the structure
of formulas that we expect to handle, we describe an illustrative toy example. The
example corresponds to a bounded model checking problem for a bouncing ball with
linear drag—Figure [T] shows the height of the ball on the left-hand side and its speed
on the right-hand side.
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In the example, the variables upi,... range over the Booleans, the variables K
and g range over real numbers, and the variables z;,v;, i € {1,...,23} range over
functions from corresponding intervals [0, 7;] to the real numbers, where the lengths
7; are not fixed a priori. The example does not provide this information explicitly—
we will introduce notation to do so, later. Also, all constraints on those variables
(i.e., all invariants) are intended to hold for all elements of those intervals. Again
we will introduce formal details later.

The dot operator denotes differentiation, init denotes the value of the argument
function at 0 and final the value at ;. Note that the example uses the Boolean vari-



ables up1,... to activate different differential equations and bounds on the variables
r1,0V1,X2,V2,....

The ball starts at height 10 with speed zero, and for each x;,v;, 7 € {1,...,23} the
pair z;, v; models one falling or rising phase of the ball (the figure shows 7 of those).
The update init(v;y1) = — K final(v;) results in a non-continuous change between the
last point of v; and the initial point of v;11. The example checks whether a state
with height greater or equal 8 is reached after falling and rising a certain number of
times. For illustrative purposes, the modeled behavior is completely deterministic,
although our method can also handle non-determinism.

We want to check whether there are values for the variables that satisfy such
formulas when interpreting the differential equations using simulation tools. Before
going into details we will analyze the structure of the above formula.

First of all, the variables have indices 1, 2, and 3 corresponding to stages of
a bounded model checking problem. The indices are just part of the names of the cor-
responding variables, but still, they clarify the fact that the variables in the formulas
also occur in stages. Especially, the variables with the same index belong to the same
stage, and within stage i, each functional variable, that is, x; and v;, is determined
by a differential equation.

Further, understanding that x; models the height of a bouncing ball, we see
that if the ball is moving down, the constraints x; > 0 eventually must be violated,
bounding the length of the functional variables. If the ball is moving up, this is
ensured by the constraints v; > 0.

And finally, the stages also define a specific order on how one can assign values
to variables: The first line of the formula assigns values to the variables g and K,
and initial values of z1 and v;. Then it states differential equations describing the
evolution of x7 and v;. Moreover, it states invariants that should hold on those
solutions. Next, it describes how the initial value of xo and vo depends on the final
value of 1 and v1. Then it analogously repeats the above statements for zo and vo,
and so on. In other words, solving the real part of the above formula may proceed
in stages, avoiding any circular reasoning.

3 Formalization: SAT modulo ODE

In this section, we will tightly integrate ODEs into SAT, roughly following the SMT
framework of Barrett and Tinelli [3]. Note that SMT uses first-order predicate logic
as its basis, while here we want to reason about functions (the solutions of ODEs).
We overcome this seeming mismatch by simply handling those functions as first-order
objectd]

The signature of our theory contains the sort symbols R and (Fy)ke, for a finite
index set k. Intuitively, the sort R corresponds to real numbers, and each sort symbol

"While this is new in the context of SAT modulo ODE, this is quite common in mathematics.
For example, Zermelo-Fraenkel set theory uses such an approach to define sets, relations, etc. within
first-order predicate logic.



Fi, k € K to real functions, with the argument modeling time over a certain time
interval. In the illustrative example, the variables x1, v; belong to the same sort
(e.g., F1), the variables 2, v2 to another one (e.g., F2), and so on.

The allowed predicate symbols are {=,>} and the function symbols include
{0,1,4, —, -, exp, log, sin, cos, tan}, all of the usual arity. All of those predicate and
function symbols are defined on all sorts (i.e., not only on R, but also on (F)kex)-
Still, we always require all arguments and results to be from the same sort.

We will have additional function symbols that we will also call functional opera-
tors: The function symbols inity : F, — R and final;, : F — R, k € x model the ini-
tial and final value of the argument function. The function symbol diff . : Fr, — F,
k € k, models differentiation, and hence we will usually write diff (z) as 2. We also
assume the function symbols embedy, : R — Fi, k € k, that convert real numbers to
functions. However, we will not write the function symbols embedy, k € x explicitly,
but implicitly assume them whenever an argument from Fj is expected and an ar-
gument from R present. In the example, this is the case in the differential equation
Uy = —g which would actually read 09 = —embeda(g), or vo = embeda(—g). For all
functional operators we will not write the index, if clear from the context.

Since we do not allow quantifiers, we will not work with a separate set of variables,
but simply call 0-ary predicate symbols Boolean variables, 0-ary function symbols
from R numerical variables, and 0-ary function symbols from Fy, k € k, k-function
variables and often just function variables. We denote the set of Boolean variables
by Vg, and for every sort S, we denote the corresponding set of variables by Vs. We
also define the set of all such variables V := Vg U Vg U, V7, -

Definition 1 An atomic formula is either a Boolean variable or an atomic theory
formula. An atomic theory formula is of one of the three following kinds:

e An atomic real-valued formula is a formula of the form p(ni,...,n,) where p
is an n-ary predicate symbol from R and ny, . ..,n, are terms built in the usual
way using function symbols from R and the functional operators init and final,
whose argument is allowed to be a function variable.

o An atomic k-differential formula is a differential equation of the form z = n
where z is a function variable from Fy, and n is a term of type Fy, not containing
any functional operator except for embedy,.

e An atomic k-function formula is a formula of the form p(ni,...,n,), where p
is an n-ary predicate symbol from Fi and 01, ..., n, are terms built in the usual
way using function symbols from Fi, and not containing any functional oper-
ators except for embedy,.

