
FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY, PRAGUE

&
INSTITUTE OFCOMPTURESCIENCE

ACADEMY OF SCIENCES OF THECZECH REPUBLIC

Learning with Regularization Networks
Petra Kudov́a

PH.D. THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Prague 2006

ADVISOR:
Mgr. Roman Neruda, CSc.

Abstract

In this work we study and develop learning algorithms for networks based on regulariza-
tion theory. In particular, we focus on learning possibilities for a family of regularization
networks and radial basis function networks (RBF networks). The framework above the
basic algorithm derived from theory is designed. It includes an estimation of a regular-
ization parameter and a kernel function by minimization of cross-validation error.

Two composite types of kernel functions are proposed — a sum kernel and a product
kernel — in order to deal with heterogenous or large data.

Three learning approaches for the RBF networks — the gradient learning, three-step
learning, and genetic learning — are discussed. Based on these, two hybrid approaches
are proposed — the four-step learning and the hybrid geneticlearning.

All learning algorithms for the regularization networks and the RBF networks are
studied experimentally and thoroughly compared.

We claim that the regularization networks and the RBF networks are comparable in
terms of generalization error, but they differ with respectto their model complexity. The
regularization network approach usually leads to solutions with higher number of base
units, thus, the RBF networks can be used as a ’cheaper’ alternative in terms of model
size and learning time.

Acknowledgments

During my PhD study I was lucky to meet many people who did not hesitate to give
me professional and personal help. I would hardly have finished this thesis if it had not
been for them.

Roman Neruda, the advisor of my thesis, initiated this research and in numerous
discussions provided me with many valuable pieces of advice. I would like to thank
him for his great support and motivation.

Not less I am obliged to my colleagues from the Institute of Computer Science,
Academy of Sciences of the Czech Republic. Namely, to Věra Kůrková, the head of
our department, who gave me inspiring ideas, references to literature and papers related
to the topic, and also read a part of the manuscript and suggested improvements. To
Zdeněk Strakoš, who provided me with literature and discussions on numerical topics.
To Petr Savický, who encouraged me with his lively interestin my work. To Terka
Šámalová, who deserves thanks for proof-reading of the first chapters, discussions on
mathematical issues, and cooperation. And finally, to PavelKrušina, who had to react
to my various complaints on the Bang system.

I am also grateful for the opportunity to spend three months at the Edinburgh Paral-
lel Computing Centre (EPCC), University of Edinburgh, where I met many interesting
people. Among them, Ben Paechter hosted me and enabled my visit. Catherine Inglis
and Adam Carter, members of EPCC staff, provided me with friendly atmosphere and
technical support. My friend Marek Kubiak, also a visitor, often spent his time in our
discussions on genetic algorithms, as well as everyday troubles of PhD student’s life.

Let me also thank to Martin Vidner for initial language proof-reading, and to Radka
Šmahelová for supervising my English.

Not only the companionship of great people and scientists, but also financial sup-
port was an essential point. My work was supported by the Grant Agency of the
Czech Republic under the grant no. 201/05/0557, by the Institutional Research Plan
AV0Z10300504 “Computer Science for the Information Society: Models, Algorithms,
Appplications”, and partially by the European Commission’s Research Infrastructures
activity of the Stucturing the European Research Area program, contract no. RII3-CT-
2003-506079 (HPC-Europa).

Very special thanks tǒZab̌zulka for supplying me with chocolate and love.

i

Contents

Symbol Index vii

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Objectives . 3
1.3 Structure of the Work . 4
1.4 Related Works by the Author . 6

2 Regularization Networks 7
2.1 Learning from Examples . 7
2.2 Regularization Approach . 9
2.3 Stabilizers Based on the Fourier Transform 10

2.3.1 Examples of Stabilizers . 12
2.4 Kernel Based Approach . 14
2.5 Regularization Network . 17

3 Product and Sum Regularization Networks 19
3.1 Motivation . 19
3.2 Product of RKHSs . 20
3.3 Product Kernels . 22
3.4 Sum of RKHSs . 24
3.5 Sum Kernels . 26

3.5.1 Restricted Sum Kernel . 27
3.5.2 Divide et Impera . 29

iii

iv CONTENTS

4 Learning with Regularization Networks 31
4.1 The Regularization Network Learning Algorithm 31
4.2 Role of Regularization Parameter and Kernel Function 33
4.3 Learning Framework . 35
4.4 Cross-Validation . 36
4.5 Adaptive Grid Search . 39
4.6 Genetic Parameter Search . 41

5 Radial Basis Function Networks 45
5.1 Generalized Regularization Networks 45
5.2 Radial Basis Function Networks .47
5.3 Gradient Learning . 49
5.4 Three-Step Learning . 51
5.5 Genetic Learning . 52
5.6 Hybrid Methods . 54

6 Experiments 59
6.1 Experimental Study of Learning Algorithms 59
6.2 Methodology and Data . 60
6.3 Regularization Networks . 63

6.3.1 Role of Regularization Parameter and Kernel Function. 63
6.3.2 Setup of the Metaparameters 65
6.3.3 Comparison of Kernel Functions 69
6.3.4 Product and Sum Kernels . 72
6.3.5 Divide et Impera . 74
6.3.6 Summary . 74

6.4 RBF Networks . 78
6.4.1 RBF Units with Weighted Norms 78
6.4.2 Gradient Learning . 80
6.4.3 Three-Step Learning . 85
6.4.4 Genetic Learning . 87
6.4.5 Hybrid Methods . 89
6.4.6 Conclusions . 90

6.5 Regularization Networks vs. RBF Networks 92
6.6 Rainfall-Runoff Modeling . 95
6.7 Summary . 99

7 Conclusion 101
7.1 Main Results . 101
7.2 Future Work . 103

CONTENTS v

Bibliography 105

A Obtaining the thesis electronically 111

Symbol Index

N natural numbers (non-negative integers)
R real numbers

I identity matrix
K kernel matrix,Kij = K(xi,xj)

N number of data points
d dimension of the input space
m dimension of the output space
h number of hidden units

b width of the Gaussian function
c center (of kernel, RBF function)
γ regularization parameter
K(·), G(·) kernel (basis) function

vii

List of Figures

2.1 The problem of learning from examples: the unknown target function
f , one of the wrong solutionsf ′. 9

2.2 Regularization network scheme. .. 18

3.1 A unit realizing a product kernel. 23
3.2 A product kernel from Example 3.3.4. 24
3.3 A unit realizing a sum kernel. .27
3.4 An example of a sum kernel formed by two Gaussian functions. 28

4.1 Schema of thek fold cross-validation procedure. 38
4.2 a) Move the grid, b) Create a finer grid. 41
4.3 a) Individuals, b) Crossover for Gaussian kernels. 42

5.1 An RBF network. 48
5.2 An individual representing an RBF network. 53

6.1 Two spirals problem. 61
6.2 Lenna. 61
6.3 Dependency of errors (on the training and test data sets)and the con-

dition number of the corresponding linear system on the regularization
parameterγ. Obtained by a regularization network with the Gaussian
kernel on the taskHEARTA1. 64

6.4 Dependency of error on the test data set on the choice of regularization
parameterγ and widthb. Obtained by a regularization network with the
Gaussian kernel on the taskGLASS1. 65

6.5 Images generated by the regularization network learnedon the Lenna
image (50×50 pixels) using Gaussian kernels with the widths from 0.5
to 2.0 and the regularization parameters from 0.0 to 0.01. 66

ix

x LIST OF FIGURES

6.6 The cross-validation error and the corresponding test error during a run
of the adaptive grid search algorithm (Algorithm 4.5.1) on theGLASS1
task. 67

6.7 The cross-validation error and the corresponding test error during a
run of the genetic parameter search algorithm (Algorithm 4.6.1) on the
GLASS1 task. 68

6.8 Kernel functions. 69
6.9 Comparison of overall training error (left) and test error (right) for dif-

ferent kernels. 70
6.10 Comparison of test errors for RNs with different kernelfunctions on the

tasks from PROBEN1 repository. 72
6.11 Comparison of the sum kernel (green) and the Gaussian kernel (red) on

the tasks from PROBEN1. Training error (left) and test error (right). . . 73
6.12 Chosen kernels for theCANCER1 task. The Gaussian kernel (green) and

the sum kernel (red). 73
6.13 Time (in clock cycles, using the PAPI library [55]) needed for one run

of the RN learning algorithm and the Divide et Impera. 75
6.14 Two spirals: The classification of the input space by thelearned RBF

network. a) 100 units with the Euclidean norm (left) b) 70 units with
weighted norms (center) c) 50 units with weighted norms (right). 79

6.15 Two spirals: a) The training set. b)-d) The shape and position of hidden
units: b) 100 units with the Euclidean norm c) 70 units with weighted
norms d) 50 units with weighted norms. a) - d) goes from the left to the
right. 79

6.16 The number of iterations and time needed to achieve the given value of
the training error on theCANCER task. 82

6.17 Time needed to achieve the given value of the training error on the
GLASS task. 83

6.18 Time needed to achieve the given value of the training error on the
HEARTA task. 84

6.19 Error and classification error of networks obtained by the three-step
learning on theCANCER tasks. 86

6.20 Time needed to achieve the given error threshold by the classical and
canonical genetic learning (CANCER task). 88

6.21 Time needed by the hybrid genetic learning to achieve the given error
threshold. 90

6.22 Comparison of learning methods on theCANCER data set for the net-
work with 5 hidden units. 91

6.23 Comparison of error values of RBF vs. RN results on the training and
test set. 93

LIST OF FIGURES xi

6.24 The efficiency coefficients for different data sets.
. 97

6.25 The efficiency coefficient obtained by the RBF network, the RN and the
PKRN. 97

6.26 Prediction of flow rate by the regularization network. 98

List of Tables

2.1 Examples of radial basis functions (p.s.d. stands for positive semi-
definite, c.p.s.d. conditionally positive semi-definite,k stands for the
order of the polynomial term if it is present in the solution). 13

6.1 Overview of Proben1 tasks. Number of inputs (n), number of outputs
(m), number of samples in training and testing sets (Ntrain,Ntest). Type
of task: approximation or classification. 61

6.2 Time requirements of the regularization network learning. Times needed
for 10 evaluations of cross-validation error and times for the final run of
the RN learning algorithm (Algorithm 4.1.1) are listed. 68

6.3 Kernel functions. 70
6.4 Comparison of errors on the training and test sets obtained by regu-

larization networks with different kernel functions. For each task, the
lowest error on the test set is highlighted. 71

6.5 Comparisons of errors on the training and test set for theRN with the
Gaussian kernels, the SKRN, and the PKRN. 76

6.6 Comparisons of errors on the training and test set for theRNs learned by
Algorithm 4.1.1 (single algorithm) and the RNs learned by the Divide
et Impera approach. 77

6.7 Two spirals: The number of iterations and time needed to achieve the
error equal or less thanǫ. Gradient learning with 100 hidden units using
the Euclidean norm, 50 and 70 hidden units using weighted norms. . . . 78

6.8 Training and test error of the RBF network found by the gradient learn-
ing algorithm. 80

6.9 The number of iterations and time needed to achieve the given value of
the training error on theCANCER task. 81

6.10 The number of iterations and time needed to achieve the given value of
the training error on theGLASS task. 82

xiii

xiv LIST OF TABLES

6.11 The number of iterations and time needed to achieve the given value of
the training error on theHEARTA task. 83

6.12 Training error and test errors for the networks found bythe three-step
learning. 86

6.13 The results achieved by the classical and canonical genetic learning. . . 87
6.14 The number of iterations and time needed to achieve the given error

threshold by the genetic learning. .88
6.15 Training and test errors achieved by the four-step learning. 89
6.16 The results achieved by the hybrid genetic learning. 90
6.17 Comparison of learning methods on theCANCER data set for the net-

work with 5 hidden units and on the glass data set for the network with
15 hidden units. Average training and test error. 91

6.18 Summary: Comparison of learning results on the testingset achieved
by the RBF networks and multilayer perceptrons trained by RPROP al-
gorithm ([61]). Architecture (Arch.) is the number of hidden units in
case of RBF networks, and the number of nodes in the first and second
hidden layer in case of MLPs. Error stands forEtest, Class. stands for
the classification error on the test set. 92

6.19 Comparison ofEtest of RN, RBF, and MLP. 94
6.20 Comparison of classification accuracy of RN, RBF network, and sup-

port vector machines (SVM). 95
6.21 Overview of data sets for the flow rate forecast on the river Ploučnice. . 96
6.22 Training and test errors and efficiency coefficients obtained by the RBF

network and the regularization network on the individual data sets. . . . 97
6.23 Test errors and efficiency coefficients obtained by the RBF networks,

RN, and PKRN. 98

Chapter 1
Introduction

It is a very sad thing that nowadays
there is so little useless information.

Oscar Wilde

1.1 Motivation

In the last few years, machine learning has witnessed an increase of interest, which is
a consequence of rapid development of the information industry and its need for an
“intelligent” data analysis.

A learning problem can be described as finding a general rule that explains data
given only by a sample of limited size. In addition, collected data may contain measure-
ment errors or noise. Efficient algorithms are required to filter out the noise and capture
the true underlying trend.

In this thesis we will deal withsupervised learning. In such a case we are given pairs
of input objects (typically vectors), and desired outputs.The output can be of continuous
value, or it can contain a class label of the input object. Thetask of supervised learning
is to predict the output value for any valid input object after having seen a number of
examples, i.e. input-output pairs. To achieve this, a “reasonable” generalization from the
presented data to unseen situations is needed. Such a problem appears in a wide range of
application areas, covering various approximation, classification, and prediction tasks.

Artificial neural networks(ANNs) represent one of the approaches that are able to
handle the learning problem. The neural network research dates back to the early 1950s,
when McCulloch and Pitts defined a formal model of neuron. Although their original
motivation was to model neural systems of living organisms,neural networks are appli-
cable in such diverse fields as modeling, time series analysis, pattern recognition, signal
processing, and control.

1

2 CHAPTER 1. INTRODUCTION

The primary property of ANNs is their ability to learn from their environment and
to improve their performance through learning. There is a good supply of network
architectures and corresponding learning algorithms (e.g. [15]). The model, that is, a
particular type of neural network, is usually chosen in advance and its parameters are
tuned during learning in order to fit the given data. The difficulties that might occur
during the learning process include slow convergence, getting stuck in local optima,
over-fittingetc.

Over-fitting typically occurs in cases where learning was performed for too long or
where training examples are rare. Then the network may learnvery specific random
features of the training data that have completely no relation to the underlying func-
tion. In this process the performance on the training examples still increases while the
performance on unseen data becomes worse.

The problem of over-fitting can be cured by regularization theory. The regularization
theory is a rigorous approach that formulates the learning problem as a function approx-
imation problem. Given a set of examples obtained by random sampling of some real
function, possibly in the presence of noise, the goal of learning is to find this function
or an estimate of it. Since this problem is generally ill-posed, some a priori knowledge
about the function should be added. Usually it is assumed that the function issmooth,
where the smoothness is understood in a very general sense. Often it means that two
similar inputs correspond to two similar outputs and/or that the function does not oscil-
late too much. The solution is found by minimizing the functional containing both the
data term and the stabilizer, i.e. the term representing oura priori knowledge.

It was shown that for a wide class of stabilizers the solutioncan be expressed in
the form of feed-forward neural network with one hidden layer, calledregularization
network. Different types of stabilizers lead to different types of activation functions, i.e.
kernel functions, in the hidden layer.

The regularization network as a solution derived from the regularization theory has
as many units in the hidden layer as the number of training examples was. Such a solu-
tion is unfeasible for bigger data sets, therefore the classof generalized regularization
networkswas introduced.

Radial basis function networks(RBF networks) represent a subclass of generalized
regularization networks. They belong among the more recenttypes of neural networks.
In contrast to classical models (multilayer perceptrons, etc.) the RBF network is a net-
work with local units, the proposal of which was motivated bypresence of many local
response units in human brain. Other motivation came from numerical mathematics,
where radial basis functions were first introduced in the solution of real multivariate
problems. It was shown that RBF networks possess the universal approximation prop-
erty.

Based on a well established theoretical background, the classes of regularization
networks and RBF networks represent promising approaches to learning and deserve
further investigations. Though the theoretical knowledgeis very beneficial, it does not

1.2. GOALS AND OBJECTIVES 3

cover all aspects of their practical applicability. Experimental study of corresponding
learning algorithms may justify the theoretical results and give an idea of real complex-
ity and efficiency of the algorithms. Both good theoretical and good empirical knowl-
edge are the best starting point for successful applications, further improvements of the
existing algorithms, or creating new learning approaches.

1.2 Goals and Objectives

The main goal of the work is to study and develop learning algorithms for networks
based on the regularization theory. In particular, learning possibilities for a family
of regularization networks and RBF networks should be studied. The available ap-
proaches, including gradient techniques, genetic algorithms, and linear optimization
methods, should be investigated and potential improvements suggested. Based on the
obtained theoretical and experimental results, new algorithms should be proposed, pos-
sibly as hybrid methods combining the existing algorithms.All the algorithms should
be implemented and their behavior studied experimentally.

The goal of the work will be achieved by means of the followingobjectives:

• Study of regularization network learning and its properties

The regularization theory leads to a solution of the regularized learning problem
in the form of regularization network having as many hidden units as the number
of data points is. Such a solution results in quite a straightforward learning algo-
rithm, since the centers of hidden units are fixed to the givendata points and the
output weights are estimated as a solution of linear optimization problem. Despite
its seeming simplicity, problems may occur due to round-offerrors, numerical un-
stability, etc. Therefore the real applicability and behavior of the algorithm should
be studied.

In addition, the regularization network learning algorithm requires knowledge of
the regularization parameter and kernel function. To set upthese parameters,
good knowledge of the role of regularization parameter and kernel function in the
learning is needed. The impact of regularization parameterand kernel function
choice on the performance of learning algorithm should be studied and different
types of kernel functions compared.

• Design of autonomous learning algorithm for regularization network

The regularization parameter and kernel function are parameters that represent
our prior knowledge of the given problem. In fact, they are a part of the learning
problem definition, and therefore are considered to be knownin the theoretical

4 CHAPTER 1. INTRODUCTION

assumptions. However, this is seldom true in practice. In most applications such
knowledge is not available and a desired learning algorithmshould be able to es-
timate these parameters itself. The framework above the basic learning algorithm
should be created to establish a fully autonomous learning procedure.

• Study and design of learning algorithms for generalized regularization net-
works

A regularization network as an exact solution of the regularized learning problem
has as many kernel functions as the number of data points is. This fact makes
its learning quite straightforward and simple, but limits its practical applicability.
Since such a solution is unfeasible for larger data sets, generalized regularization
networks were introduced.

Different learning approaches for the generalized regularization networks should
be studied, with focus on RBF networks. The RBF networks already possess a
wide range of learning possibilities, including gradient techniques, combinations
of clustering and linear optimization, and genetic algorithms. The main concern
of further research is the creation of hybrid approaches.

• Performance comparison of regularization network and RBF network

Unlike the regularization network, the RBF network typically has a much smaller
number of basis functions than the size of the data set is. Thebasis functions
are usually distributed over the input space using various heuristics, so that the
resulting network may be far from the optimal solution. On the other hand, the
solution is usually much cheaper, yet viable, in terms of space complexity.

The comparison of learning performance of regularization networks and RBF net-
works might throw new light on the difference between the “exact” solution and
the “approximate” solution. Optimally, if this differenceis reasonable, the RBF
networks might represent a cheaper alternative to the regularization networks.

1.3 Structure of the Work

Let us describe the structure of this work in order to help itsreader navigate throughout
the book. In general, the organization of this thesis reflects the course of development
of our work. It starts with chapters explaining the underlying theory, continues with
description of studied algorithms, and ends with an extensive chapter describing exper-
imental results.

Chapter 2 presents the theory underlying the regularization networks. The whole
chapter is a compilation of the results published in [12, 59,73, 64], and others. It starts
with the definition and formalization of the learning problem. Then derivation of regu-
larization network is presented, both using the stabilizers based on the Fourier transform

1.3. STRUCTURE OF THE WORK 5

and Reproducing Kernel Hilbert Spaces (RKHSs). The latter derivation slightly differs
from the one published in [59]. Our modification concerns scaling the data term of the
minimized functional in order to avoid numerical unstability, but does not cause any im-
portant changes in derivation or solution. Finally, the regularization network is formally
defined.

Though the chapter does not present any novel work, it is relevant for the further
chapters and deeper understanding of the problems tackled in them. The definitions of
learning problem and regularization networks will be used in the rest of the work and
therefore should not be skipped.

In Chapter 3 we propose new solutions to the learning problem— product kernel
regularization networkandsum kernel regularization network. Aronszajn’s derivation
of RKHS product and RKHS sum [1] is presented and used to propose composite types
of kernel functions —product kernelandsum kernel. The simple “Divide et Impera”
approach is proposed to deal with bigger tasks. The whole chapter is based on the joint
work with T. Šámalová [36, 35].

