Neural Architecture Search: Mapping the field via network text analysis and my journey through the field

Petra Vidnerová

Institute of Computer Science, The Czech Academy of Sciences May 26, 2025

Outline

Introduction

Neural Architecture Search (NAS)

Overview of the field

Network text analysis applied to NAS papers

My results in the NAS field

Evolutionary NAS approaches and Bayesian optimisation

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Performance Prediction

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 3/36

Neural Architecture Search

Neural Architecture Search (NAS)

Automating the design of neural network architecture. Given a problem, NAS looks for an optimal architecture.

Research in NAS

NAS – Optimisation Problem

Minimize given objectives over the given search space

Objectives

Measure the quality of a solution

Text Analysis

Dataset

- 10000 papers downloaded with the search query Neural Architecture Search, filtered using LLM
- 2 423 papers on NAS from ArXiV

Keywords

- Fixed set of keywords documents classified based on abstract using LLM: reinforcement learning, evolutionary algorithms, bayesian optimisation, multi-objective optimisation, supernet, weight sharing, differentiable optimisation, zero cost proxies or training free,hardware aware search, surrogate models
- LLM asked to generate 5 keywords given an paper abstract

Network Text Analysis

Networks

- Graphs (nodes, edges)
- Nodes documents, edges relationships
 - Citation networks, networks based on shared concepts, keywords
- Nodes keywords, edges shared documents

Optimisation

- Random search (baseline)
- Evolutionary and genetic algorithms
- Bayesian optimisation
- Reinforcement learning
- Differentiable techniques

NAS Keywords by LLM

Fixed Selection of Keywords

Paper Graph

- (left) Evolutionary papers
- (right) Multi-objective optimisation papers
 - (red) Surrogate modelling papers (19% of EA, 15% Multi Obj.)

Citation Graph

Our Work

Generated by AI.

< □ > < @ > < ≧ > < ≧ > ≧ のQ ⁽ 18/36

Evolution of Deep Neural Networks

- Tested on tabular data (air pollution data set)
- Image datasets (MNIST, fashion-MNIST)
- Outperformed fixed networks and SVR

P. Vidnerová, R. Neruda, *Evolving Keras Architectures for Sensor Data Analysis*, FedCSIS 2017

III P. Vidnerová, R. Neruda, *Evolution Strategies for Deep Neural* Network Models Design, ITAT 2017 **P**

Asynchronous Evolution

Parallelisation

- Parallel computation
- Individuals evaluated one by one
- No notion of generation
- As soon as there is an idle processor, new individual is created
- An arbitrary number of processors
- Slightly prefers smaller networks

P. Vidnerová, R. Neruda, *Asynchronous Evolution of Convolutional Networks*, ITAT 2018

Challenges

 \blacktriangleright We still need penalise large networks \rightarrow multi-objective design

Multi-objective approaches

Towards small networks

- Multi-objective evolution, NSGAII
- Found more compact networks with comparable accuracy

III P. Vidnerová, Š. Procházka, R. Neruda, *Multiobjective Evolution for Convolutional Neural Network Architecture Search*, ICAISC 2020

P. Vidnerová, R. Neruda, *Multi-objective Evolution for Deep Neural Network Architecture Search*, ICONIP 2020

Robustness

Robustness against outliers, noise, adversarial examples

P. Vidnerová, R. Neruda, *Vulnerability of classifiers to evolutionary generated adversarial examples*, Neural Networks 2020

J. Kalina, A. Neoral, P. Vidnerová, *Effective Automatic Method Selection for Nonlinear Regression Modeling*, IJNS 2021

Towards Performance Prediction

NAS Computational Cost

- Evaluation of most objectives requires network training
- Each candidate network needs to be evaluated

Solutions

- Parallelisation reduces time, but not cost
- Surrogate models, performance prediction

Performance prediction

- Imprecise prediction is enough (coarse to grain)
- Ranking is enough (who is the best)

Bayesian Optimisation

P. Vidnerová, J. Kalina, *Multi-objective Bayesian Optimization for Neural Architecture Search*, ICAISC 2022

Performance Prediction

Zero-cost proxies

- Fast to compute metrics that correlate with accuracy
- Zero-cost ... because we don't train the network at all!