A literal is either an atomic formula or the negation of an atomic formula. A
formula is an arbitrary Boolean combination of literals. A theory formula is a formula
without Boolean variables.



For example, g = 9.81 and init(vy) = —K final(v1) are examples of atomic real-
valued formulas, 21 = v7 is an example of an atomic differential formula, and z1 > 0
is an example of an atomic function formula.

The resulting formulas have the usual mathematical semantics where we interpret
the sort R over the real numbers R and Fy, k € k over smooth functions in [0, 7] — R,
where 7, € RZY. Hence the length 7 will be the same for all elements belonging
to the same sort Fji. These functions will usually arise as solutions of differential
equations, hence the domain [0, 7% usually models time.

We interpret all symbols in R according to their usual meaning over the real
numbers. To extend this to arithmetical predicate and function symbols with func-
tion arguments, that is, with arguments from Fj, we simply lift their meaning over
the reals to the whole domain [0, 7] of our functions in [0, 7] — R. For example, the
constant 1 in Fy, is the function that assigns to each element of [0, 7%] the constant 1.
The atomic function formula z > 1 expresses the fact that the k-function variable z
is greater or equal than the constant function 1 at every element of [0, 7%]. In general,
for a function symbol f of type Fj, x --- x Fi, — F}, its interpretation fr, is such
that for z1,..., 2, : [0, 7], for all ¢ € [0, 7x], fr, (21,.-.,20)(t) = fR(21(1), ..., 2n(1)),
where fr is the interpretation of the corresponding function symbol f of type
R x--- xR — R. For a predicate symbol p of type Fj X - -+ X Fp, its interpretation
pr, is such that pg, (21,..., z,) iff for all ¢ € [0, 73], pr(21(%), ..., zn(t)), where again
pr is the interpretation of the corresponding predicate symbol p of type R x - - - X R.

Note that, as a result, -z > 1 is not equivalent to z < 1: The former means
that not all the time z is greater or equal one, whereas the latter means that all the
time z is less than one. Due to this, we will also call such atomic function formulas
mvariants.

Finally, we interpret the function operators as follows: The interpretation of inity,
takes a function z : [0, 7] — R and returns z(0), whereas the interpretation of final,,
returns z(7;). The interpretation of embedy, takes a real number x, and returns the
constant function that takes the value = on its whole domain [0, 7]. Finally, we
interpret diff ;. as the usual differential operator from mathematical analysis.

We call a function that assigns values of corresponding type to all elements of V,
and the above meaning to all other function and predicate symbols, an ODERg-
interpretation. Based on this, we get the usual semantical notions from predicate
logic. The main problem is to check, for a given formula, whether it is satisfiable by
an ODEg-interpretation.

4 Formalization: SAT Modulo ODE Simulations

In this section, we will introduce alternative semantics to formulas based on floating
point arithmetic. Since there are various variants of floating point arithmetic (e.g.,
32 and 64 bit IEEE 754 arithmetic), including different formalizations [0, [14], and
moreover, a plethora of methods for solving differential equations [12], the resulting
semantics will be parametric in the used variant of floating point arithmetic and



ODE solver.

Now we interpret the R-variables over the floating point numbers F, and the Fg-
variables over functions from {tA | ¢ € {0,...,%}} — F (trajectories), for a given
k € k. Here, we require 7 to be a multiple of the step size A. We interpret all
function and predicate symbols—including the functional operators—in the obvious
floating point analogue to the formalization from the previous section, with the usual
rounding to the nearest floating point number. Especially, we interpret function
symbols on Fj, k € x point-wise on the elements of {tA |t € {0,..., 7% }}. However,
when lifting predicates to type Fi, we only require the lifted predicate to hold for
t €{0,..., % —1}, that is, without the final point. For explaining why we refer to the
illustrative example. If —up, it uses an invariant x > 0. At the same time it allows
switching to up if and only if x < 0. When interpreting x as a continuous function,
this makes perfect sense: the switch occurs exactly when both z > 0 and z < 0,
that is, when x = 0. This does not work in our approximate interpretation because
it is highly unlikely that, after discretization, a point is reached for which precisely
x = 0. To circumvent this problem, we allow the invariant to be violated at the very
final point of x which at the same time is the first point that allows switching.

To concentrate on our main point, we will ignore special floating point values
modeling overflow and similar intricacies of floating point arithmetic. Still, our ap-
proach is compatible with such values, since we do not require that every floating
point number have a corresponding real number.