Chapter 4 is devoted to learning by using regularization networks. The basic regu-
larization network learning algorithm is presented, as it results directly from the theory.
The role of this algorithm parameters, i.e. the regularization parameter and kernel func-
tion, is discussed. The framework above this algorithm is proposed in order to create an
autonomous learning procedure. Based on cross-validation, we introduce two methods
for the regularization parameter and kernel function setup— the adaptive grid search
and the genetic parameter search.

Chapter 5 deals with the learning algorithms for generalized regularization networks,
particularly RBF networks. First, the notion of generalized regularization networks
(as proposed in [12, 58]) is introduced, and RBF networks aredescribed. Then, the
three main approaches for RBF networks learning are presented — they are the gradient
learning, three-step learning, and genetic learning. These have already been studied in
our previous work [21] to some extent. Finally, two hybrid methods are proposed.

Chapter 6 presents the experimental part of the work. Since it is quite extensive,
we describe its further structure. It is organized into seven subsections. The first two
subsections state our motivation and goals, and describe the data sets and methodology
used.

Subsection 6.3 is devoted to experiments with the regularization networks. They
demonstrate the role of the regularization parameter and kernel function, test the algo-
rithms for their setup, compare different types of kernel function, study the performance
of product and sum kernels, and finally test the “Divide et Impera” approach.

Subsection 6.4 deals with different learning algorithms for the RBF networks. The
gradient learning, three-step learning, genetic learning, and the hybrid methods — four-
-step learning and hybrid genetic learning — are demonstrated and compared on the
experiments.

6 CHAPTER 1. INTRODUCTION

Subsection 6.5 compares the regularization networks and the RBF networks. In
Subsection 6.6 the application of regularization networksand RBF networks to the pre-
diction of river flow rate, made in cooperation with the University of J.E.Purkyně and
the Czech Hydrometeorological Institute inÚstı́ nad Labem, is presented. The last sub-
section brings a summary of the experiments and draws conclusions.

The main results of the work are summarized in the last chapter, where several pos-
sible directions for future work are outlined.

1.4 Related Works by the Author

The results presented in this work have been already published in papers presented at
both international and local conferences, and published injournals, or technical reports.
Publications dealing with the regularization networks andtheir learning include [32, 31,
30, 29, 25, 26]. The results concerning product and sum kernel regularization networks
were published in [36, 35, 71]. The comparison of regularization network and RBF
network was studied in [33, 20, 28, 27]. Papers and reports dealing with the various
learning approaches for RBF networks include [54, 52, 53, 24, 23, 22]. And finally, the
results of application on prediction of river flow rate were presented in [40].

Other papers published by the author, but not directly relating to this work include:
[70, 34] dealing with unsupervised learning, and [51, 19] presenting the multi-agent sys-
tem Bang that was used as a platform for the implementation ofthe algorithms studied
in this work and realization of the experimental part.

Chapter 2
Regularization Networks

A lack of information cannot be remedied
by any mathematical trickery.

Lanczos, 1964

In this chapter we deal with the problem of supervised learning by means of function
approximation theory and regularization theory. First, weintroduce the problem and
formulate it in a formal way as a function approximation problem. In Section 2.2 we
describe the main idea of regularization theory and show howthe learning problem
is handled. In the next two sections we show a derivation of the learning problem
solution, aregularization network[12]. In Section 2.3 we present the derivation using
stabilizers based on the Fourier transform [12]; in Section2.4 the derivation taking
advantage of Reproducing Kernel Hilbert Spaces [59]. In Section 2.5 we formally define
the regularization network and describe its architecture.

2.1 Learning from Examples

The problem oflearning from examplesor supervised learningis a subject of great
interest at present. In various applications, such as classification of handwritten digits,
prediction of stock market share values, and weather forecasting, one encounters the
problem when they are given a data sample of limited size and aconcise description of
the data has to be found.

In the case of supervised learning, the data is a sample of input-output patterns
(called atraining sampleor training set), thus a concise description of the data is typ-
ically a function that can produce the output, when given theinput. Then the task of

7

8 CHAPTER 2. REGULARIZATION NETWORKS

learning is to find a deterministic function that maps any input to an output so that the
disagreement with the future input-output observations isminimized.

Now we can formalize the problem of learning from examples asa function approx-
imation problem.

Definition 2.1.1 (Learning from Examples) We are given a set of examples (pairs)

{(xi, yi) ∈ Rd × R}Ni=1 (2.1)

that was obtained by random sampling of real functionf , generally in presence of noise.
The problem of recovering the functionf from data, or finding the best estimate of it, is
called learning from examples(or supervised learning).

Definition 2.1.2 (Training Set) The set of input-output pairs (2.1) is calledtraining set.

Clearly, whenever we are given an input vector that is present in the training set, we
can return the corresponding output, or the output that appeared in the highest number
of pairs together with the input vector, in case of duplicities. However, generalization
to cases not present in the training set is difficult. In addition, the training set typically
contains noise, so the above described procedure fails.

In other words, it is not necessary that the function exactlyinterpolates all the given
data points, but what we need is a function with a goodgeneralization, which is a
function that gives relevant outputs also for the data not included in the training set.

It is easy to see that the problem is generally ill-posed [59,18]. The concept of
well-posedandill-posedproblems was introduced by Hadamard [14].

Definition 2.1.3 (Well-Posed Problem) The mathematical problem iswell-posedif it
has the following properties:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data, in some reasonable topology.

Otherwise the problem is calledill-posed.

In case of the learning problem, the first criterion in Definition 2.1.3 may be not met
if there is an input appearing together with different outputs in the training set. Still,
if the solution exists, there are many functions interpolating the given data points (see
Figure 2.1 for illustration). And finally, presence of noisemay violate the continuity
requirement.

In the rest of this chapter we will deal with the learning problem defined in Defini-
tion 2.1.1. Note that the one-dimensional output does not limit the general applicability
of learning techniques presented in the following sections.

2.2. REGULARIZATION APPROACH 9

Figure 2.1: The problem of learning from examples: the unknown target functionf , one
of the wrong solutionsf ′.

2.2 Regularization Approach

A commonly used method that deals with the problem of learning from examples, de-
fined in the previous section, isempirical riskminimization [68, 69]. It works with a
space (or generally a set) of functions that are considered to be possible solutions. Such
a space is called ahypothesis space.

Then, the empirical cost is minimized over the hypothesis space. It means that the
functionf ∗ is sought such that

f ∗ = min
f∈H

N
∑

i=1

V (f(xi), yi), (2.2)

whereV is a suitableloss function. Typically a square of difference is used

f ∗ = min
f∈H

N
∑

i=1

(f(xi)− yi)
2. (2.3)

As we have already discussed in the previous section, such a problem is generally ill-
-posed. However, we are interested only in such solutions that possess the generalization
ability. There is no way to solve this problem unless some additional information about
the unknown function is available.

Therefore some a priori knowledge about the function has to be considered. If such
knowledge is not available, it is usually assumed that the function issmooth, two similar
inputs correspond to two similar outputs, or the function does not oscillate too much.

Based on this assumption, the solution is stabilized by means of some auxiliary
nonnegative functional that embeds prior information about the solution [12]. Then the

10 CHAPTER 2. REGULARIZATION NETWORKS

solution is sought as a function minimizing the functional:

H [f] =

N
∑

i=1

V (f(xi), yi) + γΦ[f], (2.4)

whereΦ is called astabilizeror regularization termandγ > 0 is the regularization pa-
rametercontrolling the trade-off between closeness to the data anddegree of satisfaction
of the desired property of the solution.

Minimizing simultaneously both the data term and the regularization term is the
basic principle ofregularization, widely known asTikhonov regularization[67], — a
general approach to ill-posed problems.

The problem of minimizing the functional (2.4) can be shown to have a unique
solution for a wide class of stabilizers and loss functionsV . Derivation of the solution
shape is known as the Representer Theorem. It can be found in [12], [11], where the
stabilizers based on the Fourier transform are used. In [59]the solution is derived with
the help of Reproducing Kernel Hilbert Spaces (RKHSs). The existence and uniqueness
of the solution was also proved in [72].

Now we show two ways of deriving the solution. In the next section we deal with the
case of stabilizers based on the Fourier transform, and in Section 2.4 with the derivation
using RKHSs.

2.3 Stabilizers Based on the Fourier Transform

In this section we present the derivation of solution for thestabilizers based on the
Fourier transform, as it was proposed by Girosi, Jones and Poggio [12].

As we have already mentioned in the previous section, the typical assumption about
a function with a good generalization is that the function does not oscillate too much.
Therefore one can look for a stabilizer measuring the “oscillatory” behavior of the func-
tion.

Such a stabilizer may be constructed with the help of the Fourier transform. The
Fourier transform of function produces a spectrum from which the original function can
be reconstructed. In other words, it produces the representation of a function in the
frequency domain.

If we consider functions in the frequency domain, a functionoscillates less than
another one if it has less energy in high frequencies. To measure the oscillary behavior
of the function, a high pass filter, i.e. a filter passing only high frequencies, is first
applied. Then the power (L2 norm) of the result is taken. So the stabilizer has a form:

Φ[f] =

∫

Rd

ds
|f̃(s)|2
G̃(s)

, (2.5)

2.3. STABILIZERS BASED ON THE FOURIER TRANSFORM 11

wheref̃ indicates the Fourier transform off , G̃ is a positive function that goes to zero
for ||s|| → ∞, i.e. 1/G̃ is a high-pass filter. The typical example of such a functionG̃
is the Gaussian function.

Now the goal is to minimize the functional:

H [f] =

N
∑

i=1

(f(xi)− yi)
2 + γ

∫

Rd

ds
|f̃(s)|2
G̃(s)

. (2.6)

Under slight assumptions oñG it can be shown that the minimum of the func-
tional (2.6) has the form of a linear combination of basis functions:

Theorem 2.3.1 (Girosi, Jones, Poggio [12]) Let a functioñG : R
d → R be symmetric,

such that its Fourier transform G is real and symmetric. Thenthe solution of minimiza-
tion of functional (2.6) has the form:

f(x) =
N

∑

i=1

wiG(x− xi) +
k

∑

α=1

dαψα(x), (2.7)

where{ψα}kα=1 is a basis of thek-dimensional null spaceN of the functionalΦ (in most
cases a set of polynomials). Coefficientsdα andwi depend on the data and satisfy the
following linear system:

(G + γI)w + ΨTd = y (2.8)

Φc = 0 (2.9)

whereI is the identity matrix, and we have defined1:

y = (y1, . . . , yN), w = (w1, . . . , wN), d = (d1, . . . , dk) (2.10)

Gij = G(xi − xj), Ψαi = ψα(xi) (2.11)

The proof is based on the fact that a minimum of a functional can exist in an interior
point only if the first derivative equals zero. It can be foundin [12], or in more detail
in [73].

Forγ = 0 we get a strict interpolation and the solution of the linear system depends
on the properties of the basis functionG [43].

The basis functionG used in the approximation scheme is set by choice of the stabi-
lizer, functionG̃ in particular. So the type of the basis function reflects a prior assump-
tion on the approximated function.

The important classes of functions suitable for the choice of G̃ are positive semi-
-definite, positive definite, and conditionally positive semi-definite functions.

1
Gij stands for an entry of thei-the row andj-the column of the matrixG

12 CHAPTER 2. REGULARIZATION NETWORKS

Definition 2.3.2 (Positive Semi-Definite Function)X is a nonempty set. FunctionK :
X ×X → R satisfying

n
∑

i,j=0

aiajK(xi,xj) ≥ 0

for all n ∈ N, for all a1, . . . , an ∈ R and for all x1, . . . ,xn ∈ X is called apositive
semi-definitefunction.

Definition 2.3.3 (Positive Definite Function) Positive semi-definite functionK : X ×
X → R satisfying

n
∑

i,j=0

aiajK(xi,xj) = 0 =⇒ ∀i ai = 0

for all n ∈ N, for all a1, . . . , an ∈ R and for all x1, . . . ,xn ∈ X is called a(strictly)
positive definitefunction.

Definition 2.3.4 (Conditionally Positive Semi-Definite Function)X is a nonempty set.
FunctionK : X ×X → R satisfying

n
∑

i,j=0

aiajK(xi,xj) ≥ 0

for all n ∈ N, for all a1, . . . , an ∈ R such that
∑n

i=1 ai = 0, and for allx1, . . . ,xn ∈ X
is called aconditionally positive semi-definitefunction.

According to [12], for the class of positive semi-definite functions, the functionalΦ
is a norm, so its null space is empty and there is no polynomialterm in (2.7). For the
case of conditionally positive semi-definite functions,Φ is a semi-norm and the basis of
its null space is a set of polynomials. In practical applications, the polynomial term is
usually omitted.

2.3.1 Examples of Stabilizers

The choice of the basis function in an approximation schema (2.7) and the choice of the
stabilizer (2.5) are equivalent. They both represent priorknowledge or an assumption
about the approximated function. For better illustration,we will show three important
groups of the stabilizers —radial stabilizers, tensor product stabilizers, andadditive
stabilizersand corresponding basis functions (all proposed in [12]).

• Radial stabilizersare a commonly used group of stabilizers. They are radially
symmetric, which means that they satisfy

Φ[f(x)] = Φ[f(Rx)], (2.12)

2.3. STABILIZERS BASED ON THE FOURIER TRANSFORM 13

Function Name Type k

G(r) = e−
r2

b Gaussian function p.s.d.
G(r) =

√
r2 + c2 multi-quadratic c.p.s.d. 1

G(r) = 1√
r2+c2

inverse multi-quadratic p.s.d.
G(r) = r2n+1 thin plate splines c.p.s.d.n
G(r) = r2nlnr thin plate splines c.p.s.d.n

Table 2.1: Examples of radial basis functions (p.s.d. stands for positive semi-definite,
c.p.s.d. conditionally positive semi-definite,k stands for the order of the polynomial
term if it is present in the solution).

whereR is an arbitrary rotation matrix. Radial symmetry reflects the assumption
that all the input variables have equal relevance, that is, there are no privileged
directions. They lead to aradial basis functionG(||x||) and the approximation
model corresponds to the RBF networks. The class of feasibleradial basis func-
tions is the class of conditionally positive semi-definite functions, for which the
functional (2.5) is a semi-norm, and the problem of minimizing (2.6) is well de-
fined.

An important example is theGaussian function, which corresponds to the stabi-
lizer of the form

Φ[f] =

∫

Rd

ds e
||s||2

b |f̃(s)|2, (2.13)

whereb ∈ R andb > 0. This stabilizer leads to the basis function

G(x) = e−
||x||2

b . (2.14)

As the Gaussian function is a positive definite function,Φ[f] is a norm, its null
space contains only the zero element, and therefore the polynomial terms of equa-
tion (2.7) are not present.

Other Radial Basis Functions are listed in Table 2.1. The conditionally positive
semi-definite functions need polynomial terms of orderk in the solutions.

• Tensor product stabilizercan be used to derive the tensor product approximation
schema. The tensor product stabilizer has the form

Φ(f) =

∫

Rd

ds
|f̃(s)|2

Πd
j=1g̃(sj)

, (2.15)

whereg̃ is an appropriate one-dimensional function. For positive semi-definite
functionsg the functionalΦ[f] is a norm and its null space is empty. For condi-
tionally positive semi-definite functionsg the null space can be more complicated,
so these functions are typically not used.

14 CHAPTER 2. REGULARIZATION NETWORKS

The stabilizer leads to a tensor product basis function

G(x) = Πd
j=1g(xj), (2.16)

whereg is the Fourier transform of̃g.

An interesting example is the choice ofg̃(s) = 1
1+s2 , which leads to the basis

function:
G(x) = Πd

j=1e
−|xj | = e−

Pd
j=1

|xj | = e−||x||L1. (2.17)

This basis function is interesting from the point of view of hardware implemen-
tation, since it requires only the computation ofL1 norm (instead of the usual
Euclidean normL2).

• Additive stabilizershave the form

Φ[f] =
d

∑

µ=1

1

θµ

∫

R

ds
|f̃µ(s)|2
g̃(s)

, (2.18)

whereθµ > 0 are parameters allowing us to impose different degrees of smooth-
ness on the concrete additive components.

By using such stabilizers it is possible to derive the class of additive approxima-
tion schemes, having a kernel function

G(x) =

d
∑

µ=1

θµg(x
µ). (2.19)

2.4 Kernel Based Approach

Kernels and kernel based approaches play a crucial role in the learning theory and the
modern machine learning, which is dominated by kernel basedalgorithms. In this
section we show the derivation of regularized learning problem solution in the kernel
framework, with the help of Reproducing Kernel Hilbert Spaces according to Poggio
and Smale [59].

The Reproducing Kernel Hilbert Space (RKHS) was first definedby Aronszajn [1].

Definition 2.4.1 (Reproducing Kernel Hilbert Space) AReproducing Kernel Hilbert
Spaceis a Hilbert spaceH of pointwise defined functions on non-empty domainΩ with
the property, that for eachx ∈ Ω the evaluation functional onH given byFx : f 7→
f(x) is bounded.

It can be shown that every RKHS can be associated with a positive semi-definite
symmetric function — areproducing kernel.

2.4. KERNEL BASED APPROACH 15

Theorem 2.4.2 (Aronszajn [1]) LetH be an RKHS. Then there exists a unique pos-
itive semi-definite symmetric functionK : Ω × Ω → R (called reproducing kernel)
corresponding toH such that

1. For everyy ∈ Ω, the functionKy(x) = K(x,y) is an element ofH.

2. For anyf ∈ H and y ∈ Ω the following reproducing property holdsf(y) =
〈f,Ky〉 , where〈., .〉 is scalar product inH.

On the other hand, every positive semi-definite symmetric functionK is a reproducing
kernel for exactly one RKHS.

Theorem 2.4.3 (Aronszajn [1]) LetK be a positive semi-definite symmetric function.
Then there exists exactly one RKHSHK , such thatK is its reproducing kernel.HK can
be described as

HK = compl

{

n
∑

i=1

aiKxi
;xi ∈ Ω, ai ∈ R, n ∈ N

}

, (2.20)

wherecompl means completion of the normed linear space,Kxi
stands for kernel func-

tionK with the second variable fixed toxi.

The proofs of Theorems 2.4.2 and 2.4.3 can be found in [1].

The norm in a RKHS is given by a scalar product

〈Kxi
, Kxj

〉 = K(xi,xj), (2.21)

extending linearly to

〈f, g〉 = 〈
n

∑

i=1

aiKxi
,

n
∑

j=1

bjKxj
〉 =

n
∑

i,j=1

aibjK(xi,xj). (2.22)

Poggio and Smale [59] used RKHSs to derive the solution of regularized learning
problem in the following way.

Let HK be an RKHS defined by a symmetric, positive-definite kernel functionK.
Then one can take theHK as a hypothesis space and define the stabilizer by means of
the norm inHK

Φ[f] = ||f ||2K. (2.23)

16 CHAPTER 2. REGULARIZATION NETWORKS

Theorem 2.4.4 LetHK be a RKHS defined by a positive semi-definite symmetric kernel
functionK. Then the minimum of the functionalH [f]:

H [f] =

N
∑

i=1

(yi − f(xi))
2 + γ||f ||2K (2.24)

overHK is unique and has the form

f(x) =
N

∑

i=1

wiKxi
(x) (2.25)

and the coefficientswi satisfy
(K + γI)w = y, (2.26)

whereI is the identity matrix,K is the matrixKi,j = K(xi,xj), andy = (y1, . . . , yN).

Proof: (Sketch of the proof) We apply the operator
∫

dtf(t) δ
δf

(integral of the func-
tional derivative) to the functional (2.24) and set it equalto zero. We get:

N
∑

i=1

(yi − f(xi))f(xi) + γ〈f, f〉 = 0 (2.27)

Since the equation is valid for anyf , it is valid also forf = Kx:

N
∑

i=1

(yi − f(xi))Kx(xi) + γ〈f,Kx〉 = 0 (2.28)

Applying the reproducing property we get

N
∑

i=1

(yi − f(xi))Kx(xi) + γf(x) = 0

1

γ

N
∑

i=1

(yi − f(xi))Kx(xi) = f(x)

and we can write

f(x) =

N
∑

i=1

wiKxi
(x)

wi =
yi − f(xi)

γ

2

2.5. REGULARIZATION NETWORK 17

Theorem 2.4.4 was presented in [59]. We have slightly changed the functional (2.24).
The change concerns the scaling factor of the data term. Poggio and Smale in [59] scale
the data term proportionally to the number of data points, i.e. they define the task as the
minimization of functional

H [f] =
1

N

N
∑

i=1

(yi − f(xi))
2 + γ||f ||2K

and obtain a linear system defining the weights:

(K +NγI)w = y (2.29)

(compare to (2.26)).
Clearly, scaling the data term does not change the solution of the minimization prob-

lem. However, the solution (2.29) is not numerically feasible. For a big data set, i.e. big
values ofN , the diagonal part dominates and the information given by the data set (ex-
pressed by matrixK) is suppressed. One can argue that this can be cured by adjusting
the regularization parameterγ to be smaller. But the role of regularization parameter is
to control the trade-off between the data term and the regularization term, and we do not
want it to depend onN .

