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Outline

Introduction
I Neural Architecture Search (NAS)

Overview of the field
I Network text analysis applied to NAS papers

My results in the NAS field
I Evolutionary NAS approaches and Bayesian optimisation
I Performance Prediction
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(Deep) Neural Networks
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Neural Architecture Search

Neural Architecture Search (NAS)
Automating the design of neural network architecture. Given a
problem, NAS looks for an optimal architecture.

Research in NAS
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NAS – Optimisation Problem

I Minimize given objectives over the given search space
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Objectives

I Measure the quality of a solution
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Text Analysis

Dataset
I 10000 papers downloaded with the search query Neural

Architecture Search, filtered using LLM
I 2 423 papers on NAS from ArXiV

Keywords
I Fixed set of keywords - documents classified based on abstract

using LLM: reinforcement learning, evolutionary
algorithms, bayesian optimisation,
multi-objective optimisation, supernet, weight
sharing, differentiable optimisation, zero cost
proxies or training free,hardware aware search,
surrogate models

I LLM asked to generate 5 keywords given an paper abstract
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Network Text Analysis

Networks
I Graphs (nodes, edges)
I Nodes documents, edges relationships

I Citation networks, networks based on shared concepts,
keywords

I Nodes keywords, edges shared documents
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Optimisation

I Random search (baseline)
I Evolutionary and genetic algorithms
I Bayesian optimisation
I Reinforcement learning
I Differentiable techniques
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NAS Keywords by LLM
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Graph of NAS Keywords by LLM
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Fixed Selection of Keywords
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Graph of keywords
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Paper Graph

(left) Evolutionary papers
(right) Multi-objective optimisation papers

(red) Surrogate modelling papers (19% of EA, 15% Multi Obj.)
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Citation Graph
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Citation Graph
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Citation Graph
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Our Work

Generated by AI.
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Evolution of Deep Neural Networks

I Tested on tabular data (air pollution data set)
I Image datasets (MNIST, fashion-MNIST)
I Outperformed fixed networks and SVR

P. Vidnerová, R. Neruda, Evolving Keras Architectures for Sensor
Data Analysis, FedCSIS 2017

P. Vidnerová, R. Neruda, Evolution Strategies for Deep Neural
Network Models Design, ITAT 2017
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Asynchronous Evolution

Parallelisation
I Parallel computation
I Individuals evaluated one by one
I No notion of generation
I As soon as there is an idle processor, new individual is created
I An arbitrary number of processors
I Slightly prefers smaller networks

P. Vidnerová, R. Neruda, Asynchronous Evolution of Convolutional
Networks, ITAT 2018

Challenges
I We still need penalise large networks → multi-objective design
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Multi-objective approaches

Towards small networks
I Multi-objective evolution, NSGAII
I Found more compact networks with comparable accuracy

P. Vidnerová, Š. Procházka, R. Neruda, Multiobjective Evolution for
Convolutional Neural Network Architecture Search, ICAISC 2020

P. Vidnerová, R. Neruda, Multi-objective Evolution for Deep Neural
Network Architecture Search, ICONIP 2020

Robustness
I Robustness against outliers, noise, adversarial examples

P. Vidnerová, R. Neruda, Vulnerability of classifiers to evolutionary
generated adversarial examples, Neural Networks 2020

J. Kalina, A. Neoral, P. Vidnerová, Effective Automatic Method
Selection for Nonlinear Regression Modeling, IJNS 2021
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Towards Performance Prediction

NAS Computational Cost
I Evaluation of most objectives requires network training
I Each candidate network needs to be evaluated

Solutions
I Parallelisation - reduces time, but not cost
I Surrogate models, performance prediction

Performance prediction
I Imprecise prediction is enough (coarse to grain)
I Ranking is enough (who is the best)
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Bayesian Optimisation

P. Vidnerová, J. Kalina, Multi-objective Bayesian Optimization
for Neural Architecture Search, ICAISC 2022
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Performance Prediction

Zero-cost proxies
I Fast to compute metrics that correlate with accuracy
I Zero-cost ... because we don’t train the network at all!