Before turning to differential equations, we first describe how they are usually
solved in practice [I2]. The input to such a solver is a system of differential equations
which, in our terminology, is a conjunction of n atomic k-differential formulas in n
variables. Solvers then compute a solution for the whole system, using discrete steps
in time. For example, writing the system of differential equations as 2 = F(z), where
boldface indicates vectors, Euler’s method—the most widely known explicit solution
method for ODEs—uses the rule

z(t+ A) = z(t) + F(z(t))A.

As a result, the solution satisfies this equality at each point in time.

Since in our case, differential equations do not directly occur in systems, but in
individual atomic formulas, we separate this rule into conditions for the individual
formulas, instead of conditions for the individual time steps. In the case of Euler’s
method, denoting the individual Fj-variables by z1, ..., z,, for a differential formula
Z2i = f(z1,...,2n), the resulting condition is

vt € {0,..., % 1} zi((E+ 1D)A) = 2 (tA) + F(z1(EA), . .., 2 (tA))A.
In general, the rules used by explicit solvers are based on an equality with left-hand
side z(t + A) which allows an analogical natural separation into conditions on the
individual components of the solution.
We call a function that assigns Boolean values to the elements of Vg, floating point
numbers to the elements of Vg, trajectories to the elements of Vr, ,k € x and the



above meaning to all other function and predicate symbols, an ODEg-interpretation.
This again defines all the usual semantical notions from predicate logic using the
same notation as in the previous section. For any interpretation Z we denote by Z(n)
the value of the term n in Z, by Z |= ¢ the satisfiability of ¢ in Z, and so on. For the
rest of the paper we assume a floating point interpretation Zg for V = () that we will
extend with values for a non-empty set V.

In the rest of the paper, we design and analyze tools for checking whether a given
formula is satisfiable by an ODEp-interpretation, in which case we will also simply
say that it is satisfiable.

5 Theory Solver

The common SMT approaches use separate solvers for handling the Boolean part
and the specific logical theory, respectively. In this section we concentrate on the
latter. So, for a given theory formula ¢ (i.e., formula without Boolean variables), we
want to check whether ¢ is satisfiable by an ODEg-interpretation.

As an example consider the formula

g =981 Ainit(v) =10 Av > 0 A final(v) <OAD = —g — ﬁ
which is satisfiable by an interpretation that assigns to g the value 9.81 and to v
a trajectory that starts with the value 10, then decreases according to the given
differential equation, and stays non-negative, except for the very last step which is
non-positive.
We first prove that unlike ODER, in our case there is no fundamental theoretical
hurdle caused by undecidability.

Theorem 1 ODEg-satisfiability is algorithmically decidable.

Proof. Assume a theory formula ¢. W.lo.g. we assume ¢ to be a conjunction.
Let |F| be the cardinality of the set of floating point numbers. The key observation
is that |F| is finite. The problem is that ODEg-interpretations satisfying ¢ may
assign trajectories of arbitrary length to function variables. However, if there is an
interpretation that satisfies ¢ then there is also an interpretation satisfying ¢ that
has length smaller than |IE‘|maX{TKk K€K}, Assume an interpretation Z satisfying ¢ that
for some k € k assigns trajectories longer than this bound to the variables in Fy.
Due to the finite cardinality of |F|, there must be t, ¢’ s.t. ¢t # ¢’ and for every z € Vy,
Z(z)(t) = Z(z)(t'). This means that the interpretation that coincides with Z, but for
every z € V}, the section between ¢t + 1 and ¢’ is removed, also satisfies ¢. We can
repeat this process until the interpretation satisfying ¢ is short enough.

Due to this we can check the satisfiability of ¢ using brute force search, checking
whether the finite set of interpretations assigning trajectories of length smaller than

|F|max{%|ke"} contains an element that satisfies ¢. B



This proof is based on the fact that the set of floating point numbers has finitely
many elements. However, due to the sheer number of those elements, the algo-
rithm used in the proof is far from practically useful.Possibly with the exception of
minifloats—floating point numbers using a small number of bits for their represen-
tation

In the rest of the section we will design a solver that is able to solve theory
formulas that arise from the specific structure identified in Section [2] much more
efficiently. This structure will allow each step of the solver to assign a value to a
variable. Since we will also want to compute initial values of function variables, we
introduce a set Vipi 1= {init(z) | z € V5, k € k} each ranging over the floating
point numbers F. We can represent the computed values as follows:

Definition 2 A state o is a function that assigns to each element of Vr UVr U Vit
either an object of the corresponding type or the special value undef .

For a state o, we denote the extension of Zp with the values defined by o on
Vr U Vr (ignoring the values for Vi) by Z,. Our theory solver will use inference
rules to fill the state o with values until those values allow us to evaluate the given
formula. For this we define for a term 7, ev,(n) to be undef, if the term 7 contains a
variable v for which o(v) = undef, and the result of term evaluation Z,(n), otherwise.
For example, for a state 0 = {K +— 0.5,v1 — undef}, ev,(—Kfinal(vy)) = undef,
but for o = {K ~ 0.5,v; — p}, where p is a trajectory whose final value is 2.0,
evy(—Kfinal(vy)) = —1.0.

In a similar way, for an atomic formula A we define ev,(A) = undef, if o assigns
undef to a variable in A, and otherwise ev,(A) = T, if Z, = A, and ev,(A) = L, if
7, £ A. For example, for the state o just mentioned, ev,(—Kfinal(vy) > 0) = L.