2.5 Regularization Network

In the previous sections we have described the derivation ofthe regularized learning
problem solution, first using stabilizers based on the Fourier transform, second with the
help of RKHSs. In both the cases the solution has a form of a linear combination of
basis (kernel) functions (see Theorems 2.3.1 and 2.4.4)

f(x) =
N

∑

i=1

wiK(x,xi), (2.30)

supposing that we are given a training set

{(xi, yi) ∈ Rd × R}Ni=1. (2.31)

The solution derived in Section 2.3 has in addition a polynomial term. When a
positive semi-definite basis function is used, this term does not appear. In Section 2.4
only positive semi-definite functions were considered, so the solution (2.25) has no
polynomial term. Further we will work mainly with positive semi-definite kernels, and
in other cases we will omit the polynomial term.

The solution (2.30) can be represented as a feed-forward neural network with one
hidden layer and a linear output layer (see Figure 2.2). The hidden layer consists of
kernel unitsrealizing the basis (kernel) functions.

18 CHAPTER 2. REGULARIZATION NETWORKS

Figure 2.2: Regularization network scheme.

Definition 2.5.1 (Kernel Unit) Akernel unitis a computational unit withd real inputs
x = x1, . . . , xd and one real outputy. It evaluates the function

y(x) = K(x, c),

whereK is a suitable kernel function,c ∈ R
d. The vectorc is called acenter.

Note that in the optimal solution the centers of the kernel units, i.e. the second
arguments of the kernel functions, are fixed to the data pointsxi. Such a neural network
is called aregularization network(RN) [12].

Definition 2.5.2 (Regularization Network) Aregularization networkis a feed-forward
neural network with one hidden layer of kernel units and one linear output unit. It
represents a function

f(x) =

N
∑

i=1

wiK(xi, ci), (2.32)

whereN is a number of hidden neurons (i.e. number of basis functions), wi ∈ R,
ci ∈ R

d,xi ∈ R
d, K : R

d → R is a chosen kernel (basis) function. To coefficients of
the linear combinationwi we refer as toweights, the vectorsci are calledcenters.

The practical aspects of learning with the regularization networks and the corre-
sponding algorithms will be discussed in detail in Chapter 4.

Chapter 3
Product and Sum Regularization
Networks

The whole is more than the sum of its parts.
Aristotle, Metaphysica

In this chapter we propose new types of regularization networks — aproduct kernel
regularization networkand asum kernel regularization network. These approximation
schemata are based on the composite types of kernel functions, and were first introduced
in [35, 36].

The next section describes our motivation for the compositekernels. In Section 3.2
the product of two RKHS, a mathematical justification for aproduct kernel, is con-
structed according to Aronszajn [1]. Then in Section 3.3 theproduct kernel and the
product kernel regularization network are introduced. Section 3.4 deals with the sum
of two RKHS [1] that is used in Section 3.5 to derive asum kerneland the sum kernel
regularization network.

3.1 Motivation

The kernel function used in a particular application of regularization network is typically
supposed to be given in advance, for instance chosen by a user.

In fact, the choice of kernel function is equivalent to the choice of prior assumption
about the problem at hand (see Sections 2.3–2.4). It reflectsour prior knowledge or
assumption about the problem and its solution. Therefore its choice is crucial for the
quality of the solution and should be always done according to the given task.

19

20 CHAPTER 3. PRODUCT AND SUM REGULARIZATION NETWORKS

As a kernel function we can use any symmetric, positive semi-definite function,
possibly a conditionally positive semi-definite function.However, the most frequently
used kernel function is the Gaussian function. Other commonkernel functions are listed
in Table 2.1. The procedure we use for choosing a suitable kernel function will be
discussed in the next chapter.

Although only kernels defined on real numbers are consideredthroughout this work,
in practical applications we often meet data containing attributes of different types, such
as enumerations, sets, strings, texts, etc. Such data may beconverted to real numbers by
suitable preprocessing or the regularization network learning framework may be gener-
alized so that it can work on such types. For such a generalization, sophisticated kernel
functions defined on various types were created. The examples of kernel functions de-
fined on objects including graphs, sets, texts, etc. can be found in [65].

To sum it up, when choosing the kernel function, two aspects have to be considered.
They are the prior knowledge of the problem and type of the data domain.

However, the real data are often heterogenous. The heterogeneity refers either to
attributes or parts of the input space, or both. By the formerwe mean that different
attributes are of different types or differ in quality. By the latter we mean that the data
have different qualities (such as density) in different parts of the input space. Then for
the different parts of the data different kernel functions are suitable.

In such situations, kernel functions created as a combination of simpler kernel func-
tions might better reflect the character of the data. We can benefit from the fact that the
set of positive semi-definite functions is closed with respect to several operations, such
as sum, product, difference, limits, etc. [1, 64]. Based on the operations of sum and
product we introduce two types of composite kernel units, namely aproduct kerneland
a sum kernel.

3.2 Product of RKHSs

In this section we present a derivation of the product of two RKHSs and show that its
reproducing kernel is a product of two kernels corresponding to the original RKHSs [1].
This will be used in the next section to derive a product kernel regularization network.

LetF1 onΩ1 andF2 onΩ2 be two different RKHSs, and letK1 andK2 be their repro-
ducing kernels. The goal is to find a set of functions onΩ = Ω1×Ω2 that forms an RKHS
with the reproducing kernel given byK((x1,x2), (y1,y2)) = K1(x1,y1)K2(x2,y2),
wherex1,y1 ∈ Ω1 andx2,y2 ∈ Ω2.

First consider the following set of functions onΩ = Ω1 × Ω2:

F ′ =

{

n
∑

k=1

f1,k(x1)f2,k(x2) | n ∈ N, f1,k ∈ F1, f2,k ∈ F2,x1 ∈ Ω1,x2 ∈ Ω2

}

. (3.1)

3.2. PRODUCT OF RKHSS 21

To transformF ′ into a Hilbert space, one needs to define a scalar product on itand make
it complete with respect to the norm given by this scalar product. The scalar product is
given by the following lemma.

Lemma 3.2.1 (Aronszajn [1]) Let functionsf, g ∈ F ′ be expressed as

f(x1,x2) =
n

∑

k=1

f1,k(x1)f2,k(x2) (3.2)

and

g(x1,x2) =

m
∑

j=1

g1,j(x1)g2,j(x2). (3.3)

Let 〈f, g〉 be defined as

〈f, g〉 =
n

∑

k=1

m
∑

j=1

〈f1,k, g1,j〉1〈f2,k, g2,j〉2, (3.4)

where〈·, ·〉i denotes the scalar product onFi. Then〈f, g〉 is a scalar product onF ′.

Now the norm onF ′ can be defined as usual.

Definition 3.2.2 (Norm onF ′) Let F ′ be a function space (3.1). Let〈·, ·〉 defined
by (3.4) be a scalar product onF ′. Then the norm onF ′ is defined by

‖f‖F ′ =
√

〈f, f〉. (3.5)

To obtain a Hilbert space from a scalar product spaceF ′ (with scalar product (3.4)),
one needs to make it complete. The following theorem constructs the completion ofF ′

with respect to the norm‖ · ‖F ′.

Theorem 3.2.3 (Aronszajn [1]) LetF ′ be the set of functions defined in (3.1). Let
{g(k)

i }k be complete orthonormal sequence in the spaceFi, for i = 1, 2. Then the
class of functionsF onΩ

F = {g′ | g′(x1,x2) =

∞
∑

k=1

∞
∑

l=1

aklg
(k)
1 (x1)g

(l)
2 (x2)}, (3.6)

with 〈g′, g′〉 =
∞

∑

k=1

∞
∑

l=1

|akl|2 <∞, (3.7)

forms a complete Hilbert space and is the completion ofF ′ with respect to the norm
‖ · ‖F ′.

22 CHAPTER 3. PRODUCT AND SUM REGULARIZATION NETWORKS

Note that any finite sum of type (3.6) is also of type (3.1) and the norm‖ · ‖F ′

coincides with the norm defined by (3.7). For the proof see [1].

Definition 3.2.4 (Product of RKHSs) LetF1 be an RKHS onΩ1 andF2 an RKHS on
Ω2. Let

F = compl

{

n
∑

k=1

f1,k(x1)f2,k(x2) | n ∈ N, f1,k ∈ F1, f2,k ∈ F2

}

, (3.8)

wherecompl means completion of the set with respect to the norm‖ · ‖F ′. F is called
theproduct ofF1 andF2 and write

F = F1 ⊗ F2. (3.9)

The last thing to be proved thatF is an RKHS with the reproducing kernel given by
the product of kernelsK1 andK2. According to Aronszajn [1]:

Theorem 3.2.5 (Aronszajn [1]) Fori = 1, 2 let Fi be an RKHS onΩi with kernelKi.
Then the productF = F1 ⊗ F2 onΩ1 × Ω2 is an RKHS with kernel given by

K((x1,x2), (y1,y2)) = K1(x1,y1)K2(x2,y2) , (3.10)

wherex1,y1 ∈ Ω1, x2,y2 ∈ Ω2.

3.3 Product Kernels

In the previous section we showed a derivation of the productof two RKHSs, and that
its reproducing kernel can be obtained as a product of reproducing kernels of original
RKHSs. Such a kernel we call aproduct kernel. More generally:

Definition 3.3.1 (Product Kernel) LetK1, . . . , Kk be the kernel functions defined on
Ω1, . . . ,Ωk (Ωi ⊂ R

di), respectively. LetΩ = Ω1 × Ω2 × · · · × Ωk. The kernel function
K defined onΩ that satisfies

K(x1,x2, . . . ,xk,y1,y2, . . . ,yk) = K1(x1,y1)K2(x2,y2) · · ·Kk(xk,yk), (3.11)

wherexi ∈ Ωi, we call aproduct kernel.

A computational unit that realizes the product kernel function will be called aprod-
uct unit(see Figure 3.1).

3.3. PRODUCT KERNELS 23

Figure 3.1: A unit realizing a product kernel.

Definition 3.3.2 (Product Unit) Aproduct unitis a computational unit with multiple
inputs(x1,x2, . . . ,xk), xi ∈ Ωi, and one real outputy, realizing a function

y(x1,x2, . . . ,xk) = K1(x1, c1)K2(x2, c2) · · ·Kk(xk, ck),

whereKi are kernel functions. Vectorsci are calledcenters.

The regularization network with the hidden layer formed by product kernels is called
aproduct kernel regularization network(PKRN).

Definition 3.3.3 (Product Kernel Regularization Network) Aproduct kernel regulariza-
tion network(PKRN) is a regularization network realizing a function

f(x1,x2, . . . ,xk) =
N

∑

i=1

wiK1(x1, c1)K2(x2, c2) · · ·Kk(xk, ck), (3.12)

wherexi, ci ∈ Ωi,Ki are kernel functions.

Product kernels might be useful if a priori knowledge of datasuggests looking for
the solution as a member of a product of two or more function spaces. This is typically
in a situation when the individual attributes, or groups of attributes differ in type or
quality. In such situations, we can split the attributes into groups, which means that
instead of one input vectorx ∈ R

d we will deal with k input vectorsxi ∈ R
di, for

i = 1, . . . , k. Then the training set has the form

{(xi
1,x

i
2, . . . ,x

i
k, y

i) ∈ Rd1 × Rd2 × . . .×Rdk × R}Ni=1. (3.13)

Using a product kernel on such training data enables us to process differentxi, i.e.
groups of attributes, separately by different kernel functions.

24 CHAPTER 3. PRODUCT AND SUM REGULARIZATION NETWORKS

Figure 3.2: A product kernel from Example 3.3.4.

Though the theory is derived for kernels defined on real numbers (Ω ⊂ R
d), it

is possible to combine kernel functions defined on differenttypes. Then attributes in
the input vector may be very diverse, for instance real numbers mixed with categorical
attributes, strings, texts, or various objects. The individual attributes can be divided into
groups of the same type, forming several input vectors. Eachinput vector, i.e. a part of
the original input vector, is then processed by a kernel function suitable for its type.

Example 3.3.4 The simplest example of PKRN is the one using a product of two Gaus-
sian kernels. Suppose that in one dimension the data are suitable for approximation via
a narrow Gaussian kernel, in the second dimension the function is smooth, so we want
to use a broader Gaussian kernel. Then we obtain an approximation schema

f(x1,x2) =

N
∑

i=1

wie
−(

‖x1−xi
1
‖

d1
)2 · e−(

‖x2−xi
2
‖

d2
)2
, (3.14)

whered1 andd2 are the widths of the Gaussians. See Figure 3.2 for the illustration of
the resulting kernel.

3.4 Sum of RKHSs

In this section we construct a sum of two RKHSs and show that its reproducing kernel
can be obtained as a sum of the reproducing kernels of the two original RKHSs.

3.4. SUM OF RKHSS 25

Let F1 andF2 be RKHSs of functions onΩ ⊂ R
d. Let K1 andK2 be the corre-

sponding kernels and‖.‖1 and‖.‖2 the corresponding norms.

Lemma 3.4.1 (Aronszajn [1]) LetK1 : Ω × Ω → R andK2 : Ω × Ω → R be positive
semi-definite functions. Then the functionK : Ω× Ω→ R defined as

K(x,y) = K1(x,y) +K2(x,y)

is also a positive semi-definite function.

Since the sum of two positive semi-definite functions is a positive definite function,
it is a reproducing kernel for an RKHS. Now we show how to find the class of functions
that form this RKHS.

Definition 3.4.2 (H) LetH be the space of all couples{f1, f2} onΩ such that

H = {{f1, f2} | f1 ∈ F1, f2 ∈ F2} , (3.15)

and let the metric onH be given by

‖{f1, f2}‖2 = ‖f1‖21 + ‖f2‖22. (3.16)

LetF0 be a class of all functionsf belonging toF1 ∩ F2. We defineH0 as

H0 := {{f,−f}; f ∈ F0}. (3.17)

H0 is a closed subspace ofH, thus we can writeH = H0 ⊕ H ′, whereH ′ is the
complementary subspace toH0.

Definition 3.4.3 (H ′) Let H be the space defined in Definition (3.4.2) andH0 the
space (3.17). Then we defineH ′ as a subspace ofH such thatH = H0 ⊕H ′.

To every element{f ′, f ′′} ofH there corresponds a functionf(x) = f ′(x)+ f ′′(x).
So there is a linear correspondence transformingH into a linear class of functions onΩ.

Definition 3.4.4 (F) LetH be the space defined in Definition (3.4.2). We defineF as

F = {f | f(x) = f ′(x) + f ′′(x), {f ′, f ′′} ∈ H}. (3.18)

Elements ofH0 are precisely those transformed into the zero function and thus the
correspondence betweenH ′ andF is one-to-one and has an inverse (for everyf ∈ F
we obtain one{g′(f), g′′(f)}).

26 CHAPTER 3. PRODUCT AND SUM REGULARIZATION NETWORKS

So the metric onF can be defined by the following way:

Definition 3.4.5 (Norm onF) LetF be the space defined in Definition 3.4.4. Then we
define the norm onF as

‖f‖2 = ‖{g′(f), g′′(f)}‖2 = ‖g′(f)‖21 + ‖g′′(f)‖22.

The last thing to be proved is that the functionK(x,y) = K1(x,y) + K2(x,y) is
the reproducing kernel for the spaceF .

Theorem 3.4.6 (Aronszajn [1]) LetF1 andF2 be the RKHSs andK1,K2 and‖.‖1, ‖.‖2
the corresponding kernels and norms. LetF be defined as in Definition 3.4.4 with the
norm defined in Definition 3.4.5. Then

K(x,y) = K1(x,y) +K2(x,y) (3.19)

is the kernel corresponding toF .

The claim holds also forF defined as a class of all functionsf = f1+f2 with fi ∈ Fi

and norm‖f‖2 = min(‖f1‖21 + ‖f2‖22) with the minimum taken for all decompositions
f = f1 + f2 with fi in Fi.

3.5 Sum Kernels

The reproducing kernel of the sum of RKHSs shown in the previous section, which is
the kernel that can be obtained as a sum of other kernel functions, is called asum kernel.

Definition 3.5.1 (Sum Kernel) The kernel functionK that can be obtained as a sum of
two or more other kernel functionsK1, . . . , Kk

K(x,y) =
k

∑

i=1

Ki(x,y), (3.20)

is called asum kernel.

The computational unit realizing the sum kernel is shown in Figure 3.3. We call it a
sum unit.

Definition 3.5.2 (Sum Unit) Asum unitis a unit with multiple inputsx, x ∈ Ω, and one
real outputy, realizing a function

y(x) = K1(x, c) +K2(x, c) + · · ·+Kk(x, c),

whereKi are kernel functions. Vectorc ∈ Ω is called acenter.

3.5. SUM KERNELS 27

Figure 3.3: A unit realizing a sum kernel.

The regularization network that has sum units in its hidden layer is called asum
kernel regularization network(SKRN).

Definition 3.5.3 (Sum Kernel Regularization Network) LetK1, . . . , Kk be kernel func-
tions onΩ. Thesum kernel regularization network(SKRN) is an approximation schema
that has the form

f(x) =

N
∑

i=1

wi(K1(x, ci) + . . .+Kk(x, ci)), (3.21)

wherex ∈ Ω, ci ∈ Ω.

The sum kernel is intended for use in cases when a priori knowledge or analysis of
data suggests looking for a solution being a sum of two or morefunctions. For exam-
ple, when the data is generated from a function influenced by two sources of different
frequencies. Then we can use a kernel obtained as a sum of two parts corresponding to
high and low frequencies (see Figure 3.4).

In our experiments in Chapter 6, Subsection 6.3.4, we will show that the kernel ob-
tained as a sum of two Gaussian functions has an interesting behavior. It enables us to
achieve very low errors on the training data while preserving its generalization ability.
Such an SKRN outperforms a standard regularization networkin terms of approxima-
tion error on most tasks we have tested.

3.5.1 Restricted Sum Kernel

Approximation of data with different distributions in different parts of the input space
may be done with the help of arestricted sum kernel. We will take advantage of the
following lemma.

28 CHAPTER 3. PRODUCT AND SUM REGULARIZATION NETWORKS

Figure 3.4: An example of a sum kernel formed by two Gaussian functions.

Lemma 3.5.4 (Aronszajn [1]) LetF be an RKHS of real-valued functions onΩ withK
as a kernel. Then functionKA defined by

KA(x,y) =

{

K(x,y) if x,y ∈ A,

0 otherwise;
(3.22)

is a kernel for the spaceFA = {fA, f ∈ F}, wherefA(x) = f(x) if x ∈ A and
fA(x) = 0 otherwise.

Definition 3.5.5 (Restricted Sum Kernel) The kernelKA(x,y) (3.22) is called are-
stricted sum kernel.

In situations when different kernels are suitable for different parts of the input space,
we can divide the input space into several disjunct subsetsA1, . . . , Ak and choose dif-
ferent kernelsKi for eachAi.

Then we obtain the kernel as a sum of kernelsKi restricted to the corresponding
sets:

K(x,y) =

{

Ki(x,y) if x,y ∈ Ai

0 otherwise
(3.23)

3.5. SUM KERNELS 29

3.5.2 Divide et Impera

The second application of restricted sum kernels is a derivation of theDivide et Impera
approach that represents a technique for dealing with bigger data sets.

Note that an SKRN with restricted sum kernels represents a function

f(x) =
∑

xi∈A1

wiK1(x,xi) + . . .+
∑

xi∈Ak

wiKk(x,xi), (3.24)

which can be also interpreted as a sum ofk regularization networks, each using its own
kernel functionKs, s = 1, . . . , k.

In addition, for the case of disjunct setsAs, always exactly one member of (3.24) is
nonzero. Thus for an inputx only the regularization network corresponding to the set
As, for whichx ∈ As, has a nonzero output. So we can write

f(x) =

{

∑

xi∈As
wsiKs(x,xi) if ∃s : x ∈ As

0 if ∀s : x /∈ As.
(3.25)

Conversely, to determine the value ofwsi, only the training samples{(xj , yj)|xj ∈ As}
are needed.

So the partitioning of the input space defines the partitioning of the training set into
k subsets. The weights of the SKRN with restricted sum kernelscan be determined by
solvingk of smaller linear systems (2.26) instead of a big one.

Replacing one linear system byk smaller ones reduces the space requirements of
learning1. In addition the time requirements decrease, which will be shown later in
Section 6.3.5. The drawback of this approach is a slightly bigger approximation error.
It is caused by the lack of information on the borders of the input space areas, i.e. sets
Ai.

1The space requirements of learning are given by the amount ofspace needed to store and solve the
linear system (2.26). For more details on the learning algorithm see Section 4.1.

Chapter 4
Learning with Regularization Networks

Prediction is difficult,
especially of the future.

Niels Bohr

In this chapter we deal with the learning using the regularization networks introduced
in Chapter 2. The following section describes the basic learning algorithm for a regular-
ization network. In Section 4.2 we discuss the role of the regularization parameter and
the kernel function. In Section 4.3 we propose a framework above the RN learning al-
gorithm that realizes the whole learning procedure including the setup. The Section 4.4
describes cross-validation, a standard technique for the estimation of neural network
generalization ability that is used in Section 4.5, where wepropose theadaptive grid
searchalgorithm for the estimation of the optimal regularizationparameter and kernel
function, and in Section 4.6, where thegenetic searchalgorithm is proposed.