Our work

- Analyze zero-cost proxies as predictors
- Properties of the neural graph as a novel predictor
- Interpretability analysis of predictions
- Compare with predictors from related work

G. Kadlecová, J. Lukasik, M. Pilát, P. Vidnerová, Petra, M. Safari, R. Neruda, F. Hutter, *Surprisingly Strong Performance Prediction with Neural Graph Features*, ICML 2024

Benchmarks and datasets

NAS Benchmarks

- Datasets of precomputed objectives on selected tasks
- ▶ NAS-Bench-101/201/301, NAS-Bench-201, NAS-Bench-301
- HW-NAS-Bench, TransNAS-Bench-101, robustness NB201

Source: NAS-Bench-201: Extending the scope of reproducible NAS. ICLR 2020.

Datasets

- CIFAR 10, 100, 10/100 classes, 60k images, 32x32 pixels
- ImageNet-16-120 (a downsampled variant, 1000 classes)

Methodology

Regression

- Random forest regressor
- Predict accuracy or other metrics

Input data – network encodings

- Zero cost proxies
- One hot encoding (of chosen operations)
- Graph properties

Experiments

- Analyze predictions
- Compare different network encodings, predictors

Properties of the neural graph

- We look at properties of the network graph paths, counts, ...
- Node degree (c3x3, skip) means input degree counting only conv3x3 and skip
- Similarly, max path computes the maximum path over allowed operations

Properties of the neural graph

- Number of operations
- Min path from input over operations O
- Max path from input to over operations O
- Out degree of the input node counting only operations O
- In degree of the output node counting only operations O
- Mean in/out degree of intermediate nodes counting only operations O

Advantages

Simple, interpretable, fast to compute

Disadvantages

Highly correlated, dependent on search space

Accuracy prediction

Usage in performance prediction

- Gathering all properties, we use them as input data to a random forest regressor
- We compare with other network encodings all ZCP, one-hot encoding (OH), and their combinations

Results

- Our results (GRAF) are better than ZCP and OH
- ZCP combined with network properties is the best

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 29/36

Interpretable prediction

- For network properties and ZCP, we compute Shapley coefficients (considers feature set importance)
- We look at the most important features
- Results different features are important for diverse tasks
- nwot is important for CIFAR10, but not for autoencoder
- autoencoder needs skip connections result from related work!

NB201 - cifar-10		TNB101-micro - autoencoder	
Feature name	Mean rank	Feature name	Mean rank
jacov	0.00	min path over skip	0.00
nwot	1.12	jacov	1.00
flops	3.62	fisher	2.00
synflow	4.08	min path over [skip,C3x3]	5.50
min path over [skip,C3x3,C1x1]	4.78	snip	5.58
params	5.04	min path over [skip,C1×1]	5.64
epe_nas	6.04	grad_norm	6.64
zen	6.36	zen	8.08
min path over [skip,C3x3]	11.08	grasp	9.34
min path over skip	11.88	l2_norm	9.74

HW metrics prediction

HW metrics differ in difficulty of prediction

edgegpu energy is one of difficult tasks

Robustness prediction

Comparison with existing predictors - NB101, CIFAR10

- Same experiment as in a predictor survey [1]
- Outperforms all available predictors
- Some predictors take much longer to train, e.g. graph neural networks!

[1] Colin White, Arber Zela, Binxin Ru, Yang Liu, & Frank Hutter (2021). How Powerful are Performance Predictors in Neural Architecture Search?. In Advances in Neural Information Processing Systems.

Usage in the NAS process – ImageNet16-120 search

Runtime

Discussion and future work of GRAF

Pros

- Better and faster than most predictors
- Great interpretability
- Works across tasks and search spaces
- Baseline for complex predictors

Cons

- Properties need to be used with ZCP for best performance
- Some graph neural networks with ZCP can be better

Thank you! Questions?

< □ ▶ < @ ▶ < E ▶ < E ▶ E りへぐ 36/36