Based on the usual extension of the Boolean operators —, A,V to three val-
ues, in our case {L,undef, T}, this straightforwardly extends to formulas, in gen-
eral. For example, eviy,0ysundef}(T = LAY = 1) = €U0 ysundef} (T =
1) A evipsoysundes}(y = 1) = L Aundef = L. This implies that whatever
value y has, the formula will not be satisfiable.

Theorem 2 ¢ is ODEg-satisfiable iff there is a state o with evy(p) = T.

Proof. If ev,(¢) = T then Z, = ¢ and hence ¢ is satisfiable. In the other direction,
if ¢ is satisfiable by an ODEp-interpretation Z, then for the state o with o(z) = Z(z),
for x € Vg UVr, and o(init(z)) = Z(2)(0), for every z € Vr, .k € K, ev,(¢p) =T. R

The question is, how to find such a state efficiently, if ¢ is satisfiable, and how
to decide that it does not exist in the case where it is unsatisfiable. We will assume
the input formula to be a conjunction of literals, since disjunctions will be handled
by the Boolean solver (see Section . By misuse of notation we will also view ¢ as
the set of its literals.

As already discussed, we will use inference rules on states. The first rule uses the
fact that both sides of an equality have to evaluate to the same value in o:



Definition 3 For two states o and o', 0 —x o' iff
o there is a literal of the form x =n orn =z in ¢ with x € Vg U Vinit,
e o(x) = undef,
e cv,(n) # undef, and

evs(n), if v =x, and

I () —
e o' iss.t. for allv € VR UVrEU Vipi, o' (v) = {0(1}), otherwise.

For example, if 0 = {K +— 0.5,v1 — p,init(ve) — undef}, with p again a
trajectory with final value 2.0, and the input formula contains the literal init(vs) =
—K final(vy), then 0 —x o', where o/ = {K — 0.5,v1 — p, init(ve) — —1.0}.

The second inference solves differential equations. For a state o and k& € xk we
define IVP (o, k) (for “initial value problem”) as the formula

/\ Z=nA /\ init(z) = o(init(z)) A /\ x =o(x).

Z=n¢€ d),ZGV}-k ZGV]:k 2€VR,0(x)#undef

Here we assume for all z € Fy, o(init(z)) # undef, and for all x € Vg occurring in
a k-differential equation in ¢, o(x) # undef. Then one can find an assignment to
the variables in V, satisfying the formula VP4 (o, k) using a numerical ODE solver
whose method corresponds to the one used for defining formula semantics. This
assignment is unique up to the length of the assigned trajectories. In practice, the
solver might fail, e.g. due to floating point overflows, but we ignore this complication
for simplicity of exposition.

Definition 4 For two states o and o', k € k and t € N>o, 0 =7, 1+ 0 iff
o for every variable z € Vr,, 0(z) = undef,
e for every variable z € Vg, , o(init(z)) # undef,

e for every variable x € Vg occurring in a k-differential equation in ¢, o(x) #

undef
o for every variable z € VF,, ¢ contains exactly one literal of the form z =n

e o' is identical to o except that it assigns to the variables z € Vg, the corre-
sponding trajectories of length t satisfying IVP4(o, k).

It would not be difficult to also handle the case when ¢ contains more than one
differential literal with the same left-hand side. But usually this is not practically
useful, and hence the rules does not consider this case.

Now we can apply several inference steps in a row, starting from the everywhere
undefined state oyq4ep. This always terminates, since every inference step creates a
state with less undefined elements and Vx U Vg U Vs is finite.

10



Remember that our goal is to use the inference rules to arrive at a state o, for
which ev,(¢) = T or to decide that no such state exists. Since the inferences do not
introduce new undefined values, it does not make sense to do further inferences on a
state o, for which ev,(¢) # undef.

If we arrive at a state o for which ev,(¢) = L, can we conclude that ¢ is
unsatisfiable? Certainly not: A different sequence of inferences might have found
a state that evaluates to T, showing satisfiability. For example, for the formula
init(z) = 0A 2 = 1A final(z) > 10, one inference step from oypger wrt. —g results
in the state {init(z) — 0,z — undef}, but from this state, an inference wrt. —z,
only results in a state that evaluates to T, if ¢ is big enough for the final state of the
assigned trajectory to be larger of equal 10.

Still, for given fixed lengths ¢ of inferences — r, the order of inferences does not
matter.

Theorem 3 Let A : K = N>qg. Let 01 and o3 be the final states of two sequences of
inferences using —gr and —x, \(k), k € K s.t. neither from o1 nor from o3, further
inferences are possible. Then evy, (¢) = evyy(P).

So it may be necessary to try different trajectory lengths for arriving at a state
that evaluates to T, showing satisfiability. We represent this search using a tree:

Definition 5 An inference tree is a tree whose vertices are formed by states, where
the root is Tungef, and every vertex state o that is no leaf either has

e precisely one successor vertexr o' with o —x o’ or

e successor vertices o[y, 0, ...,00,

s.t. for an arbitrary, but fired k € k

— for everyi € {0,...,n}, 0 =£, 0}, , and

— there is an m < n s.t. for all z € Vg, , o,,(z)(m) = o),(2)(n).