4.1 The Regularization Network Learning Algorithm

The basic learning algorithm for a regularization network,which is sketched in Algo-
rithm 4.1.1, follows directly from the Representer Theorem(see Theorem 2.3.1 and 2.4.2).
It consists of two steps. First, we set the centers of kernel functions to the given data
points, and then we compute the weights solving the linear system (4.1). The first step
is trivial, but the second step involves linear optimization and forms a crucial part of the
algorithm.

31

32 CHAPTER 4. LEARNING WITH REGULARIZATION NETWORKS

Input: Data set {xi, yi}Ni=1 ⊆ R
d × R

Output: Regularization Network

1. Set the centers of kernels:

∀i ∈ {1, . . . , N} : ci ← xi

2. Compute the values of weights
w1, . . . , wN :

(K + γI)w = y, (4.1)

where I is the identity matrix,
Kij = K(xi,xj), and y = (y1, . . . , yN),
γ > 0.

Algorithm 4.1.1. The RN learning algorithm.

The strength of the algorithm stems from the fact that the linear system we are
solving is well-posed for positive semi-definite kernel functionK, i.e. it has a unique
solution and the solution exists1 [12, 11, 59, 72].

However, as it will be shown later experimentally (Chapter 6, Subsection 6.3.1), the
real performance of the algorithm significantly depends on the choice of regularization
parameter and kernel function. These parameters are supposed to be given in advance.
We will call themmetaparametersto distinguish them from the parameters of the regu-
larization network itself (weights, centers).

Another aspect of the successful application of the algorithm is the choice of method
for solving the linear system. This problem is well studied by numerical mathematics
and a variety of algorithms exists [4, 75, 62]. The choice of the method should depend
on the size of the linear system, i.e. the size of the trainingset.

For the data sets of small and medium size, the linear system can be solved by direct
methods, such as RQ decomposition [62]. Then the algorithm is simple and effective.

The tasks with huge data sets are more difficult to solve, and they lead to solutions of
unreasonable size as well. Other algorithms should be used in such cases. One option is
represented by the RBF networks belonging to the family ofgeneralized regularization
networks, discussed later in Chapter 5. Alternatively, in Section 3.5.2 a simple “Divide
et Impera” approach has been proposed, dividing the task to several smaller subtasks.

1It hasN variables,N equations,K is positive semīdefinite and(γI + K) is strictly positive.

4.2. ROLE OF REGULARIZATION PARAMETER AND KERNEL FUNCTION33

We can apply the basic algorithm on these subtasks and then obtain the resulting network
as a sum of the sub-results.

4.2 Role of Regularization Parameter and Kernel Func-
tion

In the previous section the RN learning algorithm (Algorithm 4.1.1) was described. Now
we will deal with its metaparameters, the regularization parameter and the kernel func-
tion, in more detail. In particular, we will discuss how these metaparameters influence
the solution and also the algorithm numerical stability.

Recall that the regularization network found by the RN learning algorithm (Algo-
rithm 4.1.1) is the solution of the minimization problem

H [f] =
N

∑

i=1

(f(xi)− yi)
2 + γΦ[f], (4.2)

whereΦ is astabilizerandγ > 0 is the regularization parameter.
The regularization parameterγ controls the trade-off between the data term and the

regularization term, i.e. the trade-off between the closeness to data and the solution
smoothness. The non-zero regularization parameter prevents over-fitting and should
always reflect the noise level. Therefore it has to be set up according to the given task,
there is no universal value for it.

The second metaparameter is the kernel functionK. In general, the choice of the
kernel function corresponds to

1. Choice of the stabilizer: When using the stabilizers based on the Fourier trans-
form (2.5), the particular form of this stabilizer is given by the choice of a high-
-pass filter (that is the choice of̃G). This choice determines the kernel function
used in the solution (see Section 2.3).

2. Choice of a function space for learning: In derivation of RN with the help of
RKHSs (see Section 2.4), the choice of the kernel function isequivalent to the
choice of an RKHS that is used as the hypothesis space.

In both the cases the kernel function represents our knowledge or assumption about
the problem and its solution. Wolpert [76] introduced theno-free-lunch theoremstating
that there is no general purpose learning algorithm, and theonly way one strategy can
outperform another is if it is specialized in the specific problem under consideration.
Such specialization requires prior knowledge of the given problem. Similarly no kernel
can outperform other kernels in all possible problems [64] and so the kernel function
should be chosen according to our knowledge of the problem athand.

34 CHAPTER 4. LEARNING WITH REGULARIZATION NETWORKS

The choice of a value of both metaparameters influences also the numerical stability
of the linear system (4.1) that has to be solved in the RN learning algorithm (Algo-
rithm 4.1.1).

We have learned that the system is well-posed. But we also have to ask the question
whether the system is numerically well-posed, i.e. insensitive to small perturbations of
the data.

A rough measure of the problem feasibility to digital (numerical) computation is
a condition number[9]. The problem with a low condition number is said to bewell-
-conditioned, while the problem with a high condition number is said to beill-conditioned.

Definition 4.2.1 (Condition Number of a Matrix) LetA be a real matrix. Then the
numberκ(A) given by

κ(A) = ||A−1|| · ||A||, (4.3)

where|| · || is any consistent norm, is called acondition number of matrix. If || · || is the
L2 norm, the condition number can be computed as

κ(A) =
σmax(A)

σmin(A)
, (4.4)

whereσmax(A) and σmin(A) are the maximal and minimal singular values ofA re-
spectively.

The condition number associated with the linear equationAx = b gives a bound
on how inaccurate the solutionx will be after an approximate solution. In fact, the
condition number effectively amplifies the error present inb.

If the parameterγ is large, the matrixK + γI has a dominant diagonal and the
condition number is small [9]. So the choice ofγ has a direct influence on the numerical
properties of the linear system (4.1). However, the choice of γ should, at the first place,
reflect the level of noise in our problem, not to cure the ill-conditioning of the problem.
If we chooseγ too large, the linear system may be easy to solve, but the solution will
not fit our data at all. So the optimal value ofγ should balance the well-conditioning
and the closeness to the data.

Naturally, the numerical properties of the linear system does not depend only on the
value ofγ, but also on the properties of the matrixK that is given by the kernel function
choice.

As the most common kernel function is the Gaussian function

K(x,y) = e−
||x−y||2

b , (4.5)

we will discuss the properties of the matrixK corresponding to the Gaussian kernel
function in more detail.

4.3. LEARNING FRAMEWORK 35

Clearly the values of entries of the matrixK depend both on the distance between
individual data points and the widthb. The entries on the main diagonal are always
equal to one, all other elements are from the interval(0, 1〉.

Kii = 1

Kij ∈ (0, 1〉, i 6= j

It is easy to see that by decreasing the width we make the matrix entries smaller, and
vice versa. Considering a digital representation with finite precision, both the extremes
result in losing information. Too small width leads to a diagonal identity matrixK and
a trivial linear system; too wide width to matrixK with all entries close to one, which
makes the system (4.1) difficult to solve.

Considering the condition number, smaller widths result inmatrices with a domi-
nant diagonal, i.e. a smaller condition number; wider widths on the other hand lead to
matrices with a high condition number. Again, there is a trade-off between avoiding the
ill-conditioning and not losing the information. Note thatwhat we mean by small width
and wide width is always relative and depends on the density of data points. The width
should be always chosen according to the given data.

The case of the Gaussian kernel function was also studied in [42, 49]. Narcowich,
Sivakumar and Ward defined theseparation radiusas the minimal distance between
two data points. They have shown that for the Gaussian kernelfunction the condition
number of matrixK depends only on two parameters: the dimensiond of the input
space andt = q

b2
, whereq is the separation radius andb is the width of the Gaussian. It

justifies the intuitive idea that the denser data we have, thenarrower Gaussian kernels
are suitable and vice versa.

So in the choice of both the regularization parameterγ and kernel function type,
there is always a trade-off between making the problem easier to solve and not losing
relevant information, and a trade-off between fitting the training data and making the
solution smooth enough to generalize. Both metaparametersreflect our prior knowl-
edge about the problem, the regularization parameter corresponds to the level of noise,
whereas the kernel function express a general knowledge or assumption.

Later, in Chapter 6, Section 6.3.1, the role of metaparameters is illustrated on exper-
iments, and it is shown that a wrong choice of kernel functionmay lead to the failure of
the RN learning algorithm.

4.3 Learning Framework

The discussion in the previous section indicates that the real performance of the algo-
rithm depends significantly on the metaparameters choice. The metaparameters are a
part of formulation of the problem we are solving. Clearly, if we formulate our problem
improperly, the obtained solution may be useless.

36 CHAPTER 4. LEARNING WITH REGULARIZATION NETWORKS

Ideally, these parameters should be selected by the user based on their knowledge
of the problem given. Since this is not possible or very difficult in majority of practical
applications, we need to build a framework above this algorithm to make it capable of
finding not only the network parameters but also optimal metaparameters.

We propose the following procedure:

1. Setup of the algorithm

(a) Choice of a type of the kernel function: By the type we meanthat we decide
whether to use a Gaussian, multi-quadratic, sum, product, etc. (For sum and
product kernels it is necessary to determine the type for allkernels used in
the sum, resp. product).

(b) Choice of the additional parameters of the kernel function: Some kernels
have additional parameters that have to be estimated (such as the width in
the case of the Gaussian function).

(c) Choice of the regularization parameterγ.

2. Running the RN learning algorithm (Algorithm 4.1.1)

The proposed autonomous learning procedure consists of twoparts. In the first part,
we set up the metaparameters of the learning algorithm, in the second part we run the
algorithm on the given data. The setup includes choosing thekernel function, tuning its
additional parameters and choosing the regularization parameter.

To search for optimal metaparameters, we need to be able to say whether one partic-
ular choice is better than another one. In the next section, standard techniques that can
be used to measure the “quality” of a solution will be described.

4.4 Cross-Validation

In this section we describe various cross-validation techniques, which are standard sta-
tistical techniques used to estimate the real performance of neural networks [66, 15].

We say that a network is well-trained or that it performs wellif it learns enough
about the past to be able to generalize to the future.

The past is represented by the given training set. However, we do not typically know
anything about the future. Without any prior knowledge about the problem we cannot
say if the network is a good solution of the given problem or ifit generalizes well. But
we can estimate its generalization ability using the available data.

The cross-validation techniques are based on the idea that we split the data into two
parts, called atraining setand avalidation set. The network is trained on the training set
and then the error on the validation set is evaluated. The learning algorithm is then run

4.4. CROSS-VALIDATION 37

on the training set with different setups (metaparameters). For each resulting network
we evaluate the error on the validation set. The network withthe lowest error on the
validation set is then picked as a one with the best generalization ability.

There are several types of the cross-validation. In order todescribe them, we intro-
duce the following notation:

Definition 4.4.1 (RN Trained on Data SetS) Let S = {xi, yi}Ni=1 ⊂ R
n × R be a

given data set. Then the regularization network found by theRN learning algorithm
(Algorithm 4.1.1) run on the data setS is calledregularization network trained on the
data setS and its function denoted asfS.

Definition 4.4.2 (Error on Data SetS) LetS = {xi, yi}Ni=1 ⊂ R
n × R be a given data

set andf be a regularization network. Then the quantity

E(f, S) =
N

∑

i=1

(f(xi)− yi)
2 (4.6)

is calledthe error on the data setS.

The easiest cross-validation approach is known as thehold out cross-validation(see
Algorithm 4.4.1). The data points are chosen randomly from the initial sample to form
the validation dataSval (typically, less than a third of the initial sample), and theremain-
ing observations are retained as the training dataStrain. The estimate of the generaliza-
tion error is given byEholdout:

Eholdout = E(fStrain, Sval). (4.7)

Input: Data set S = {xi, yi}Ni=1 ⊆ R
d × R

Output: The estimate of generalization error Eholdout

1. Split the data randomly to two subsets Strain

and Sval: S = Strain ∪ Sval and Strain ∩ Sval = ∅

2. Run the RN learning algorithm on the data set
Strain to obtain fStrain

3. Eholdout ← E(fStrain, Sval)

Algorithm 4.4.1. The hold out cross-validation.

38 CHAPTER 4. LEARNING WITH REGULARIZATION NETWORKS

Figure 4.1: Schema of thek fold cross-validation procedure.

Another variant, known as thek-fold cross-validation, uses partitioning of the orig-
inal data setS into k subsetsS1, . . . , Sk, so that

⋃

i Si = S and∀ i 6= j : Si

⋂

Sj = ∅.
The cross-validation process consists ofk trials. In each trial, a single subset is retained
as the validation set, and the remainingk− 1 subsets are used as the training set, so that
each of thek subsamples is used exactly once as the validation set. See Figure 4.1 for
illustration. Then thek results from the folds can be averaged (or otherwise combined)
to produce a single estimationEkfolds:

Ekfolds =
1

k

k
∑

i=1

E(f
S

i6=j Sj , Si). (4.8)

The special case ofk-fold cross-validation is theleave-one-out cross-validation,
where thek is equal to the number of data points in the original data set.In each trial, a
single observation from the original set is used as the validation data, and the remaining
points as the training set.

The hold out cross-validation is very sensitive to the partitioning of the data into
training and validation subsets, and therefore gives us only a very rough estimate of the
real generalization ability. On the other hand, the leave-one-out cross-validation may
be too time-consuming, except for very small data sets. Thek-fold cross-validation
represents a compromise between these two approaches and isfrequently used.

In the rest of our work, we will use thek-fold cross-validation; and the estimate of
generalization errorEkfold will be called across-validation error.

Definition 4.4.3 (Cross-validation Error) LetS = {xi, yi}Ni=1 ⊂ R
n × R be a given

data set with partitioningS1, . . . , Sk : S =
⋃k

i=1 Si and∀ i 6= j : Si

⋂

Sj = ∅. We call
the quantity

Ecross(S) =
1

k

k
∑

i=1

E(f
S

i6=j Sj , Si) (4.9)

a cross-validation error.

4.5. ADAPTIVE GRID SEARCH 39

Input: Data set S = {xi, yi}Ni=1 ⊆ R
d × R

k ∈ N, k > 0
Output: The estimate of generalization error Ekfold

1. Split the data randomly into k subsets S1, . . . , Sk:
S =

⋃k
i=1 Si and ∀ i 6= j : Si

⋂

Sj = ∅

2. Ekfold ← 0, i← 1

3. TS ← ⋃

j 6=i Sj

4. Run the RN learning algorithm on the data set
TS to obtain fTS

5. Ekfold ← Ekfold + E(fTS, Si)

6. i← i+ 1, if i <= k go to 3

7. Ekfold ← 1
k
Ekfold

Algorithm 4.4.2. Thek-fold cross-validation.

4.5 Adaptive Grid Search

In this section we introduce the algorithm we use for the setup of the RN learning
algorithm (Algorithm 4.1.1).

We suppose that the kernel type is given by the user. Then our algorithm searches for
the optimal value of the regularization parameter and of additional kernel parameters.
Without the loss of generality, we suppose that the kernel has one real parameterp. The
application of the algorithm on the cases where the kernel has two or more parameters
is straightforward.

We will use the following notation:

Definition 4.5.1 (fS
γ,p) LetS = {xi, yi} ⊂ R

n×R be a given data set. ThenfS
γ,p denotes

the regularization network found by the RN learning algorithm (Algorithm 4.1.1) with
the regularization parameterγ and the kernel parameterp on the data setS.

Definition 4.5.2 (Ecross(γ, p, S)) LetS = {xi, yi}Ni=1 ⊂ R
n×R be a given data set with

partitioningS1, . . . , Sk : S =
⋃k

i=1 Si and∀ i 6= j : Si

⋂

Sj = ∅. ByEcross(γ, p, S) we

40 CHAPTER 4. LEARNING WITH REGULARIZATION NETWORKS

denote the cross-validation error

Ecross(γ, p, S) =
1

k

k
∑

i=1

E(f
S

i6=j Sj

γ,p , Si). (4.10)

We will search for such metaparameters that minimize the cross-validation error (4.10).
It means we will choose a solutionfS

γ∗,p∗ such that

[γ∗, p∗] = argminγ,pEcross(γ, p, S). (4.11)

Clearly, it is not possible to go through all possible valuesof these parameters.
Therefore we create a grid of couples[γ, p] using a suitable sampling and evaluate
the cross-validation error for each point of this grid. The point with the lowest cross-
-validation error is picked.

To speed up the process, we proposed theadaptive grid searchalgorithm (Algo-
rithm 4.5.1). It starts with a coarse grid, i.e. sparse sampling, and then creates a finer
grid around the point with the minimum.

The winning values of parameters found by the Algorithm 4.5.1 are then used to run
the RN learning algorithm (Algorithm 4.1.1) on the whole training set.

Input: Data set S = {xi, yi}Ni=1 ⊆ R
n ×R

Output: Parameters γ and p.

1. Create a set of couples {[γ, p]i, i = 1, . . . , K},
uniformly distributed in 〈γmin, γmax〉×〈pmin, pmax〉.

2. For each [γ, p]i for i = 1, . . . , K and for each
couple evaluate the cross-validation error
Ei

cross ← Ecross(γi, pi, S).

3. Select the i with the lowest Ei
cross.

4. If the couple [γ, p]i is at the border of the
grid, move the grid (see Figure 4.2a).

5. If the couple [γ, p]i is inside the grid,
create finer grid around this couple (see
Figure 4.2b).

6. Go to 2 and iterate until the
cross-validation error stops decreasing.

Algorithm 4.5.1. Adaptive grid search.

4.6. GENETIC PARAMETER SEARCH 41

The disadvantage of this approach is the high number of evaluations of the Algo-
rithm 4.1.1 needed during the search. Nevertheless, these evaluations are completely
independent, so they can be performed in parallel.

We have also observed over-fitting with respect to a particular partitioning to the
k parts. By the over-fitting we mean that it often happens that the real generalization
ability of the network obtained by using parameters with a lower cross-validation error
on the particular partitioning to thek parts may be worse than the one of the network
obtained by using parameters with a higher cross-validation error. However, this prob-
lem is not crucial, since such an increase in error is typically not significant. It rather
justifies that a few adaptive grid search iterations are sufficient.

Figure 4.2: a) Move the grid, b) Create a finer grid.

4.6 Genetic Parameter Search

Because the simple adaptive grid search algorithm has several drawbacks (the high num-
ber of evaluations needed, danger of over-fitting), we introduce a simple genetic algo-
rithm to our search — thegenetic parameter search(Algorithm 4.6.1).

The genetic algorithms (GAs) [45, 44] represent a stochastic search technique used
to find approximate solutions to optimization and search problems. They belong to the
family of evolutionary algorithms that use techniques inspired by evolutionary biology
such as mutation, selection, and crossover.

The genetic algorithms typically work with a population ofindividualsrepresenting
abstract representations of feasible solutions. Each individual is assigned afitnessthat
is a measure of how good solution it represents. The better the solution is, the higher
the fitness value it gets.

The population evolves towards better solutions. The evolution starts from a popu-
lation of completely random individuals and iterates in generations. In each generation,
the fitness of each individual is evaluated. Individuals arestochastically selected from

42 CHAPTER 4. LEARNING WITH REGULARIZATION NETWORKS

a) b)

Figure 4.3: a) Individuals, b) Crossover for Gaussian kernels.

the current population (based on their fitness), and modifiedby means of operatorsmu-
tation andcrossoverto form a new population. The new population is then used in the
next iteration of the algorithm.

We work with individuals coding the parameters of the RN learning algorithm. They
are the kernel function type, its additional parameters, and the regularization parameter,
see Figure 4.3a. When the kernel function type is known in advance, the individual
consists only of the kernel parameter and regularization parameter.

Since we want to minimize the cross-validation error, the fitness should reflect it. So
the lower the cross-validation error is, the higher the fitness value is.

Because the evaluation of fitness is very expensive in terms of time requirements
(many evaluations are needed to compute the cross-validation error), we use thelazy
evaluations[6]. By the lazy evaluations we mean that each time the fitnessof the in-
dividual is being computed, only one part is evaluated (i.e.one trial ofk-fold cross-
-validation is performed). In other words, instead of the cross-validation error we com-
pute only its estimate. Each time the fitness is evaluated, another part is computed and
this estimate is made more accurate. In addition, this enables us to avoid the over-fitting
by selecting a new random partitioning each time the fitness is evaluated.

New generations of individuals are created by using the operators of selection,
crossoverandmutation. Mutation introduces a small random perturbation to the ex-
isting individuals. The crossover (Figure 4.3b) creates two new individuals from two
existing individuals by choosing new parameter values randomly in the interval formed
by the old values. Classical roulette-wheel selection is used (the higher the fitness is,
the higher the probability of being selected is).

When we also search for the kernel function type, then the population consists of
different types of individuals (species) and we have two possibilities of crossover. The
former one works as it was described, only with the individuals of the same type, so
we have to ensure that individuals of the same kind are alwaysselected. The latter one
combines different kinds of kernels together by using the operator product and sum as
described in the previous chapter. We recommend to use the first type of crossover or
allow simple combinations of kernels only, otherwise the search time-requirements may
increase significantly.