Our work
I Analyze zero-cost proxies as predictors
I Properties of the neural graph as a novel predictor
I Interpretability analysis of predictions
I Compare with predictors from related work

G. Kadlecová, J. Lukasik, M. Pilát, P. Vidnerová, Petra, M. Safari, R.
Neruda, F. Hutter, Surprisingly Strong Performance Prediction with
Neural Graph Features, ICML 2024
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Benchmarks and datasets

NAS Benchmarks
I Datasets of precomputed objectives on selected tasks
I NAS-Bench-101/201/301, NAS-Bench-201, NAS-Bench-301
I HW-NAS-Bench, TransNAS-Bench-101, robustness NB201

Source: NAS-Bench-201: Extending the scope of reproducible NAS. ICLR 2020.

Datasets
I CIFAR 10, 100, 10/100 classes, 60k images, 32x32 pixels
I ImageNet-16-120 (a downsampled variant, 1000 classes)
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Methodology

Regression
I Random forest regressor
I Predict accuracy or other metrics

Input data – network encodings
I Zero cost proxies
I One hot encoding (of chosen operations)
I Graph properties

Experiments
I Analyze predictions
I Compare different network encodings, predictors
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Properties of the neural graph

I We look at properties of the network graph – paths, counts, …
I Node degree (c3x3, skip) means input degree counting only

conv3x3 and skip
I Similarly, max path computes the maximum path over allowed

operations

zero
skip
conv 1x1
conv 3x3
avg pool

Node degree
(c3x3, skip): 2

Max path
(c3x3, skip): 3

Max path
(skip): 1
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Properties of the neural graph

I Number of operations
I Min path from input over operations O
I Max path from input to over operations O
I Out degree of the input node counting only operations O
I In degree of the output node counting only operations O
I Mean in/out degree of intermediate nodes counting only

operations O

Advantages
I Simple, interpretable, fast to compute

Disadvantages
I Highly correlated, dependent on search space
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Accuracy prediction

Usage in performance prediction
I Gathering all properties, we use them as input data to a

random forest regressor
I We compare with other network encodings – all ZCP, one-hot

encoding (OH), and their combinations

Results
I Our results (GRAF) are better than ZCP and OH
I ZCP combined with network properties is the best
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Interpretable prediction

I For network properties and ZCP, we compute Shapley
coefficients (considers feature set importance)

I We look at the most important features
I Results – different features are important for diverse tasks
I nwot is important for CIFAR10, but not for autoencoder
I autoencoder needs skip connections – result from related

work!
NB201 - cifar-10 TNB101-micro - autoencoder

Feature name Mean rank Feature name Mean rank
jacov 0.00 min path over skip 0.00
nwot 1.12 jacov 1.00
flops 3.62 fisher 2.00
synflow 4.08 min path over [skip,C3x3] 5.50
min path over [skip,C3x3,C1x1] 4.78 snip 5.58
params 5.04 min path over [skip,C1x1] 5.64
epe_nas 6.04 grad_norm 6.64
zen 6.36 zen 8.08
min path over [skip,C3x3] 11.08 grasp 9.34
min path over skip 11.88 l2_norm 9.74
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HW metrics prediction
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I HW metrics differ in difficulty of prediction
I edgegpu energy is one of difficult tasks
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Robustness prediction
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Comparison with existing predictors – NB101, CIFAR10
I Same experiment as in a predictor survey [1]
I Outperforms all available predictors
I Some predictors take much longer to train, e.g. graph neural

networks!
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[1] Colin White, Arber Zela, Binxin Ru, Yang Liu, & Frank Hutter (2021). How Powerful are Performance
Predictors in Neural Architecture Search?. In Advances in Neural Information Processing Systems.
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Usage in the NAS process – ImageNet16-120 search
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Discussion and future work of GRAF

Pros
I Better and faster than most predictors
I Great interpretability
I Works across tasks and search spaces
I Baseline for complex predictors

Cons
I Properties need to be used with ZCP for best performance
I Some graph neural networks with ZCP can be better
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Thank you! Questions?