For example, for the formula init(v) = 10Av > 0A final(v) < 0AD = —9.81 — 135,
and the tree root oypgef, the inference rule —, results in the successor state o =
{init(v) — 10,v — undef }. Now we use the second inference rule which branches the
tree. For the successor state wrt. — 7, o, the final state of the trajectory computed
for v is equal to its initial state 10, which violates the condition final(v) < 0, and
hence this successor state evaluates to L. The successor states wrt. —r, 1, =7, 2,

. will have longer trajectories with the respective final states getting smaller and
smaller, until—at the point when the trajectory has become long enough—the final
state will finally satisfy final(v) < 0. The resulting successor state then evaluates to
T which shows satisfiability of the formula.

Even if we would not find a state that evaluates to T, we would not have to
search infinitely many successors, since an inference tree includes only a finite subset
of the infinite set of possible inferences wrt. —r, ;, ¢ € Ng. The termination condition
ol (2)(m) = o],(2)(n) must be satisfied for some m, again due to the finite cardinality

of the set of floating point numbers. Still, inference trees cover the search space
completely, allowing us to conclude the input to be unsatisfiable in some cases:

11



Theorem 4 Assume an inference tree such that for all leaves o, ev,(¢p) = L. Then
¢ is unsatisfiable.

The theorem follows from two facts: First, for states o and o,01,... s.t. 0 = x.1
01,0 —F,2 0h, ..., and ¢ is satisfiable by an OD Ep-interpretation that coincides
with a state o on its defined elements, there is an ¢ € Ny s.t. ¢ is satisfiable by

/

o;. Second, due to the same reasoning as used in the proof of Theorem (1} if this

is the case for an arbitrary ¢ € Ny then this is also the case for an ¢ < n, since
o1, (2)(m) = o' (2)(m).

Now an algorithm can simply check all leaves of such an inference tree to check
satisfiability. There is various possibilities to do so, for example using simple recursive
depth-first search:

ODESAT (o)

let 3 be the set of successor vertices of ¢ in an inference tree.
if ¥ =0 then return ev,(¢)

else if there is a ¢’ € ¥ s.t. ODESAT (¢') = T then return T
else if for all 0/ € ¥ s.t. ODESAT(0') = L then return L
else return undef

The initial call should be ODESAT (0yngef), and the result T can be interpreted as
SAT, the result undef as UNKNOWN, and the result | as UNSAT.

We call any such algorithm that returns its result based on application of The-
orems @] and [2| to the leaves of an inference tree an evaluation based OD Eg-solver.
Here we may encounter two problems:

e The tree might have some leaves o with ev,(¢) = undef, resulting in the answer
UNKNOWN.

e The tree may be huge, resulting in a long run-time of the algorithm.

The first problem may happen, for example, if a numerical variable is constrained
by an equation such as 22 = 1 that cannot be solved by our rules (of course, such
an equation can be easily solved, for example by methods for solving polynomial
equations, but here we are interested in getting as far as possible without such
techniques). In such a case, one can fall back to brute-force search of Theorem Of
course, this is inefficient, and we want to avoid it, which leads us back to the second
problem, the problem of a large search tree.

One possibility is to simply give up on completeness by not exploring the full
search space. For example, as usual for SAT modulo ODE solvers [10, [11], we might
only search for trajectories up to a certain length, that is, use the strategy of bounded
model checking. In this case, the solver will not decide satisfiability, but satisfiability
by trajectories up to a certain length.

Also, in some cases, we might have good heuristics available. Especially, for a
given inference tree, finding a vertex o with ev,(¢) = T is a tree search problem
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which enables the usage of well-known tree search algorithms [9], allowing us to
efficiently find a leaf that shows satisfiability of the input.

In any case, we will see in the next section, that for formulas having a structure
similar to the toy example, these problems can be avoided.

6 Formula Structure

In the previous section we identified a search tree that allows us to replace brute-force
search by inferences. In this section we show how to use syntactical restrictions on
the input formula to

e ensure that the inference tree does not end in undefined leaves, and to
e restrict the size of the inference tree.

First we will show how to avoid undefined leaves by ensuring that the value of
every non-Boolean variable be deducible from the value of another variable without
the need for circular reasoning.

Definition 6 A formula ¢ is orientable iff there is a total order r1,...,7yyup5 0N
the variables in Vg U Vr s.t. for everyi € {1,...,|[Vr UVr|},

o if r; € Vg, then there is a literal in ¢ that is of the form r; = n or n = ry,
where 1 does not contain any variable from ri, ... Ty, uy,|, and

o ifr; € Vr, then

— there is a literal in ¢ that is of the form init(r;) = n orn = init(r;), where
n does not contain any variable from ri,... 1y v, and

— there is exactly one literal in ¢ that has the form 7; = n, and the term n
does not contain any variable that is both in Vg and in 1, ..., T\ vz -

Note that the non-circularity condition for atomic differential formulas only in-
cludes variables in Vg but not variables in Vz, allowing the formulation of systems of
ordinary differential equations. For illustration of Definition [6] consider the formula
x=siny ANy =2x Az =21+ 20 A\ 22 = 21 — 29 ANinit(z1) = 10 A init(z2) = 10 that
is not orientable, but ¥ A x = 0, where V¥ is the previous formula, is orientable using
the order z,y, 21, 22.