4.6. GENETIC PARAMETER SEARCH 43

Input: Data set {xi, yi}Ni=1 ⊆ R
n ×R

Output: Parameters γ and p.

1. Create randomly an initial population P0 of M
individuals.

2. Reset individuals’ counters.
for i = 1, . . . ,M : ci = 0, erri = 0

3. i← 0

4. Pi+1 ← empty set

5. I1 ← selection(Pi); I2 ← selection(Pi)

6. with probability pcross: (I1, I2)← crossover(I1, I2)

7. with probability pmutate: Ik ← mutate(Ik), k = 1, 2

8. insert I1, I2 into Pi+1

9. if Pi+1 has less then M individuals goto 5

10. for j = 1, . . .M : Ij ∈ Pi+1

divide the data set randomly to Ttrain and Tval

let γj, pj be the parameter values defined by Ij :
errj ← errj + E(fTtrain

γj ,pj
, Tval)

cj ← cj + 1
fitness(Ij) ← C − 1

cj
errj

11. i← i+ 1

12. goto 4 and iterate until the fitness stops
increasing

Algorithm 4.6.1. Genetic parameter search.

Chapter 5
Radial Basis Function Networks

Ask not what mathematics can do for biology,
but what biology can do for mathematics.

Stanislaw Ulam

In this chapter we deal with a more universal variant of regularization networks, known
asgeneralized regularization networks. Particularly, we will focus on one subclass of
generalized regularization networks —radial basis function networks(RBF networks),
and their learning algorithms.

In the next section, a generalized regularization network is defined. In Section 5.2
RBF networks, a subclass of generalized regularization networks, are introduced. Sec-
tions 5.3, 5.4, and 5.5 describe the RBF network learning algorithms:gradient learning,
three-step learning, andgenetic learning, respectively. Finally, in Section 5.6 hybrid
learning methods are discussed.

5.1 Generalized Regularization Networks

Throughout the previous chapters we were dealing with the regularization networks,
whose architecture represents an exact solution of the regularized learning problem. The
regularization network has a form of a linear combination ofkernel functions, where
the number of kernel functions corresponds to the number of the data points in the
corresponding training set, and the centers of the kernel functions are fixed to these data
points.

Such an approach benefits from a straightforward learning algorithm, since only the
weights of linear combinations have to be estimated. However, the constraint on the
number of kernel functions limits the algorithm applicability. Large data sets lead to the

45

46 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

solutions of unreasonable size and a time-consuming learning phase, which makes this
approach unfeasible.

What size of network is acceptable always depends on the particular application.
In some applications, the goal is to obtain a correct approximation and the size of the
solution is not important. On the other hand, in many applications the goal is to replace
a large data set by its model of a reasonably small size.

In the situations where the size of the regularization network representing the opti-
mal solution is too large, we can search for an approximate solution within the set of
networks with a limited number of kernel functions.

Poggio, Girosi, and Jones [12, 58] proposed to use the term ageneralized regular-
ization networkfor a wide class of functions representable by a feed-forward neural
network with one hidden layer and a linear output layer.

Definition 5.1.1 (Generalized Regularization Network) Ageneralized regularization net-
work is a feed-forward neural network with one hidden layer containing kernel units and
a linear output layer. It represents a function

f(x) =
k

∑

i=1

wiKpi
(x, ci), (5.1)

wherek is the number of hidden neurons (i.e. the number of basis functions),wi ∈ R,
ci ∈ R

d,x ∈ R
d, Kpi

: R
d → R is a chosen kernel (basis) function with the parameter

pi. To the coefficients of the linear combinationwi we refer as toweights, to the vectors
ci as tocenters.

A generalized regularization network has typically much fewer hidden units than the
corresponding data set size. On the other hand, each hidden unit has its own parameter
pi modifying the kernel function. For instance, if the kernel function is the Gaussian,
different hidden units realize the Gaussian functions withdifferent widths.

In the case of a regularization network, the optimal values of network parameters
were given by the data set and the corresponding linear system. In the case of a general-
ized regularization network not only weights have to be estimated, but also the centers
and kernel parameters. Typically, the values for those additional parameters are found
by various heuristics.

The generalized regularization networks cover a wide rangeof function classes cor-
responding to the different classes of prior assumptions and corresponding stabilizers.
The most known classes are RBF networks, tensor product splines and additive splines
(see the examples of stabilizers in Section 2.3.1).

5.2. RADIAL BASIS FUNCTION NETWORKS 47

5.2 Radial Basis Function Networks

The history ofradial basis function networkscan be traced back to the 1980s, particu-
larly to the study of interpolation problems in numerical analysis. It is where the radial
basis functions were first introduced, in the solution of thereal multivariate interpolation
problem [60, 39].

A radial functionis a function that is determined by itscenterand its output depends
only on the distance of the argument from this center. In a 2-dimensional space with the
Euclidean metric, the points with the same output values layon circles.

Definition 5.2.1 (Radial Function) Letf : R
d → R be a function

f(x) = ϕ(||x− c||2),

whereϕ : R → R and || · || is a suitable norm (typically the Euclidean norm). Thenf
is called aradial functionandc is called acenter.

The study of radial basis functions was followed by the introduction of a new type of
neural network — anRBF network[58, 46, 5]. The RBF network is realized as a linear
combination of basis functions and represents an alternative to the classical models,
such as multilayer perceptrons. Besides its motivation coming from numerical analysis,
it was inspired by the presence of many local response units in human brain.

Both the biological and numerical motivation meet with the regularization theory
that created the theoretical background for the RBF networkarchitecture. The regular-
ization approach with radial stabilizers leads to the regularization networks with radial
basis functions in their hidden layer (see Section 2.3.1). In general, the RBF network
belongs to the family of generalized regularization networks.

The hidden layer of an RBF network consists ofRBF unitsrealizing a particular
radial basis function. We consider the radial basis function using a general weighted
norm [15].

Definition 5.2.2 (Weighted Norm) LetC be ad× d matrix. Then the norm defined as

‖ x ‖2C= (Cx)T (Cx) = xT CTCx (5.2)

is called aweighted normdetermined by the matrixC.

It can be seen that the Euclidean norm is a special case of a weighted norm deter-
mined by the identity matrix. For the sake of simplicity, we will use the symbolΣ−1

instead ofCTC.1 In order to use a weighted norm each RBF unit has another additional
parameter, a matrixC.

1The reason for such notation is that it is inverse of covariance matrixΣ of a multivariate Gaussian
distribution represented by the corresponding hidden unit.

48 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

Figure 5.1: An RBF network.

Definition 5.2.3 (RBF Unit) AnRBF unit is a neuron with multiple real inputsx =
(x1, . . . , xd) and one real outputo, realizing a function

o(x) = ϕ(ξ); ξ =
‖ x− c ‖C

b
,

whereϕ : R → R is a radial basis function,c ∈ R
d is a center, b ∈ R is a width, and

C is a matrix defining the weighted norm.

Definition 5.2.4 (RBF Network) AnRBF networkis a 3-layer feed-forward network
with the first layer consisting ofd input units, a hidden layer consisting ofh RBF units,
and an output layer ofm linear units. Thus, the network computes the following func-
tion: f = (f1, . . . , fs, . . . , fm) : R

d → R
m :

fs(x) =

h
∑

j=1

wjsϕ

(‖ x− cj ‖Cj

bj

)

, (5.3)

wherewji ∈ R andϕ is a radial basis function (see Figure 5.1).

The RBF networks benefit from a rich spectrum of learning possibilities. In the fol-
lowing sections, we will describe three main learning approaches — the gradient learn-
ing, three-step learning, and genetic learning. The study of these algorithms together
with experimental results was also published in our papers [54, 53, 21].

All considered learning algorithms suppose that the numberof hidden units is given
in advance. According to the Cover’s theorem [8], a classification problem cast in a
high-dimensional space non-linearly is more likely to be linearly separable than in a
low-dimensional space. Therefore it is recommended for thenumber of hidden units to
be higher than the dimension of the input space.

Since the RBF networks have generally multiple outputs, we consider the training
set in the form

T = {(xi,yi); i = 1, . . . , N,xi ∈ R
d,yi ∈ R

m}, (5.4)

5.3. GRADIENT LEARNING 49

and work with the following error function, called atraining error:

E =
1

2

k
∑

i=1

m
∑

j=1

(fj(xi)− yij)
2. (5.5)

Minimizing the error function on the training set is always accompanied with the
danger of over-fitting. Different kinds of regularization can be used to prevent the over-
-fitting, such as penalizing the networks with large values of weights or large second
derivatives [3].

Another possibility is to keep a part of the data apart, as anevaluation set, and stop
the learning when the error on the evaluation set starts increasing [15]. This is applicable
for iterative algorithms, such as gradient learning and genetic learning.

In our experiments, we will also show that the danger of over-fitting increases with
the number of hidden units. So the control of network size is avery easy option to
prevent the over-fitting.

5.3 Gradient Learning

The most straightforward approach to the RBF network learning is based on the well-
-known back-propagation algorithm for the multilayer perceptron (MLP) [63, 74, 15].
The back-propagation learning is a non-linear gradient descent algorithm that modifies
all network parameters proportionally to the partial derivative of the training error. The
trick is in clever ordering of the parameters so that all partial derivatives can be com-
puted consequently.

Since the RBF network has formally similar structure as the MLP, it can be trained
by the modification of the back-propagation algorithm, see Algorithm 5.3.1.

As the RBF network has only one hidden layer, evaluating the derivatives (5.6)–(5.9)
is rather simple:

∂E

∂wkq
=

N
∑

i=1

ei
qϕk (xi) (5.6)

∂E

∂ck

= −Σ−1
k

bk

N
∑

i=1

[xi − ck]

‖ xi − ck ‖Ck

ϕ′
k (xi)

m
∑

s=1

ei
swks (5.7)

∂E

∂bk
= − 1

b2k

N
∑

i=1

‖ xi − ck ‖Ck
ϕ′

k (xi)

m
∑

s=1

ei
swks (5.8)

∂E

∂Σ−1
k

=
1

2bk

N
∑

i=1

[xi − ck][xi − ck]
T

‖ xi − ck ‖Ck

ϕ′
k (xi)

m
∑

s=1

ei
swks, (5.9)

50 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

whereei
q = fq(xi) − yiq, ϕk (xi) = ϕ

(

‖xi−ck‖Ck

bk

)

, ϕ′
k (xi) = ϕ′

(

‖xi−ck‖Ck

bk

)

, andϕ′

denotes a derivative ofϕ.

The gradient descent algorithm is a basic optimization method, nowadays usually
more sophisticated algorithms are used. We use a gradient descent enhanced with a
momentum term [57] (see the step 3 of Algorithm 5.3.1) for thestepwise parameter
modifications.

Note that the gradient descent algorithm is a local search algorithm. It depends on
the random initialization and suffers from local minima. Therefore several different
initializations should be tried and the best solution picked.

Input: Data set S = {xi,yi}Ni=1 ⊆ R
d × R

m

Output: Network parameters:
ck, bk,Σ

−1
k , wks, s = 1, · · · , m and k = 1, · · · , h

1. τ := 0
Setup randomly ck(0), bk(0), Σ−1

k (0), wks(0) and ∆ck(0),
∆bk(0), ∆Σ−1

k (0), ∆wks(0) for s = 1, · · · , m and k = 1, · · · , h
2. τ := τ + 1

3. Evaluate: s = 1, · · · , m a k = 1, · · · , h

∆ck(τ) = −ǫ ∂E
∂ck

+ α∆ck(τ − 1)

∆bk(τ) = −ǫ ∂E
∂bk

+ α∆bk(τ − 1)

∆Σ−1
k (τ) = −ǫ ∂E

∂Σ−1

k

+ α∆Σ−1
k (τ − 1)

∆wks(τ) = −ǫ ∂E
∂wks

+ α∆wks(τ − 1),

where ǫ ∈ (0, 1) is the learning rate, α ∈ 〈0, 1〉 is the
momentum coefficient.

4. Change the values of parameters: s = 1, · · · , m a k =
1, · · · , h

ck(τ) = ck(τ − 1) + ∆ck bk(τ) = bk(τ − 1) + ∆bk
Σ−1

k (τ) = Σ−1
k (τ − 1) + ∆Σ−1

k wks(τ) = wks(τ − 1) + ∆wks

5. Evaluate the error of the network.

6. If the stop criterion is not satisfied, go to 2.

Algorithm 5.3.1. Gradient learning.

5.4. THREE-STEP LEARNING 51

More details on the gradient learning algorithm and a detailed description of our
algorithm for the computation of derivatives (5.6)–(5.9) can be found in [21].

5.4 Three-Step Learning

The gradient learning described in the previous section unifies all parameters by treating
them in the same way. Thethree-step learning, on the contrary, takes advantage of the
well-defined meaning of RBF network parameters ([16], [46]).

The learning process is divided into three consequent stepscorresponding to the
three distinct sets of network parameters. The first step consists of determining the
hidden unit centers, in the second step the additional hidden units parameters (widths,
weighted norm matrices) are estimated. During the third step the output weights are
determined. The algorithm is listed in Algorithm 5.4.1.

The goal of the first step is to distribute the hidden units in the input space so that
the positions of the centers reflect the density of the data points. The centersci are set
up so that they minimize the quality

EV Q =

N
∑

i=1

||xi − cjxi
||2, wherejxi

= argminj||xi − cj||2, (5.10)

wherexi are the data points. This can be done by using various clustering or vector
quantization techniques, such as the k-means algorithm [13].

The second step sets up the widths and weighted norm matrices— if they are
present. These parameters determine the size and the shape of the area controlled by
the unit.

The suitable parameter values can be found by the gradient minimization of the
function

E(b1 · · · bh; Σ−1
1 · · ·Σ−1

h) =
1

2

h
∑

r=1

[

h
∑

s=1

ϕ (ξsr) ξ
2
sr − P

]2

(5.11)

ξsr =
‖ cs − cr ‖Cr

br
,

whereP is the parameter controlling the overlap between the areas of importance be-
longing to the particular units [47].

In case of widths we can get around the minimization by using simple heuristics.
The one used most often is called theq-neighbors rule, and it simply sets the width
proportionally to the average distance ofq nearest neighboring units (q is typically small
number, such as 2 or 3).

The third step is supervised learning known from the multilayer perceptron networks
reduced to a linear regression task. The only parameters to be set are the weights be-
tween the hidden and the output layer, which represent the coefficients of the linear

52 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

combinations of RBF units outputs. Our goal is to minimize the overall error func-
tion (5.5) with respect to the weightswij.

It can be achieved by using gradient minimization or directly solving the linear sys-
tem:

PW = Y, (5.12)

where the matrixP is ad× h matrix of outputs of RBF units,W is ad ×m matrix of
weights andY is ak ×m matrix of the desired outputsyi.

As we typically have more training samples than hidden units, the system (5.12) is
overdetermined. So any of various least square methods is used to find the solution.

The weights can be computed as

W = P+Y, (5.13)

whereP+ = (PTP)−1PT is aMoore-Penrose pseudo-inverse[48, 56]. Alternatively,
the methods based on SVD or QR decomposition [62] can be used.

It is true, however, that the success of this learning step depends on the previous
steps.

Input: Data set S = {xi,yi}Ni=1 ⊆ R
d × R

m

Output: Network parameters:
ck, bk,Σ

−1
k , wks, s = 1, · · · , m and k = 1, · · · , h

1. Determine the centers ci, i = 1, . . . , h using vector
quantization

2. Set up widths bi and matrices Σ−1
i for i = 1, . . . , h by

minimization of (5.11)

3. Find the values for wjs for j = 1, . . . , h and s = 1, . . . , m
by solving linear system (5.12) using a least square
algorithm.

Algorithm 5.4.1. Three-step learning.

5.5 Genetic Learning

The third learning method presented here is based on the genetic algorithms (GAs). A
reader who is not familiar with GAs is kindly ask to read Section 4.6.

To apply the GAs to RBF network learning, one has to devise a suitable way of
encoding the parameters and adopt the genetic operators to work on corresponding in-
dividuals.

5.5. GENETIC LEARNING 53

Unlike the traditional GAs approaches, we use a direct float encoding for the RBF
network parameters. An individual is formed by a sequence ofblocks. Each block
contains a vector of values of one RBF unit parameters. See Figure 5.2.

The selection operator is used to choose individuals to a newpopulation. Each indi-
vidual is associated with the value of the error function of the corresponding network2.
The selection is a stochastic procedure, in which the individual probability of being
chosen to the new population is the higher, the smaller the error function of the corre-
sponding network is. In our algorithm we use the standardroulette-wheelselection.

Individual

B1 B2 Bi Bh· · ·· · ·

ci1, ci2, · · · , cin, ai
11

, .., ai
nn, bi, wi1, · · · , win

Block

Figure 5.2: An individual representing an RBF network.

The crossover operator composes a pair of new individuals combining parts of two
old individuals. First, a crossover point is randomly chosen in the both individuals, and
then the corresponding parts of individuals are swapped (see Algorithm 5.5.1). The
positive effect of the crossover is the creation of new solutions recombining the current
individuals.

Input: I1 = {B1
1 , . . . , B

1
h}

I2 = {B2
1 , . . . , B

2
h}

Output: I∗1 , I
∗
2

1. kcross ← random(h)

2. I∗1 ← {B1
1 , . . . , B

1
kcross

, B2
kcross+1, . . . , B

2
h}

3. I∗2 ← {B2
1 , . . . , B

2
kcross

, B1
kcross+1, . . . , B

1
h}

Algorithm 5.5.1. Crossover.

2In the context of the GAs we often speak about the fitness of theindividual. The error plays the same
role, with the difference that a low error corresponds to a high fitness, and vice versa.

54 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

Finally, the mutation operator represents small local random changes of an individ-
ual (see Algorithm 5.5.2). Both the crossover and mutation are applied with certain
probabilities only.

Input: I = {B1, . . . , Bh}
Output: I∗

1. k ← random(h)

2. B∗
k ← Bk

3. for p in B∗
k = {ck1, . . . , ckd, a

k
11, . . . , a

k
dd, bk, wk1, . . . , wkm}

do

δ ← random(−1.0, 1.0)

p← p + δ

done

4. I∗ ← {B1, . . . , B
∗
k, . . . , Bh}

Algorithm 5.5.2. Mutation.

The sketch of the genetic learning is listed in Algorithm 5.5.3. The GAs are a robust
mechanism that usually does not suffer from the local extremes problem. The price
for this robustness is a bigger time complexity, especiallyfor the problems with bigger
individuals resulting in a huge search space.

Besides the standard GAs tailored to the RBF networks we havealso implemented
the canonical version of genetic learning described in [50]. This algorithm modifies the
crossover and mutation operators in such a way that they operate on a minimal search
space.

For more details on the implementation of the genetic learning and its variants
see [21, 54, 24, 23].

5.6 Hybrid Methods

The three described algorithms represent three main branches of the wide range of RBF
learning algorithms. For each approach, many variants and various modifications exist.

Since these learning algorithms have been studied quite well, we believe that the
main potential for the further improvements lies in clever combinations rather than fur-
ther modifications of the available algorithms. The hybrid approaches based on com-
binations of the well-known algorithms may achieve a synergy effect and thus over-
-perform the single algorithms.

5.6. HYBRID METHODS 55

Input: Data set S = {xi,yi}Ni=1 ⊆ R
d ×R

m

Output: Network parameters:
ck, bk,Σ

−1
k , wks, s = 1, · · · , m and k = 1, · · · , h

1. Create random initial population of N
individuals P0 = {I1, · · · , IN}.
i← 0

2. For each individual compute the error on the
training set.

3. If the minimal error in the current population
is small enough, stop and return the parameters
coded in the individual with the minimal error.

4. Create empty population Pi+1 and while the
population has less than N individuals repeat:

Selection: Select two individuals from Pi.
I1 ← selection(Pi)
I2 ← selection(Pi)

Crossover: with probability pcross:
(I1, I2)← crossover(I1, I2)

Mutation: with probability pmutate:
Ik ← mutate(Ik), k = 1, 2

Insert: insert I1, I2 into Pi+1

5. Go to 2.

Algorithm 5.5.3. Genetic learning.

In this section, we introduce two hybrid approaches — thehybrid genetic learning
and thefour-step learning algorithm.

The genetic learning can be combined with the other algorithms in various ways. In
particular, the GAs can be used to perform the first one or two steps in the three-step
learning.

In the former case, GAs are applied to solve the vector quantization problem of the
first step, i.e. to find the centers minimizing the error (5.10). The application of the GAs
is similar as in the genetic learning, but the individual codes only the network centers
and the corresponding error is evaluated according to (5.10).

56 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

The latter case replaces both the first and second step by the GAs. The third step
setting the output weights is performed by a linear optimization technique. There are
good reasons for such combinations. The first two steps are based on heuristics so the
use of the GAs is appropriate for them. On the other hand, the determination of output
weights is a linear optimization task, for which many efficient algorithms exist.

Such an approach is calledhybrid genetic learning. It uses the same encoding as the
genetic learning, except that the individual encodes only the hidden layer, not the output
weights. To evaluate the error associated with the individual, we first have to find the
weights optimal for the corresponding hidden layer, and then evaluate the error of the
obtained network. See Algorithm 5.6.1. More details on the hybrid genetic learning can
be found in [54].

The second hybrid approach is based on the three-step learning followed by the
gradient learning. The result of the three-step learning isused as an initial value for the
gradient learning that further tunes the values of all parameters. This algorithm is called
four-step learning. See Algorithm 5.6.2. More details can be found in [53].

Input: Individual I, data set T
Output: Error associated with I

1. Create the RBF network f represented by the
individual I

2. Run the least squares method to set the weights
of f

3. Compute the error of network f on the data set T

Algorithm 5.6.1. Error evaluation in Hybrid Genetic learning.

5.6. HYBRID METHODS 57

Input: Data set S = {xi,yi}Ni=1 ⊆ R
d ×R

m

Output: Network parameters:
ck, bk,Σ

−1
k , wks, s = 1, · · · , m and k = 1, · · · , h

1. τ := 0
Run the Algorithm 5.4.1 to setup ck(0), bk(0),
Σ−1

k (0), wks(0) and ∆ck(0), ∆bk(0), ∆Σ−1
k (0), ∆wks(0)

for s = 1, · · · , m and k = 1, · · · , h
2. τ := τ + 1

3. Evaluate: s = 1, · · · , m a k = 1, · · · , h

∆ck(τ) = −ǫ ∂E
∂ck

+ α∆ck(τ − 1)

∆bk(τ) = −ǫ ∂E
∂bk

+ α∆bk(τ − 1)

∆Σ−1
k (τ) = −ǫ ∂E

∂Σ−1

k

+ α∆Σ−1
k (τ − 1)

∆wks(τ) = −ǫ ∂E
∂wks

+ α∆wks(τ − 1),

where ǫ ∈ (0, 1) is the learning rate, α ∈ 〈0, 1〉 is
the momentum coefficient.

4. Change the values of parameters: s = 1, · · · , m a
k = 1, · · · , h

ck(τ) = ck(τ − 1) + ∆ck bk(τ) = bk(τ − 1) + ∆bk
Σ−1

k (τ) = Σ−1
k (τ − 1) + ∆Σ−1

k wks(τ) = wks(τ − 1) + ∆wks

5. Evaluate the error of the network.

6. If the stop criterion is not satisfied, go to 2.

Algorithm 5.6.2. Four-step learning.

Chapter 6
Experiments

Errors using inadequate data are much
less than those using no data at all.

Charles Babbage

In this, chapter our experimental study of methods and algorithms described in the pre-
vious chapters is represented. In the next section we explain our motivation and set
our goals. Section 6.2 describes data sets and methodology we have used in our ex-
periments. In Section 6.3 we present experiments illustrating regularization network
behavior. Section 6.4 describes experimental results concerning various learning meth-
ods for RBF networks. Then, Section 6.5 compares the regularization network and RBF
network approach. A real-life problem, the prediction of river flow rate, handled by both
the regularization networks and RBF networks, is presentedin Section 6.6. Finally, Sec-
tion 6.7 summarizes the experimental results.

6.1 Experimental Study of Learning Algorithms

The study of machine learning and neural networks has both theoretical and empirical
aspects. In general, the goal of experimental study is deeper understanding of behaviors
and the conditions under which they occur. In the case of machine learning, the behavior
is an ability to learn and generalize, and the conditions arelearning algorithms and
domain knowledge [37].

The learning algorithms described in this work benefit from avery good theoretical
background, since they are based on the regularization theory. Regularization networks
possess a rigorous derivation, while RBF networks as generalized regularization net-
works are based also on heuristical approaches. We believe that for the both approaches

59

60 CHAPTER 6. EXPERIMENTS

the experimental study can further improve our understanding of these algorithms and
their behavior. The goal of our experiments is to verify the theoretical results and fill in
the gap between the theory and practice.

No matter how strong the theoretical background of a particular learning algorithm
is, in practice we always meet numerical inaccuracies, round-off errors and other con-
straints given by the hardware limits of contemporary computers. The experiments
should provide an additional source of information that canbe used together with the
theoretical results before applying the individual learning algorithm to a real-life prob-
lem.

The main goals of our experiments can be summarized as following:

1. demonstrate the behavior of regularization networks;

2. study the role of regularization parameter and kernel function;

3. compare different types of kernel functions;

4. demonstrate the behavior of our product kernels and sum kernels and compare
them to the the classical solutions;

5. demonstrate the behavior of RBF networks as the representatives of generalized
regularization networks;

6. compare the regularization networks and RBF networks in order to find out the
difference between an ‘exact solution‘ and an ‘approximatesolution‘.

The results answering the tasks stated by our goals can be found in the following
sections. The Section 6.3 deals with Goal 1. Experiments regarding Goal 2 are presented
in Subsection 6.3.1; and Goal 3 is tackled in Subsection 6.3.3. Subsection 6.3.4 and
Subsection 6.3.5 are devoted to Goal 4. Results concerning Goal 5 are presented in
Section 6.4. Finally, Goal 6 is studied in Section 6.5. In addition, in Section 6.6 the
regularization networks and RBF networks will be applied onthe prediction of flow rate
on the Czech river Ploučnice as an example of a real-life application.

6.2 Methodology and Data

In order to achieve high comparability of our results, we have chosen frequently used
tasks for the experiments with learning algorithms. As benchmark tasks we use the data
sets from the PROBEN1 repository, the artificial tasktwo spirals, and the well-known
image ofLenna. In addition, the task of flow rate prediction was picked to represent
real-life problems.

6.2. METHODOLOGY AND DATA 61

Task name n m Ntrain Ntest Type
cancer 9 2 525 174 class
card 51 2 518 172 class
diabetes 8 2 576 192 class
flare 24 3 800 266 approx
glass 9 6 161 53 class
heartac 35 1 228 75 approx
hearta 35 1 690 230 approx
heartc 35 2 228 75 class
heart 35 2 690 230 class
horse 58 3 273 91 class
soybean 82 19 513 170 class

Table 6.1: Overview of Proben1 tasks. Number of inputs (n), number of outputs (m),
number of samples in training and testing sets (Ntrain,Ntest). Type of task: approxima-
tion or classification.

PROBEN1 [61] is a repository of benchmark data sets intended for experiments with
neural networks. It contains approximation as well as classification tasks. Most of the
tasks are also available in the UCI machine learning repository [10].

Table 6.1 gives a summary of the tasks from PROBEN1. Each task is present in
three variants, three different partitioning into training and testing data. We refer to this
variants with suffix 1,2, or 3 (e.g.CANCER1, CANCER2, CANCER3). More details of
the individual data sets, their source, and qualities can befound in [61].

Two spiralsis an artificial two-dimensional classification problem of two intertwined
spirals. The training set contains 194 data points (see Figure 6.1).

TheLennaimage [17] was used as an approximation task. Our training set contains
2500 samples forming the image of50× 50 pixels, see Figure 6.2.

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

0
1

Figure 6.1: Two spirals problem. Figure 6.2: Lenna.

62 CHAPTER 6. EXPERIMENTS

The real-life tasks are represented by river flow rate prediction. The data set contains
samples for each day consisting of the present river flow rateand total rainfall on the
Czech river Ploučnice. The goal is to predict the current flow rate from the previous
values of flow rate. Several variants of the task were createdby preprocessing. They are
described in Section 6.6.

In all our experiments we work with distinct data sets for training and testing, re-
ferred to as thetraining setand thetest set. The learning algorithm is run on the training
set, including the possible cross-validation. The test setis never used during the learning
phase, it is only used for the evaluation of error of the resulting network.

If not stated otherwise, the following procedure is used forexperiments with RNs:

1. find the values forγ and the kernel’s parameters with the lowest cross-validation
error on the training set,

2. use the whole training set and the parameters found by Step1 to estimate the
weights of the RN,

3. evaluate the error on the testing set.

For the data set{xi,yi}Ni=1 ⊂ R
d × R

m and the network representing a functionf ,
the normalized error is computed as follows:

E = 100
1

Nm

N
∑

i=1

||yi − f(xi)||2, (6.1)

where|| · || denotes the Euclidean norm.
In the following text, we will use the notationEtrain andEtest for the error computed

over the training seta and test set, respectively.
The experiments have been performed in our distributed multi-agent system called

Bang [51, 2], the standard numerical library LAPACK [38] wasused to solve linear least
square problems (step 2 in Algorithm 4.1.1).

For the experimental study of learning algorithms, more than one single evaluation
of the learning algorithm is needed. Each algorithm has to beevaluated under different
conditions, i.e. on different data sets and with different setups.

Most experiments were run on the computer clustersLomond[41], JoyceandBlade.
The former cluster is the Sun cluster available in EdinburghParallel Computing Centre,
University of Edinburgh. The latter two are clusters of workstations with the Linux
operating system at the Institute of Computer Science, Academy of Sciences of the
Czech Republic.

Time requirements listed in following sections refers to anIntel Xeon 2.80 GHz
processor. The times are in[h] : m : s format, whereh stands for hours,m for minutes
ands for seconds; and are they are rounded up to seconds.

6.3. REGULARIZATION NETWORKS 63

6.3 Regularization Networks

In this section we present the results of our experiments with regularization networks.
First we demonstrate the role of the regularization parameter and the kernel function,
and show that their choice is crucial for the performance of the RN learning algorithm.
Then, in Subsection 6.3.2, we demonstrate a behavior of algorithms for the setup of
these metaparameters. In Subsection 6.3.3, the most commonkernel functions are com-
pared. Subsection 6.3.4 describes the results of experiments with product and sum ker-
nels. Subsection 6.3.5 demonstrates the advantages of theDivide et Imperaapproach.
Finally, Subsection 6.3.6 gives the brief summary of results presented throughout this
section.

6.3.1 Role of Regularization Parameter and Kernel Function

The aim of this experiment was to demonstrate the role of metaparameters in the RN
learning and to illustrate how they influence the results.

First, we tried to run the RN learning algorithm (Algorithm 4.1.1) on the tasks from
PROBEN1. A regularization network with an Gaussian kernel was used. The setup was
done manually and different values of the regularization parameter and width were used.

Figure 6.3 shows the dependency of errors in the training setand the test set on the
value of the regularization parameterγ. In addition, the value of the condition number
of the corresponding linear system is displayed. This particular image was made on the
data setHEARTA1.

We can see that the error on the training set increases with the increasing value
of the regularization parameterγ. On the other hand, the error on the test set is high
when the regularization parameter is close to zero; then it decreases with the increas-
ing regularization parameter and at some point starts to increase again. This behavior
corresponds to the trade-off between the data term and the regularization term in the
minimized functional (see Section 2.2). If the regularization parameter is too small, we
observe over-fitting; if it is too high, the data term has no influence on the solution and
both the training and test errors are increasing.

Note also the condition number. It decreases with the increasing regularization pa-
rameter. That is a simple consequence of the increasing regularization term that makes
the diagonal dominant.

Figure 6.4 illustrates the test error dependency both on theregularization parameter
γ and the width of the Gaussian kernelb. It uses the two-dimensional plot with contours.
The darker colors (red) correspond to the lowest values, thebrighter colors (yellow,
white) to higher values. So we can see that the optimal parameters are of width0.3 and
the regularization parameter about0.001.

The lowest values of the error function are obtained with thewidths between 0.2
and 0.4. For the widths of 0.1 and smaller, and 0.7 and higher,the error is significantly

64 CHAPTER 6. EXPERIMENTS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-6 -5 -4 -3 -2 -1

er
ro

r
/ l

og
10

(c
on

di
tio

n
nu

m
be

r)

log10(gamma)

Hearta

Training error
Testing error

log10(Condition number)

Figure 6.3: Dependency of errors (on the training and test data sets) and the condition
number of the corresponding linear system on the regularization parameterγ. Obtained
by a regularization network with the Gaussian kernel on the taskHEARTA1.

higher. It shows that the width of the Gaussian function influences the results as well as
the regularization parameter.

The plot is generated from the results obtained on the data set GLASS1.
Second, we have chosen an approximation of the Lenna image. The training set

LENNA contains 2500 samples representing the image of50 × 50 pixels. Again, we
have run the RN learning algorithm with different setups. The obtained regularization
networks were used to generate a100× 100 image.

Figure 6.5 displays the resulting images. Again, the higherthe regularization pa-
rameter is, the smoother the result is. For too high regularization parameters, we get
black images, as in the lowest row.

The choice of the Gaussian kernel width also plays its role. Note the leftmost col-
umn. The widths are too small, so for the inputs not present inthe training set we get
almost zero output from the hidden layer, which leads to black strips. Clearly, such a
problem cannot be cured by the regularization parameter.

Both the experiments illustrate the influence of the regularization parameter and
the kernel function on the regularization network performance. They show that the
choice of these parameters is crucial for successful learning; one cannot choose arbitrary
values and some kind of search for optimal metaparameters isnecessary. In addition, a
wrong choice of the kernel function (such as narrow Gaussians for the approximation of
Lenna image) cannot be cured by changing regularization parameter, and might result
in completely useless solution.

6.3. REGULARIZATION NETWORKS 65

gamma

w
id

th

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

glass1, test set error

Figure 6.4: Dependency of error on the test data set on the choice of regularization
parameterγ and widthb. Obtained by a regularization network with the Gaussian kernel
on the taskGLASS1.

6.3.2 Setup of the Metaparameters

This experiment demonstrates a behavior of the setup of the metaparameters, namely
of the adaptive grid search algorithm (see Algorithm 4.5.1)and the genetic parameter
search algorithm (see Algorithm 4.6.1).

These algorithms were tested on the tasks from PROBEN1 repository, the taskGLASS1
was chosen randomly for illustration of the results. Both algorithms were run on this
task. After each iteration the computation was stopped and the test error was evaluated
using the actual best metaparameters.

A run of the adaptive grid search algorithm on theGLASS1 task is displayed in Fig-
ure 6.6. The cross-validation error decreased significantly during the first two iterations
of the algorithm (i.e. about 40 evaluations of cross-validation error), then the decrease is
very small. The test error also decreased during the first 40 evaluations, then it oscillates.

The genetic parameter search is illustrated in Figure 6.7, which was also generated
from a run on theGLASS1 task. The population had only 5 individuals. The 100 gen-
erations were computed, but the cross-validation error andtest error decrease is not
significant during the last 30 generations.

The lazy evaluations mentioned in Section 4.6 were not used.We have tested them
on the tasks from PROBEN1 repository, and they typically cause divergence of the al-

66 CHAPTER 6. EXPERIMENTS

0.5 1.0 1.5 2.0
0.0

10−5

10−4

10−3

10−2

Figure 6.5: Images generated by the regularization networklearned on the Lenna image
(50×50 pixels) using Gaussian kernels with the widths from 0.5 to2.0 and the regular-
ization parameters from 0.0 to 0.01.

6.3. REGULARIZATION NETWORKS 67

 7

 7.5

 8

 8.5

 9

 0 20 40 60 80 100 120 140 160

C
ro

ss
-v

al
id

at
io

n
er

ro
r

/ T
es

t e
rr

or

Number of cross-valuation evaluations

Cross-validation error
Test error

Figure 6.6: The cross-validation error and the corresponding test error during a run of
the adaptive grid search algorithm (Algorithm 4.5.1) on theGLASS1 task.

gorithm. It is probably caused by the fact that all these tasks are rather small so the
differences between the individual partitioning in the k-fold cross-validation procedure
are too high.

Both algorithms achieved the similar test error (around 6.9). However, the genetic
parameter search needed much more evaluations of cross-validation error (100 gener-
ations corresponds to 500 evaluations, while the adaptive grid search needed around
60).

The time requirements needed for 10 evaluations of the cross-validation error on
tasks from PROBEN1 repository are listed in Table 6.2. The table also containsthe time
requirements of the final run1 of the RN learning algorithm (Algorithm 4.1.1).

In all our following experiments, we use three iterations (54 evaluations) of the adap-
tive grid search algorithm for the setup of the metaparameters. The genetic parameter
search might be useful for tasks where more parameters are sought (i.e. more compli-
cated composite kernels with several parameters), so the grid has more dimensions and
the adaptive grid search would need more evaluations.

1i.e. one run of the algorithm on the whole training set

68 CHAPTER 6. EXPERIMENTS

 6.5

 7

 7.5

 8

 8.5

 9

 0 20 40 60 80 100

C
ro

ss
-v

al
id

at
io

n
er

ro
r

/ T
es

t e
rr

or

Number of generations

Cross-validation error
Test error

Figure 6.7: The cross-validation error and the corresponding test error during a run of
the genetic parameter search algorithm (Algorithm 4.6.1) on theGLASS1 task.

Task Cross-validation RN learning
(10 evals.)

cancer 0:23 0:01
card 1:08 0:01
diabetes 0:28 0:01
flare 4:41 0:03
glass 0:03 0:01
heart 2:19 0:02
hearta 2:20 0:02
heartac 0:10 0:01
heartc 0:10 0:01
horse 0:11 0:01
soybean 1:05 0:02

Table 6.2: Time requirements of the regularization networklearning. Times needed for
10 evaluations of cross-validation error and times for the final run of the RN learning
algorithm (Algorithm 4.1.1) are listed.

6.3. REGULARIZATION NETWORKS 69

6.3.3 Comparison of Kernel Functions

The goal of this experiment was to compare regularization networks with different ker-
nel functions.

We know that the kernel function represents prior knowledgeof the given problem,
and so it has to be chosen according to the given task. Typically, such prior knowledge
is not available and one has to try several kernel functions.

In our experiments, we try to answer the question, whether there is a kernel func-
tion that is a better first choice than another and whether there is any class of kernel
functions that are suitable for most tasks. We do not expect to find a kernel function
that outperforms the others in all situations, simply because it is not possible. We rather
expect that the experimental study will help us to understand better how the choice of
kernel influences the solution, and give us clues for its optimal choice.

For this purpose we have chosen the data collection PROBEN1 (see Table 6.1). The
regularization networks with the kernel functions listed in Table 6.3 (and also shown in
Figure 6.8) were used. They represent the most common kerneland activation functions
used in neural networks and learning methods.

Figure 6.8: Kernel functions.

Table 6.4 compares the training and test errors achieved with these kernels on the
data tasks from PROBEN1. For a better illustration, the results are also summarized in
Figure 6.10.

In addition, Figure 6.9 compares the overall error (error summed over all the data
sets) on the training set and the test set.

In Table 6.4 the lowest errors on the test set in each row are highlighted. In most
cases, the lowest error was achieved by the RN with the inverse multi-quadratic kernel

70 CHAPTER 6. EXPERIMENTS

Gaussian K(x, y) = e−||x−y||2

Inverse Multi-quadratic K(x, y) = (||x− y||2 + c2)−1/2

Multi-quadratic K(x, y) = (||x− y||2 + c2)1/2

Thin Plate Spline K(x, y) = ||x− y||2n+1

Sigmoid K(x, y) = tanh(xy − θ)

Table 6.3: Kernel functions.

Figure 6.9: Comparison of overall training error (left) andtest error (right) for different
kernels.

function. For many cases, the Gaussian function achieves the second lowest test error.
It can be seen also from Figure 6.10 and from the comparison ofoverall test errors
at Figure 6.9. Both the functions are functions with local response, i.e. they give a
relevant output only in the local area around its center. Theresults justify the usage
of local functions, including the Gaussian function, and show that the commonly used
Gaussian function is a good first choice.

Comparing the training errors in Table 6.4, we can see that the lowest error on the
training set was achieved by the RN with the thin plate splinekernel function and multi-
-quadratic function. The multi-quadratic function, however, failed completely on the
GLASS tasks, therefore the overall training error in Figure 6.9 ishigher. The almost zero
training error on many tasks is caused by the fact that the zero regularization parameter
was chosen by the setup procedure.

The useful property of these kernels is that even without theregularization term,
they preserve the generalization ability (their test errors are not high). Such kernels are
suitable for tasks without noise, for which the close fittingof training data is desirable.