Theorem 5 Assume a formula ¢ that is orientable, and a corresponding inference
tree Q) whose leaves do not allow further inferences. Then for every state o at a leaf
of Q, for every variable v € Vg UVr, o(v) # undef .

Proof. Consider the order Definition [f] ensures on the variables in Vg UVr, assume
a leaf o of 2, and assume that there is a variable v € Vg U Vr s.it. o(v) = undef.
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W.lLo.g. let v be the smallest such variable wrt. to the order given by Definition [6]
Then there is a state ¢’ with ¢ — ¢’ which is a contradiction to o being a leaf. B

Hence, in such a case, we can decide satisfiability of the input formula using
inferences alone, never returning UNKNOWN.

Theorem 6 FEvery evaluation based OD Eg-solver that is based on an inference tree
whose leaves do not allow further inferences, is a decision procedure for all orientable
OD Ex-formulas.

Still, the inference tree may be huge, since we might have to search for extremely
long trajectories. To avoid this, we analyze the example from Section [2] once more.
Here, the invariant x7 > 0 ensures, that the ball will eventually stop falling. In a
similar way, the invariant v; > 0 detects that the ball stops rising. As soon as those
two invariants stop to hold, we do not have to search for longer trajectories. The
following theorem generalizes this.

Theorem 7 If ¢ contains an atomic k-functional formula A with ev,(A) = L then
for every state o’ s.t. for every function variable z, o'(z) is at least as long as o(2),
and o' is equal to o for all elements defined in o, including function variables up to
their length, evy(A) = L.

Hence, as soon as the application of the inference rule ¢ —x, ¢ ¢’ results in a
state o’ such that ev,/(A) = L, we do not have to expand further successors of o
using the same rule with bigger ¢.

7 Solver Integration

Now we also allow disjunctions and Boolean variables in the input formula ¢. We
follow the common architecture [I8] of SMT solvers where a SAT solver handles
the Boolean structure, a theory solver (in our case the one from Section han-
dles conjunctions of non-Boolean literals, and the integrating SMT solver handles
communication between the two.

We include the case where either the Boolean solver or the theory solver is in-
complete, in which the combination may return UNKNOWN. Even though many SMT
schemes expect the underlying theory solver to be complete, one can usually use
an incomplete solver, as well, by letting the theory solver return UNSAT in the place
of UNKNOWN. If this happens during execution of the SMT solver, it should return
UNKNOWN when it would otherwise have returned UNSAT. In any case, if the input is
identified to be satisfiable, the solver still can reliably return SAT as the final result.

The usual SMT solvers proceed by replacing all atomic formulas from the theory
by elements of a set of fresh Boolean variables V4, and finding a Boolean assignment
a:VgUV4 — {L, T} satisfying the resulting purely Boolean formula. Denoting by
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~v(A) the atomic formula in ¢ corresponding to the variable A € V4 one can then use
the theory solver to check whether the formula

S@= A A A 4

A€V 4,0(A)=T A€V ,0(A)=1

is satisfiable. If this is the case, the original input formula ¢ is satisfiable, as well.

If we want to ensure that ¥(c) fulfills the syntactical restrictions of Section [6]
we have to ensure that for every such Boolean assignment the formula ¥ («) fulfills
those restrictions. Returning to the illustrative example from Section [2, the order
g, K, x1,v1, 22,02, x3,v3 ensures that X(«) is always orientable. Here, the variables
up1, ups always activate the necessary atomic formulas.

In the case of our theory, in practically reasonable formulas, in a similar way as in
our illustrative example, atomic differential and function formulas occur positively,
without a negation. If a Boolean assignment satisfies the abstraction of such a
formula, then also any Boolean assignment that assigns T instead of L to a Boolean
variable in V4 that corresponds to a differential or function literals. Hence, whenever
the SMT solver asks the theory solver to check satisfiability of a formula where such
a literal occurs negatively, then the theory solver may ignore those, and check the
rest of the formula for satisfiability.

When integrating the theory solver into SMT [I8], several levels of integration
are possible. Following the classification of Nieuwenhuis et. al. [I8], the lowest level
is the naive lazy approach. Here a SAT solver finds a satisfiable Boolean assignment
a of the Boolean abstraction of the input formula, and the theory solver checks the
formula ¥ (a). If the answer is SAT, the input formula is satisfiable. If the answer
is UNSAT, the solver should identify a sub-formula of ¥(«) that is still unsatisfiable.
The negation of the abstraction of this formula is formed (a so-called conflict clause)
and added to the original input formula. Then the whole process is repeated with
restarting the SAT solver from scratch. All of this can be easily supported by our
theory solver described in Section [5| by recording inference in the usual way into a
so-called implication graph.