6.3. REGULARIZATION NETWORKS 71

Multi- Inv. Multi- Sigmoid Thin-Plate
Gaussian quadratic quadratic Spline

Etrain Etest Etrain Etest Etrain Etest Etrain Etest Etrain Etest

cancer1 2.38 1.79 0.00 1.61 1.791.49 3.02 1.83 0.00 1.49
cancer2 1.86 3.01 0.00 3.03 1.462.88 2.54 3.58 0.00 2.88
cancer3 2.07 2.79 0.00 3.25 1.892.59 2.66 2.84 0.00 2.74
card1 7.71 10.00 0.00 22.35 8.69 10.01 24.72 24.98 0.00 11.47
card2 6.79 12.75 0.00 15.21 7.31 12.56 26.17 26.45 0.00 14.06
card3 7.10 12.32 0.84 14.70 6.00 12.36 11.51 15.39 0.00 14.15
diabetes1 14.17 16.22 15.81 17.25 13.13 16.12 13.77 16.73 11.79 17.07
diabetes2 13.95 16.85 15.88 17.11 14.3316.80 13.09 18.35 13.63 16.82
diabetes3 13.75 15.99 15.92 16.32 13.6315.93 13.97 16.69 11.85 17.18
flare1 0.36 0.55 0.19 0.64 0.350.54 0.38 0.55 0.26 0.58
flare2 0.42 0.27 0.21 0.42 0.430.27 0.45 0.30 0.31 0.34
flare3 0.40 0.34 0.20 0.47 0.41 0.34 0.41 0.35 0.29 0.41
glass1 3.90 7.33 84.91 70.75 2.206.12 6.76 8.58 0.00 6.41
glass2 3.58 7.78 31.56 27.56 1.886.79 6.90 8.92 0.00 7.29
glass3 3.87 7.25 24.75 36.83 2.246.14 6.74 9.09 0.00 6.20
heartac1 3.80 3.13 0.00 4.08 4.162.82 9.55 8.80 0.00 3.51
heartac2 2.75 3.95 0.00 5.00 3.383.84 8.15 7.27 0.26 4.77
heartac3 3.12 5.17 0.00 4.92 3.34 5.08 5.43 6.14 0.004.72
hearta1 3.46 4.46 0.00 5.73 3.174.31 8.44 8.40 2.47 5.14
hearta2 3.48 4.26 0.00 5.79 3.18 4.13 8.11 8.31 0.00 4.86
hearta3 3.39 4.49 0.00 5.52 3.124.40 8.53 8.43 0.00 4.96
heartc1 8.78 15.93 0.00 15.93 9.46 15.94 18.86 21.64 0.0015.65
heartc2 11.55 6.52 0.00 7.33 12.386.16 24.80 22.71 0.00 6.65
heartc3 6.54 13.66 0.00 14.23 8.03 12.72 20.34 18.68 0.00 13.82
heart1 9.76 13.69 0.00 16.95 9.5813.59 26.92 27.69 7.23 13.83
heart2 9.48 13.86 0.00 19.29 9.2913.74 14.34 16.80 6.82 14.69
heart3 8.92 16.01 0.00 21.84 8.03 16.15 26.27 27.40 0.00 18.86
horse1 4.51 12.47 0.16 12.33 7.1611.69 18.43 16.75 0.16 12.13
horse2 4.14 15.38 1.08 17.72 5.70 15.34 18.08 17.48 0.18 16.72
horse3 0.82 14.26 0.18 14.52 0.3714.00 18.36 18.20 0.18 14.23
soybean1 0.12 0.67 0.00 0.70 0.100.66 4.80 4.83 0.00 0.68
soybean2 0.17 0.49 0.010.48 0.22 0.49 4.78 4.88 0.01 0.50
soybean3 0.15 0.61 0.01 0.67 0.23 0.58 4.80 4.82 0.01 0.66

Table 6.4: Comparison of errors on the training and test setsobtained by regularization
networks with different kernel functions. For each task, the lowest error on the test set
is highlighted.

72 CHAPTER 6. EXPERIMENTS

Figure 6.10: Comparison of test errors for RNs with different kernel functions on the
tasks from PROBEN1 repository.

6.3.4 Product and Sum Kernels

The following experiment should demonstrate the feasibility of product and sum kernels
proposed in Chapter 3.

For this purpose we have chosen regularization networks with the Gaussian kernels,
since the Gaussian function is the most common kernel function. The product and
sum kernels were composed as products of two or three Gaussian functions of different
widths, and sums of two Gaussian functions of different widths, respectively. In case
of the product kernels, the input attributes were split intotwo, resp. three input vectors
randomly.

The resulting errors achieved by the RNs, PKRNs, and two SKRNs on the tasks from
PROBEN1 are compared in Table 6.5. Figure 6.11 compares the RN with the Gaussian
kernels and sum kernels.

The lowest test error in each row of Table 6.5 is highlighted.The SKRN achieved
the lowest error on 23 tasks, the RN on 13 tasks, and the PKRN ontwo tasks. However,
the errors of all the three networks are comparable.

6.3. REGULARIZATION NETWORKS 73

 0

 2

 4

 6

 8

 10

 12

 14

 16

SoybeanHorseHeartcHeartacHeartaHeartGlassFlareDiabetesCardCancer

E
rr

or
 o

n
th

e
T

ra
in

 S
et

Data set

Gaussian kernels
Sum Kernels

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

SoybeanHorseHeartcHeartacHeartaHeartGlassFlareDiabetesCardCancer

E
rr

or
 o

n
th

e
T

es
t S

et

Data set

Gaussian kernels
Sum Kernels

Figure 6.11: Comparison of the sum kernel (green) and the Gaussian kernel (red) on the
tasks from PROBEN1. Training error (left) and test error (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-10 -5 0 5 10

winning sum_kernel for cancer1
winning simple kernel for cancer1

Figure 6.12: Chosen kernels for theCANCER1 task. The Gaussian kernel (green) and
the sum kernel (red).

The SKRN showed an interesting behavior on several data sets. In Table 6.5 and
Figure 6.11 we can see that the training error on theCANCER tasks and almost all vari-
ants ofHEART is almost zero (rounded to zero). Still the corresponding test errors are
not high, but comparable to those achieved by the RN and the PKRN; in many cases
even the lowest ones. In these cases, the regularization parameter chosen by the setup
is close to zero, therefore the training error is very low. Still the SKRNs possess the
generalization ability.

This is caused by the kernel shape. In Figure 6.12 there is a kernel function found by
the setup onCANCER1 tasks. It consists of two Gaussians, a wider one and very narrow
one. The behavior of such a kernel has a clear explanation. The narrow Gaussian
emphasizes the strict interpolation of the training sample, since for the inputs from the
training set, the corresponding hidden unit outweighs the other units. On the other hand,
the generalization property is assured by the wider Gaussian function. In addition, such

74 CHAPTER 6. EXPERIMENTS

a kernel leads to the linear system with a dominant diagonal,so from this point of view,
the regularization member is not needed.

6.3.5 Divide et Impera

In Section 3.5.2 we proposed aDivide et Imperatechnique for dealing with bigger data
sets. The main idea is to divide the tasks into several independent subtasks, that is
done by partitioning of the data set into several subsets. Then we run the RN learning
algorithm for each of these subsets, and get a result as a sum of the networks obtained.

Since the time complexity needed for solving of linear system2 isO(n3), replacing
one bigger linear system by several smaller one does not onlyreduce the space com-
plexity, but also the time complexity. However, we expect that such an approach would
lead to worse results, i.e. higher errors.

Therefore the goal of another experiment was to compare the standard algorithm
with the Divide et Imperaapproach. Again we used the repositoryPROBEN1 and the
regularization networks with Gaussian kernels.

For theDivide et Imperaapproach, each data set was divided into two subsets, with
the exception ofCANCER, DIABETES, FLARE, andSOYBEAN, where we used the parti-
tioning into three subsets.

Table 6.6 lists the errors obtained by the single RN learningalgorithm and the Divide
et Impera approach on the tasks from PROBEN1. The lowest test error for each task is
highlighted. As expected, in most cases they were achieved by the basic algorithm.
However, the test errors achieved by the Divide et Impera approach are comparable,
even in 8 cases equal to or lower than the errors obtained by the basic algorithm. Three
of these cases (FLARE2,FLARE2, SOYBEAN1) are the tasks divided into 3 subsets.

Figure 6.13 compares the time needed by the learning algorithm. The reduction of
time complexity is apparent.

TheDivide et Imperaapproach represents one alternative to the bigger data setsthat
cannot be processed by the simple RN learning algorithm. Dividing into two or three
subtasks brings significant reduction of time complexity, while it only slightly increases
the result errors.

6.3.6 Summary

In this section, we presented the results of our experimentswith the regularization net-
works. We demonstrated the role of metaparameters and showed that their choice sig-
nificantly influences the solution quality. Algorithms performing the setup of these
metaparameters were demonstrated.

2Considering a linear systemAx = b, whereA is a square matrix:n is the number of rows resp.
columns of the matrixA.

6.3. REGULARIZATION NETWORKS 75

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

SoybeanHorseHeartcHeartacHeartaHeartGlassFlareDiabetesCardCancer

V
irt

ua
l C

lo
ck

 C
yc

le
s

Data set

RN
SKRN_B

Figure 6.13: Time (in clock cycles, using the PAPI library [55]) needed for one run of
the RN learning algorithm and the Divide et Impera.

Then several common kernel functions have been compared. Onthe collection of
benchmarks PROBEN1, the best results were obtained with the kernel functions with a
local response, i.e. the Gaussian function and inverse multi-quadratic function.

The product and sum kernels proposed in Chapter 3 were applied on the tasks from
PROBEN1. The results illustrate that they represent a vital alternative to the simple
Gaussian kernels. To benefit from them, prior knowledge of the problem suggesting the
use of a composed kernel is needed.

Yet, the sum kernels outperform the simple Gaussian on most tasks. The sum of
two Gaussian functions exhibits a good behavior. When formed by one narrow and
one wide Gaussian function, it possess the ability to generalize, so the regularization
term is not needed for the tasks with low level of noise. Similar behavior has also
been achieved with the thin-plate spline and multi-quadratic functions, with a suitable
parameter setting.

Also theDivide et Imperaapproach was demonstrated. We have shown that it can
significantly reduce the time complexity, thus it represents an alternative, which can be
applied to bigger data sets.

76 CHAPTER 6. EXPERIMENTS

RN SKRN PKRN
Task Etrain Etest Etrain Etest Etrain Etest

cancer1 2.28 1.75 0.00 1.77 2.68 1.81
cancer2 1.86 3.01 0.00 2.96 2.07 3.61
cancer3 2.11 2.79 0.00 2.73 2.28 2.81
card1 8.75 10.01 8.81 10.03 8.90 10.05
card2 7.55 12.53 0.00 12.54 8.11 12.55
card3 6.52 12.35 6.5512.32 7.01 12.45
diabetes1 13.97 16.02 14.0116.00 16.44 16.75
diabetes2 14.00 16.77 13.78 16.80 15.87 18.14
diabetes3 13.69 16.01 13.6915.95 16.31 16.62
flare1 0.36 0.55 0.35 0.54 0.36 0.54
flare2 0.42 0.28 0.44 0.26 0.42 0.28
flare3 0.38 0.35 0.42 0.33 0.40 0.35
glass1 3.37 6.99 2.35 6.15 2.64 7.31
glass2 4.32 7.93 1.09 6.97 2.55 7.46
glass3 3.96 7.25 3.04 6.29 3.31 7.26
heart1 9.61 13.66 0.00 13.91 9.56 13.67
heart2 9.33 13.83 0.0013.82 9.43 13.86
heart3 9.23 15.99 0.0015.94 9.15 16.06
hearta1 3.42 4.38 0.00 4.37 3.47 4.39
hearta2 3.54 4.07 3.51 4.06 3.28 4.29
hearta3 3.44 4.43 0.00 4.49 3.40 4.44
heartac1 4.22 2.76 0.00 3.26 4.22 2.76
heartac2 3.50 3.86 0.00 3.85 3.49 3.87
heartac3 3.36 5.01 3.36 5.01 3.26 5.18
heartc1 9.99 16.07 0.0015.69 10.00 16.08
heartc2 12.70 6.13 0.00 6.33 12.37 6.29
heartc3 8.79 12.68 0.0012.38 8.71 12.65
horse1 7.35 11.90 0.20 11.90 14.25 12.45
horse2 7.97 15.14 2.8415.11 12.24 15.97
horse3 4.26 13.61 0.18 14.13 9.63 15.88
soybean1 0.12 0.66 0.11 0.66 0.13 0.86
soybean2 0.24 0.50 0.25 0.53 0.23 0.71
soybean3 0.23 0.58 0.22 0.57 0.21 0.78

Table 6.5: Comparisons of errors on the training and test setfor the RN with the Gaus-
sian kernels, the SKRN, and the PKRN.

6.3. REGULARIZATION NETWORKS 77

Single algorithm Divide et Impera
Task Etrain Etest Etrain Etest

cancer1 2.28 1.75 2.11 1.93
cancer2 1.86 3.01 1.68 3.37
cancer3 2.11 2.79 1.68 2.95
card1 8.75 10.01 8.55 10.58
card2 7.55 12.53 7.22 13.03
card3 6.52 12.35 6.22 12.86
diabetes1 13.97 16.02 12.92 16.66
diabetes2 14.00 16.77 13.64 17.33
diabetes3 13.69 16.01 12.85 16.34
flare1 0.36 0.55 0.35 0.59
flare2 0.42 0.28 0.41 0.28
flare3 0.38 0.35 0.38 0.34
glass1 3.37 6.99 2.56 6.78
glass2 4.32 7.93 3.27 7.29
glass3 3.96 7.25 3.48 6.44
heart1 9.61 13.66 9.51 13.79
heart2 9.33 13.83 8.52 14.31
heart3 9.23 15.99 8.30 16.75
hearta1 3.42 4.38 3.20 4.45
hearta2 3.54 4.07 3.17 4.34
hearta3 3.44 4.43 3.37 4.40
heartac1 4.22 2.76 3.68 3.37
heartac2 3.50 3.86 2.99 3.97
heartac3 3.36 5.01 3.14 5.13
heartc1 9.99 16.07 6.50 16.07
heartc2 12.70 6.13 11.06 6.69
heartc3 8.79 12.68 9.91 11.74
horse1 7.35 11.90 7.66 12.62
horse2 7.97 15.14 6.84 15.70
horse3 4.26 13.61 8.56 15.24
soybean1 0.12 0.66 0.12 0.64
soybean2 0.24 0.50 0.19 0.54
soybean3 0.23 0.58 0.15 0.72

Table 6.6: Comparisons of errors on the training and test setfor the RNs learned by Al-
gorithm 4.1.1 (single algorithm) and the RNs learned by the Divide et Impera approach.

78 CHAPTER 6. EXPERIMENTS

6.4 RBF Networks

This section presents the results of experiments with RBF networks. We demonstrate
the individual learning algorithms on the benchmark data sets and compare them to each
other and to multi-layer perceptrons.

First, in the next subsection, we illustrate the advantagesof using the hidden units
with weighted norms. In the following three subsections, the gradient learning, three-
-step learning, and genetic learning are studied. Then in Subsection 6.4.5, the experi-
ments with hybrid approaches are presented. Finally, in Subsection 6.4.6 we present a
comparison of the learning algorithms studied and draw conclusions.

6.4.1 RBF Units with Weighted Norms

The goal of the first experiment is to demonstrate advantagesof using the RBF units
with weighted norms. For this aim we have selected an two-dimensional classification
problem, known astwo spirals. Its objective is to classify two intertwined spirals formed
by points in the plane (see Figure 6.15a). The geometry of theproblem is suitable for
the adaptation of shape of the areas controlled by individual units.

We tested the RBF networks with 100 units using the Euclideannorm, and 50 and
70 units using weighted norms. The gradient learning was used as a learning algorithm.

Table 6.7 compares the numbers of iterations that were necessary to achieve the
given error threshold. The 70 unit weighted norm network outperforms the 100 unit
network with the Euclidean norm by the factor of 2–3, for threshold 1.0 and smaller.

100 Euclidean 70 weighted 50 weighted
iteration time iteration time iteration time

ǫ avg stddev avg stddev avg stddev
10.0 1188.4 275.2 0:42 830.1 208.7 0:36 1854.9 525.1 1:06
5.0 1944.4 568.3 1:09 1115.8 340.5 0:48 2991.8 1061.8 1:47
1.0 3739.1 1559.1 2:14 1993.6 769.0 1:26 4965.3 1955.4 2:57
0.5 5362.6 3599.4 3:11 2475.1 967.8 1:46 7277.9 3088.8 4:20
0.1 15842.7 10783.7 9:26 4923.0 1864.9 3:31 24424.6 10819.114:32

Table 6.7: Two spirals: The number of iterations and time needed to achieve the error
equal or less thanǫ. Gradient learning with 100 hidden units using the Euclidean norm,
50 and 70 hidden units using weighted norms.

The solution quality in Figure 6.14, which illustrates the classification of points in
the plane by the learned RBF network. We can see that the middle plot, corresponding
to the classification performance of the 70 weighted norm unit network, is clearly the
most faithful one. The smaller network with weighted norms (right) can still achieve
good performance compared to the Euclidean norm network double in size (left).

6.4. RBF NETWORKS 79

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

class 1
class 2

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

class 1
class 2

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

class 1
class 2

Figure 6.14: Two spirals: The classification of the input space by the learned RBF
network. a) 100 units with the Euclidean norm (left) b) 70 units with weighted norms
(center) c) 50 units with weighted norms (right).

Finally, Figure 6.15 shows the position and shape of networkunits in the input space.
Contour lines of a given threshold for the individual RBF units are drawn. It illustrates
an intuition that covering the input points by ovals is easier than by circles.

-8

-6

-4

-2

 0

 2

 4

 6

 8

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

Figure 6.15: Two spirals: a) The training set. b)-d) The shape and position of hidden
units: b) 100 units with the Euclidean norm c) 70 units with weighted norms d) 50 units
with weighted norms. a) - d) goes from the left to the right.

In thetwo spiralsproblem, the RBF units with weighted norms outperform the clas-
sical units. They benefit from their flexibility and ability to cover the input space better.
On the other hand, an RBF unit with a weighted norm has anotherd(d + 1)/2 param-
eters to estimate (the entries of the diagonal matrixΣ−1, see Section 5.2). So there is
the time overhead for performing one iteration of gradient learning with the RBF units
with weighted norms. In our experiment, the approximate times for 100 training iter-
ations are 3.5 s, 4 s, or 3.5 s for the RBF networks with 100 Euclidean, 70 weighted,
or 50 weighted units, respectively. However, this overheadis reasonable, and the RBF
network with 70 weighted norms needed a much smaller number of iterations to achieve
the given error thresholds; so its learning was faster in theend.

80 CHAPTER 6. EXPERIMENTS

6.4.2 Gradient Learning

The goal of this experiment was to study and demonstrate the behavior of gradient
learning (see Section 5.3).

We selected the tasksCANCER, GLASS, HEARTA from the PROBEN1 repository.
The first two represent classification problems, while the third one an approximation
problem.

For theCANCER tasks we used an RBF network with 5 units, for theGLASS tasks
one with 10, 15 units, and for theHEARTA tasks one with 30, 40, 50 units. Since the
gradient learning starts with random initialization, all computations were run 10 times
and the means and standard deviations were computed.

Table 6.8 lists the training and test errors achieved by the gradient learning. On the
GLASS tasks, the best results were achieved by the RBF network with15 units, on the
HEARTA tasks by the RBF network with 50 units. So in both the cases thenetwork
having more hidden units performed better.

Task h Etrain Etest

avg stddev avg stddev
cancer1 2.49 0.10 1.40 0.23
cancer2 5 2.03 0.89 3.44 0.53
cancer3 2.04 0.50 3.44 0.51
glass1 4.14 0.36 7.39 0.59
glass2 10 3.72 0.24 8.26 0.47
glass3 4.27 0.38 7.41 0.43
glass1 3.35 0.33 6.59 0.32
glass2 15 2.94 0.19 7.85 0.43
glass3 3.47 0.31 6.95 0.26
hearta1 2.67 0.08 4.35 0.15
hearta2 30 2.56 0.10 4.39 0.10
hearta3 2.65 0.13 4.23 0.12
hearta1 2.72 0.00 4.10 0.12
hearta2 40 2.57 0.08 4.19 0.12
hearta3 2.62 0.09 4.04 0.08
hearta1 2.70 0.13 4.06 0.10
hearta2 50 2.56 0.06 4.13 0.10
hearta3 2.67 0.07 3.95 0.09

Table 6.8: Training and test error of the RBF network found bythe gradient learning
algorithm.

Tables 6.9, 6.10, 6.11, and Figures 6.16, 6.17 and 6.18 show the number of iterations
and time needed to achieve a given error threshold on different tasks. We can see that

6.4. RBF NETWORKS 81

the speed of learning is quite high at the beginning of the computation, but gets smaller
with the number of iterations.

The time needed for 100 iterations of the algorithm was 1 s fortheCANCER task and
the network with 5 units, 3 s and 6.5 s forGLASS and 10, resp. 15 units, 52.9 s, 70 s,
and 88.6 s forHEARTA and 30, 40, 50 units, respectively.

Iterations Time
avg stddev avg

cancer1 8.9 12.06 0:01
10.0 cancer2 360.2 612.43 0:04

cancer3 4.1 1.22 0:01
cancer1 11.9 12.98 0:01

5.0 cancer2 366.0 615.46 0:04
cancer3 8.1 1.51 0:01
cancer1 16.0 13.70 0:01

4.0 cancer2 368.6 616.25 0:04
cancer3 11.4 1.11 0:01
cancer1 194.1 40.78 0:02

3.0 cancer2 388.5 611.22 0:04
cancer3 52.2 15.16 0:01
cancer1 2274.1 1104.02 0:24

2.5 cancer2 521.1 562.05 0:06
cancer3 386.2 83.73 0:04

Table 6.9: The number of iterations and time needed to achieve the given value of the
training error on theCANCER task.