A further level of integration is to use an incremental theory solver. This means
that in the case where the theory solver answers either SAT or UNKNOWN for some input
formula ¢, the SMT solver may later ask us to check satisfiability of an extended
formula ¢ A ¢. Later, the SMT solver might ask the theory solver to backtrack to
an earlier state. Again, it is no problem for our theory solver to support all of this.
The new part ¢ of the extended formula may allow additional inferences and the
algorithm can simply continue from the state where it finished the analysis of the
original formula ¢.

Note that here the SMT solver might associate a certain strength with the query [I8,
Section 4.1], asking for a definitive answer only in the situation when the formula will
not further be extended. Here it makes sense to wait with using the — 7, -inferences
until all k-function literals appear in the formula to check since those literals may
play an essential role in keeping the inference tree small by applying Theorem
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Ideally, the SMT solver supports this by adding such literals always together with
the corresponding differential equations.

So-called online SMT solvers do not restart the SAT solver from scratch in further
iterations, but only backtrack to an earlier point that did not yet result into an
unsatisfiable theory formula.

A further feature of advanced SMT solvers is theory propagation. In this case,
the SMT solver not only asks the theory solver to check satisfiability of some formula
¢ but, in addition, to also identify elements from a set of literals that are entailed
by ¢. This is easy to do in the case of inferences that have only one successor state,
especially, inferences wrt. —g, but will probably not pay off for inferences that
require search.

8 Computational Experiments

In this section we will study the behavior of a prototype implementation of the tech-
niques introduced in this paper. Especially, we are interested in how far our theo-
retical finding that the SAT modulo ODE problem is easier for simulation semantics
than for classical mathematical semantics (Theorem [If) also holds in practice. Our
solver (UN/SOT) is based on the naive lazy approach to SMT, the simplest possi-
ble one described in Section [7], using the SAT solver Minisat?] and our theory solver
implementation which currently uses the ODE solver ODEINTﬂ It avoids the full
evaluation of its input formula after each inference step: Instead it cycles through all
literals in the input formula, handling all k-differential literals and k-function literals
for each k € k as one block. Whenever the current literal or k-block allows an in-
ference, the corresponding inference rule is applied, and whenever the current literal
can be evaluated based on the current state, it is evaluated. As soon as a literal
evaluates to L or all literals evaluate to T, the corresponding result is returned to
the SMT solver. If no more inferences are possible, and no result has been found up
to this point, the solver returns UNKNOWN. This happens only in cases not following
the structure identified in Section [f] In the case where the answer is UNSAT, the
theory solver forms conflict clauses from the sub-formula involved in the inferences
necessary to arrive at the answer. We only do simple backtracking, no backjumping.

As a solver with classical mathematical semantics we used dReal’] that is based
on the ODE solver CAPDP that builds on decades of research on validated ODE
integration [15, [I7, 19]. But again, the goal of this section is not to measure the
efficiency of the used algorithms, but rather, the inherent practical difficulty of the
respective problems.

We present experiments based on a hybrid system model of inpatient glycemic
control of a patient with type 1 diabetes [7]. The patient is represented by 18

http://minisat.se/
3http://www.odeint.com
“http://dreal.github.io
Shttp://capd.ii.uj.edu.pl
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specific parameters and by initial values of the insulin system (5 function variables)
and the glucose system (2 function variables). The whole process is divided into
two phases. In the first phase, the patient is being monitored to ensure his or
her stability for the surgery. If this fails, the surgery is canceled and the process
ends. Otherwise, the second phase (and the surgery) follows, where the controller
starts operating—it drives insulin and glucose inputs—wrt. observed condition of
the patient. The patient’s condition is sampled approximately every 30 minutes
(using 1 minute timing jitter). We have two verification tasks, safety—surgery starts,
and the glucose level stays in a certain set of safe states, and unsafety—surgery starts,
and the set of safe states is left.

For translating the hybrid system to an SMT problem, we unrolled it wrt. its
discrete transitions. We did two types of experiments for both solvers, first with
fixing a certain initial state, and second with intervals of initial states. For exper-
iments of the second type we equidistantly cover the initial states with a number
of sample points and specify the initial state using a disjunction over these sample
points. For dReal, we use the original interval. The same applies also for modeling
the timing jitter (for both types of experiments), where, in the case of our solver,
the equidistance is an input parameter.

The results of the first case, with a fixed initial state, can be seen in the following
tables. We examined two different scenarios, where satisfiability amounts to the ter-
minal state being safe and unsafe, respectively. The tables on the top show a variant
with an initial state for which the system stays within the safe states, the tables at
the bottom a variant where it reaches an unsafe state after the fifth unrollment, and
stays there. The column N lists the number of unrollments, s the equidistance of
the timing jitter, and the column headed by the tool names the run-time in seconds.
The time-ratio should not serve for any efficiency comparison between the two tools
but across different test cases.

Verifying safety Verifying unsafety
o |N|s|[Result|UN/SOT|dReal|Ratio| | V| s||Result|UN/SOT|dReal| Ratio
= [ 3[1]sat 0.15] 26 172|[ 3[1[unsat 0.14] 6] 44.1
7| 3l%]sat 0.13 26| 197|| 3|1|lunsat 033 6 18
2| 6/1]sat 0.88/50000/56804| | 6|1|unsat 4.04(52119]12911
= | 6 % sat 1.51/50000({33101|| 6 i unsat 363(52119| 143
= [12|1|sat 471 x x|| 8/1||lunsat 28|  x X
*|12)% ] sat 712 x| x| 8|f||lunsat| 36761 x| x
% N|s|[Result|UN/SOT| dReal| Ratio||/V|s|Result/UN/SOT|dReal Ratio
% | 3|1]|sat 0.18] 26.2] 145|| 3/1/[unsat 0.14] 5.8 40.8
+ | 3|L||sat 0.11] 262 230/ 3|1|unsat 0.31 5.8 18.6
Z | 6|1||lunsat 0.78/107980|138809|| 6/1||sat 0.65| 5428| 8296
© | 6/1|unsat 8.95/107980| 12064/ 6|1 ||sat 1.19] 5428| 4545
§ 12|1||unsat 0.87 X x|| 8/1||sat 1.00 X X
2 |12|||lunsat 10.2 X x|| 8|1/ sat 1.07] x| x
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Here, not unexpectedly, our approach scales quite well against the parameter V.
This contrasts the behavior of methods based on interval computation, that have
to fight with the so-called dependency problem that tends to blow up intervals over
long time horizons.

The results of the second case, with intervals of initial points, are shown in the
following tables. This time, the tables on the top show a variant with smaller ranges
of possible initial states, and the tables at the bottom a variant with larger ones.

Verifying safety Verifying unsafety
% | N|s|Result{UN/SOT|dReal| Ratio| |N|s|Result/UN/SOT|dReal Ratio
% 3|1||sat 0.2/124045|122261| | 3|1||unsat 4455 6.3/0.001
23 3|sat 5.04/24045| 4770| | 3|3[unsat 7776/ 6.3]0.001
5| 6]1|sat 2.38 X x| | 4/1|lunsat 25042 124/0.005
= | 6/3|sat 2.17 X x| | 4|3|lunsat | > 36000] 124| x
£ |12|1||sat 583 x x| | 5|1|unsat | > 36000 2478  x
12|1||sat 8.28/  x x| | 5|3 |unsat x| 2478]  x
N|s|[Result{UN/SOT| dReal[Ratio| |N|s|Result{UN/SOT| dReal/Ratio
T‘E 3|1||sat 29.9/> 82800 x| | 3|1|junsat | overflow 9.3 X
5| 3|g|sat 28.2> 82800 x| | 3||lunsat X 9.3 x
2 | 6]1||sat 1.04 X x| | 4/1)7 > 36000(> 54000 X
g | 63|sat 70.6 x| x| | 457 x|> 54000] X
5 12|1||sat 58.9 X x| | bll||sat 887|> 86400 X
= |12/1||sat 6.96 x| x| | 5|%|sat 8598|> 86400,  x

Here, in the case with intervals, the unsafe state can be reached only with the
larger ranges. Also, of course, with the intervals and with the unsatisfiable result, the
performance of our tool degrades heavily, when choosing more sample points in the
interval. In the worst case, it has to check the finite set of all floating point numbers
in the interval, while dReal uses more sophisticated techniques. The result “overflow”
means that the program crashed due to restrictions of our implementation.

All experiments were performed on a personal laptop machine with CPU Intel®
i7-4702MQ, 8GB memory, running on OS Arch Linux with 4.19.60 Linux kernel.

Note that the original model [7] contains a few mistakes, which we had to correct.
The main problem is that the dynamics can block switching between adjacent modes,
leading to unintended UNSAT results.

We showed that the (corrected) model is not safe. This contradicts the original
results [7] that proved the model to be safe, apparently only due the mentioned
modeling mistakes. To support our statement, we attach a trajectory of a concrete
counterexample in Figure [2| Here, a dangerous glucose level is reached (variable Gy,
the dotted curve) for the initial values 1,(0) = 29, X (0) = 290, 1;(0) = 120, 14(0) =
144, I;(0) = 10, G(0) = 238, G¢(0) = 50.

We refer curious readers to our experimental report [13] for more details. The in-
put data of these and many further experiments, along with the source code of
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Figure 2: Unsafety witness for the glucose model

the tool, are available on the website of the tooﬁ.
Finally, we would like to mention that we found the dReal immensely useful for
developing, tuning, and debugging our own tool.

9 Conclusion

In this paper we introduced an alternative approach to handling differential equa-
tions in a SAT context. Motivated by industrial practice, the approach uses the
semantics of simulation tools instead of classical mathematical semantics as its ba-
sis. Also, the approach allows inputs that integrate ODEs more tightly into SAT
problems than was the case for existing methods. Computational experiments with
a simple prototype implementation indicate that this problem formulation allows the
efficient solution of problems that are highly difficult for start-of-the-art tools based
on classical mathematical semantics, especially in satisfiable cases.

In the future, we intend to work on a tighter algorithmic integration between the
Boolean and the theory solver [I8], 2, 8], on search techniques for efficient handling
of satisfiable inputs, and on deduction techniques to prune the inference tree for
unsatisfiable inputs. Finally, it will be important to support advanced ODE solving
techniques such as root finding (for locating events happening between two simulation
steps) and adaptive step sizes.
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