The gradient learning (Algorithm 5.3.1) is based on the gradient descent algorithm,
that is a local optimization algorithm, which starts with random initialization. Therefore
there sometimes appear large differences between the results achieved by different runs
of the algorithm (see the values of standard deviations in Table 6.8 and intervals at
Figures 6.17 and 6.18). For real applications, it is recommended to run the algorithm
for more different initializations, possibly for a smallernumber of iterations, and pick
the best computation.

The rate of error decrease can be used as an indicator of the algorithm stop criterion.

82 CHAPTER 6. EXPERIMENTS

0

5

10

15

20

25

30

35

40

45

50

2 2.5 3 3.5 4 4.5 5

S
ec

on
ds

Squarred error percentage

Average time
Time range

Figure 6.16: The number of iterations and time needed to achieve the given value of the
training error on theCANCER task.

10 units 15 units
Iterations Time Iterations Time

ǫ Data avg stddev avg avg stddev avg
glass1 1.0 0.00 0:01 1.0 0.00 0:01

15.0 glass2 1.0 0.00 0:01 1.7 0.46 0:01
glass3 1.0 0.00 0:01 1.0 0.00 0:01
glass1 96.2 33.44 0:03 90.7 26.42 0:06

10.0 glass2 92.2 24.30 0:03 71.5 10.93 0:04
glass3 77.9 13.60 0:02 77.9 13.60 0:05
glass1 1123.7 160.01 0:34 950.4 116.17 1:01

7.0 glass2 703.3 125.37 0:21 611.6 31.17 0:40
glass3 953.1 52.80 0:29 953.1 52.80 1:02
glass1 2454.6 405.77 1:16 1910.3 199.25 2:04

6.0 glass2 1270.6 257.06 0:39 1066.6 105.12 1:09
glass3 2043.8 121.60 1:03 2043.8 121.60 2:13
glass1 4806.8 1022.57 2:08 3368.7 363.25 3:39

5.0 glass2 2523.1 385.37 1:07 2130.4 258.38 2:19
glass3 4226.0 702.44 2:00 4226.0 702.44 4:35

Table 6.10: The number of iterations and time needed to achieve the given value of the
training error on theGLASS task.

6.4. RBF NETWORKS 83

30 units 40 units 50 units
Iterations Time Iterations Time Iterations Time

ǫ Data avg stddev avg avg stddev avg avg stddev avg
hearta1 16.8 2.86 0:09 16.8 2.36 0:11 18.2 1.78 0:16

10.0 hearta2 19.3 2.41 0:10 18.8 3.76 0:13 23.0 4.34 0:21
hearta3 16.5 3.47 0:09 17.3 3.95 0:12 18.2 4.07 0:16
hearta1 24.2 3.82 0:13 24.6 4.10 0:17 25.8 3.37 0:22

7.5 hearta2 27.8 6.79 0:14 24.4 4.96 0:17 32.4 8.26 0:29
hearta3 22.4 3.72 0:11 23.5 4.96 0:16 24.1 4.66 0:21
hearta1 64.2 13.42 0:34 64.3 7.72 0:45 61.8 8.72 0:54

5.0 hearta2 68.7 10.22 0:36 56.3 9.64 0:39 70.1 9.75 1:02
hearta3 54.1 7.08 0:29 53.8 7.87 0:37 56.8 6.48 0:49
hearta1 190.1 38.34 1:41 186.9 9.10 2:10 164.7 17.58 2:25

4.0 hearta2 197.0 31.54 1:44 173.4 35.60 2:01 171.6 23.09 2:31
hearta3 171.1 21.76 1:31 160.9 23.84 1:52 160.7 21.25 2:21
hearta1 1217.5 217.38 10:44 1151.3 76.36 13:26 1022.2 211.26 15:05

3.0 hearta2 1021.0 182.17 9:01 926.6 141.73 10:48 843.6 100.84 12:26
hearta3 1199.4 289.31 10:34 993.6 179.36 11:35 160.7 21.25 2:21

Table 6.11: The number of iterations and time needed to achieve the given value of the
training error on theHEARTA task.

0

50

100

150

200

250

6 8 10 12 14

S
ec

on
ds

Squarred error percentage

Average time - 10 units
Time range - 10 units

Average time - 15 units
Time range - 15 units

Figure 6.17: Time needed to achieve the given value of the training error on theGLASS

task.

84 CHAPTER 6. EXPERIMENTS

0

100

200

300

400

500

600

700

800

3 4 5 6 7 8 9 10

S
ec

on
ds

Squarred error percentage

Average time - 30 units
Time range - 30 units

Average time - 40 units
Time range - 40 units

Average time - 50 units
Time range - 50 units

Figure 6.18: Time needed to achieve the given value of the training error on theHEARTA

task.

6.4. RBF NETWORKS 85

6.4.3 Three-Step Learning

Now we will present the results of our experiments with the three-step learning.
Again, we have chosen the tasksCANCER, GLASS, andHEARTA from the PROBEN1

repository. On theCANCER task we applied networks with 5, 10, 20, and 50 units, on
theGLASS tasks with 15, 30, and 50 units, and on theHEARTA task 30, 40, and 50 units.

The training and test errors of RBF networks obtained by the three-step learning are
summarized in Table 6.12. Figure 6.19 compares the trainingand test errors, including
classification error (percentage of correctly classified samples), for the RBF networks
of different size onCANCER task.

At Figure 6.19 we observe the decrease of the training error with the increase of the
number of hidden units. However, for 50 units we obtain higher test errors. The test
error for 50 units onCANCER3 (see Table 6.12) is even higher than for 20 units.

The training error on theGLASS andHEARTA tasks (Table 6.12) also decreases with
the increasing number of hidden units. However, this does not apply on the test errors.
On theGLASS tasks we get higher test errors for 30 and 50 hidden units thanfor 15
units. OnGLASS1 andGLASS3 the test errors are very high, in case of 50 units the
network has not learned the task at all. OnHEARTA, this increase of test error is not so
significant; onHEARTA2, the test error even decreases with the increasing number of
units. OnHEARTA1 andHEARTA3 the increase is slow.

The observed behavior, the increase of test errors with decreasing train errors, is
caused by over-fitting and losing the generalization ability. With the higher number of
hidden units, there is a higher danger of over-fitting. For different tasks, a different
number of units is suitable, so it is recommended to try several variants.

The time needed by the algorithm is 1 s (4 s, 16 s, 1 m 33 s) onCANCER for the
network with 5 units (10,20, 50units, respectively), 17 s (1m 7 s, 2 m 59 s) onGLASS

with 15 units (resp. 30, 50 units), and 4 m 38 s (7 m 45 s, 11 m 42 s)on HEARTA with
30 units (resp. 40, 50 units).

86 CHAPTER 6. EXPERIMENTS

5 units 20 units 50 units
Task Etrain Etest Etrain Etest Etrain Etest

avg stddev avg stddev avg stddev avg stddev avg stddev avg stddev
cancer1 3.63 0.06 2.34 0.09 3.24 0.42 2.31 0.52 2.45 0.12 2.210.28
cancer2 3.34 0.36 4.35 0.53 2.82 0.42 3.89 0.61 2.12 0.10 3.570.27
cancer3 4.03 1.51 4.01 1.75 2.74 0.38 2.91 0.48 2.15 0.06 3.420.37

15 units 30 units 50 units
Task Etrain Etest Etrain Etest Etrain Etest

avg stddev avg stddev avg stddev avg stddev avg stddev avg stddev
glass1 7.55 0.18 10.28 0.90 6.02 0.10 15.86 4.68 4.61 0.16 194.19 104.49
glass2 7.41 0.15 9.33 0.25 5.90 0.16 9.76 0.68 4.48 0.14 14.812.49
glass3 7.54 0.25 10.08 0.84 5.91 0.13 13.54 2.37 4.74 0.13 129.86 170.14

30 units 40 units 50 units
Task Etrain Etest Etrain Etest Etrain Etest

avg stddev avg stddev avg stddev avg stddev avg stddev avg stddev
hearta1 4.35 0.15 4.64 0.13 4.10 0.12 4.67 0.20 4.06 0.10 4.870.21
hearta2 4.39 0.10 4.50 0.16 4.19 0.12 4.46 0.21 4.13 0.10 4.440.11
hearta3 4.23 0.12 5.07 0.13 4.04 0.08 4.86 0.19 3.95 0.09 4.950.19

Table 6.12: Training error and test errors for the networks found by the three-step learn-
ing.

Figure 6.19: Error and classification error of networks obtained by the three-step learn-
ing on theCANCER tasks.

6.4. RBF NETWORKS 87

6.4.4 Genetic Learning

The goal of the following experiment was to demonstrate the behavior of the genetic
learning and compare the classical GAs to the canonical GAs (the canonical GAs is a
variant of the GAs proposed in [50]).

An RBF network with 5 units was trained on theCANCER1, CANCER2, andCAN-
CER3 tasks. All experiments were run 10 times and the mean and standard deviations
of the resulting error values were computed.

The resulting training and test errors are listed in Table 6.13. The canonical algo-
rithm obtained better results on theCANCER2 andCANCER3 tasks, the classical algo-
rithm onCANCER1.

Table 6.14 and Figure 6.20 show the number of iterations and the corresponding
time that were necessary to obtain the given error thresholds. We can see that initially
the error rate decrease is very high, and then drops down.

The time requirements of 100 generations was 66 s for both theclassical and canon-
ical version of the genetic learning.

Though the time requirements of the genetic learning are quite high, they can be
reduced by parallelization. But still, the genetic algorithms are more useful if used in
combination with other methods (see the following subsection).

Canonical algorithm Classical algorithm
Task Etrain Etest Etrain Etest

avg stddev avg stddev avg stddev avg stddev
cancer1 4.97 0.79 4.20 1.17 4.80 0.68 3.87 0.95
cancer2 4.74 0.57 5.09 0.52 4.88 1.12 5.71 1.35
cancer3 4.35 0.54 4.51 0.69 4.45 0.83 4.72 0.77

Table 6.13: The results achieved by the classical and canonical genetic learning.

88 CHAPTER 6. EXPERIMENTS

Canonical algorithm Classical algorithm
Iterations Time Iterations Time

ǫ Data avg stddev avg avg stddev avg
cancer1 933.8 1019.82 0:10:13 2110.0 2734.89 0:23:06

10.0 cancer2 1100.0 949.39 0:12:03 496.2 385.74 0:05:26
cancer3 501.2 560.01 0:05:29 515.0 375.50 0:05:39
cancer1 33992.5 17454.90 6:12:18 25431.2 18095.75 4:38:32

5.0 cancer2 36893.8 18238.51 6:44:04 20492.5 18929.86 3:44:26
cancer3 7191.2 7557.69 1:18:46 24046.2 12981.90 4:23:21
cancer1 46107.5 10253.58 8:24:59 46610.0 9022.01 8:30:29

4.0 cancer2 49765.0 3320.42 9:05:03 47267.5 5223.70 8:37:41
cancer3 36428.8 18210.84 6:38:59 40005.0 12522.37 7:18:09

Table 6.14: The number of iterations and time needed to achieve the given error thresh-
old by the genetic learning.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 5 6 7 8 9 10

M
in

ut
es

Squarred error percentage

Average time - canonical alg.
Time range - canonical alg.

Average time - classical alg.
Time range - classical alg.

Figure 6.20: Time needed to achieve the given error threshold by the classical and
canonical genetic learning (CANCER task).

6.4. RBF NETWORKS 89

6.4.5 Hybrid Methods

In this section we present the results obtained by the hybridmethods — the four-step
learning and the hybrid genetic learning. The both algorithms were described in Sec-
tion 5.6.

First, the four-step learning was applied on theCANCER andGLASS tasks. For the
CANCER we used the networks with 5 and 20 units, forGLASS the networks with 15
and 30 units.

The results achieved by the four-step learning are summarized in Table 6.15. Com-
paring the test errors to the test errors obtained with the three-step learning (Table 6.12),
the fourth step further improves the results in rather all cases. The only exception are
the GLASS2 andGLASS3 tasks, for which only the training error decreased, while the
test error is the same.

The method combines the advantages of the two approaches; the gradient fourth
step further improves the network obtained by the three-step learning, while the first
part, formed by the three-step learning, decreases the timerequirements by creating a
good starting point for gradient descent search.

Task h Etrain Etest

avg stddev avg stddev
cancer1 2.40 0.10 1.81 0.06
cancer2 5 1.98 0.06 3.15 0.04
cancer3 2.21 0.09 2.70 0.05
cancer1 1.70 0.12 1.64 0.16
cancer2 20 1.41 0.11 2.89 0.07
cancer3 1.43 0.13 2.74 0.20

Task h Etrain Etest

avg stddev avg stddev
glass1 7.06 0.14 10.02 0.77
glass2 15 6.97 0.12 9.08 0.23
glass3 7.10 0.27 9.56 0.51
glass1 5.98 0.09 15.81 4.68
glass2 30 5.89 0.14 9.76 0.67
glass3 5.86 0.13 13.54 2.41

Table 6.15: Training and test errors achieved by the four-step learning.

The second experiment tests the hybrid genetic learning. A network with 5 units
was applied on theCANCER tasks. Both the classical and the canonical versions of the
algorithm were tested.

The training and test errors achieved by the hybrid genetic learning are listed in
Table 6.16. We can see that on all the three tasks, the canonical algorithm finds better
solutions than the classical algorithm. If we compare the results to the genetic learning
(Table 6.13), we see that the hybrid genetic learning clearly outperforms the standard
genetic learning. Moreover, it achieves comparable results with the gradient learning
(Table 6.8).

In addition, Figure 6.21 shows the time needed to achieve given error thresholds.
The time required by 100 iterations of hybrid genetic learning was 134 s.

The experiment shows that the hybrid genetic search is competitive to other meth-
ods and may achieve better solutions. However, the time requirements are quite high

90 CHAPTER 6. EXPERIMENTS

(note that for each fitness evaluation, linear optimizationhas to be solved). For a real
application, parallelization is desirable.

Canonical algorithm Classical algorithm
Task Etrain Etest Etrain Etest

avg stddev avg stddev avg stddev avg stddev
cancer12.44 0.11 1.80 0.55 2.51 0.07 1.95 0.27
cancer21.70 0.58 3.52 1.39 1.85 0.14 3.74 0.54
cancer32.12 0.11 2.92 0.28 2.12 0.18 3.23 0.75

Table 6.16: The results achieved by the hybrid genetic learning.

 0

 50

 100

 150

 200

 250

 300

 3 3.5 4 4.5 5

S
ec

on
ds

Squarred error percentage

Average time - classical alg.
Time range - classical alg.

Average time - canonical alg.
Time range - canonical alg.

Figure 6.21: Time needed by the hybrid genetic learning to achieve the given error
threshold.

The both presented hybrid approaches improve the behavior of single learning algo-
rithms. Clever combinations of the available learning algorithms is a promising way of
obtaining novel superior methods.

6.4.6 Conclusions

Let us generalize the observations from the previous experiments with the RBF net-
works.

Table 6.17 summarizes the results presented in the previoussections and compares
different learning algorithms on theCANCER task with 5 unit networks, and theGLASS

task with 15 unit networks. It contains means of training andtest errors over the three

6.4. RBF NETWORKS 91

Cancer (5 units) Glass (15 units)
Used Etrain Etest Time Etrain Etest Time

method h:m:s m:s
Grad. learn. 2.19 2.76 00:00:28 3.25 7.13 13:41
Three-step 3.67 3.57 00:00:01 7.50 9.90 00:17
Four-step 2.20 2.55 00:00:36 7.04 9.55 03:32
GAs (can.) 4.69 4.60 07:24:16 – – –

Hybrid GAs 2.09 2.75 02:30:31 – – –

Table 6.17: Comparison of learning methods on theCANCER data set for the network
with 5 hidden units and on the glass data set for the network with 15 hidden units.
Average training and test error.

Figure 6.22: Comparison of learning methods on theCANCER data set for the network
with 5 hidden units.

variants of given tasks, and time requirements. In addition, Figure 6.22 compares the
training and test errors (including the classification errors) for theCANCER task and
network with 5 units.

First, consider the main three approaches, the gradient learning, the three-step learn-
ing, and the genetic learning. The gradient-based algorithm is able to achieve better
results in terms of error measured on both the training and test set. The three-step learn-
ing is the fastest method, due to the unsupervised phase to set the centers, and rather fast
linear optimization to set the output weights. The errors achieved are still competitive.
The genetic learning is in general slower of about an order ofmagnitude. While most of
the measured running times were in the order of seconds and minutes, it takes minutes
to hours for the GAs to converge to the desired values. The results are still not as good

92 CHAPTER 6. EXPERIMENTS

RBF network MLP
Data Error Class. Arch. Error Class. Arch.

avg stddev avg stddev avg stddev avg stddev
cancer1 1.64 0.16 1.26 0.43 20 1.60 0.41 1.47 0.60 4+2
cancer2 2.89 0.07 3.16 0.39 20 3.40 0.33 4.52 0.70 8+4
cancer3 2.74 0.20 3.05 0.37 20 2.57 0.24 3.37 0.71 16+8
glass1 6.59 0.32 27.55 2.56 15 9.75 0.41 39.03 8.14 16+8
glass2 7.85 0.43 35.47 3.46 15 10.27 0.40 55.60 2.83 16+8
glass3 6.95 0.26 27.74 1.47 15 10.91 0.48 59.25 7.83 16+8
hearta1 4.84 0.25 – 30 4.76 1.14 – 32+0
hearta2 4.66 0.08 – 30 4.52 1.10 – 16+0
hearta3 4.54 0.06 – 30 4.81 0.87 – 32+0

Table 6.18: Summary: Comparison of learning results on the testing set achieved by the
RBF networks and multilayer perceptrons trained by RPROP algorithm ([61]). Archi-
tecture (Arch.) is the number of hidden units in case of RBF networks, and the number
of nodes in the first and second hidden layer in case of MLPs. Error stands forEtest,
Class. stands for the classification error on the test set.

as with the gradient learning. Nevertheless, the GAs — as a general learning procedure
— has its potential in learning the networks with heterogeneous units; and it is suitable
for parallelization.

Then the table includes the two hybrid methods. The four-step learning further
improves the results obtained by the three-step learning. On CANCER it achieves com-
parable results with the gradient learning. The hybrid genetic learning achieves very
good results, slightly better than the gradient learning. However, it suffers from high
time requirements.

Table 6.18 compares our results with the multi-layer perceptron networks (MLP).
The results for MLP are taken from [61]. One can see that the RBF networks achieved
about the same performance on theCANCER andHEART tasks, while they rather out-
perform the MLP networks on theGLASS data, both in terms of the errors and number
of units.

6.5 Regularization Networks vs. RBF Networks

The main aim of the experimental part of this work was to assess the relative perfor-
mance of RNs and RBF networks. This section presents the results of the experiments
comparing these two approaches.

The benchmark data collection PROBEN1 was used to perform the comparison.

6.5. REGULARIZATION NETWORKS VS. RBF NETWORKS 93

The regularization networks have been trained by the RN learning algorithm (Algo-
rithm 4.1.1) with the metaparameters set up by the adaptive grid search (Algorithm 4.5.1).

The RBF networks have been trained by the gradient learning;the statistics are
always computed from 10 repetitions of the runs. A very simple procedure has been
applied to determine the best architecture for the RBF networks: a few reasonable sizes
of hidden layer (10, 15, 20, 30 units) have been tried and the best one selected for the
comparison. It is possible that cross-validation might further improve these settings;
nevertheless, the current results are already competitive.

Table 6.19 compares the results obtained by the RNs and RBF networks by means of
the test error. In addition, the results are related to the performance of MLP. Figure 6.23
brings the comparison of the training and test errors of regularization networks and RBF
networks.

 2

 4

 6

 8

 10

 12

Hearta3Hearta2Hearta1Horse3Horse2Horse1Glass3Glass2Glass1

E
rr

or
 o

n
th

e
tr

ai
ni

ng
 s

et

Data set

Regularization Network
RBF Network

 4

 6

 8

 10

 12

 14

 16

Hearta3Hearta2Hearta1Horse3Horse2Horse1Glass3Glass2Glass1

E
rr

or
 o

n
th

e
te

st
in

g
se

t

Data set

Regularization Network
RBF Network

Figure 6.23: Comparison of error values of RBF vs. RN resultson the training and test
set.

In terms of the test error, the regularization networks achieved the best results on
23 tasks; the RBF networks on 8 tasks (see Table 6.19). One cansee that both the
training and test errors are quite comparable, the difference is in average about 6%. In
addition, the RBF networks need a 10 to 50 times lower number of hidden units3 to ob-
tain comparable approximation and generalization performance. The time requirements
needed to achieve the listed errors varied from 1 to 30 minutes depending on the size of
the particular data set, and were similar for both the regularization networks and RBF
networks.

The Regularization networks, in their exact form, are therefore suitable rather for the
tasks with smaller data sets, where is a high danger of over-fitting. For the tasks possess-

3Note that the RBF unit has more parameters (center, width, and posibly weigthed norm matrix) than
the RN unit (only center). In this case, RBF units without norm matrices are used, so there is only one
extra parameter in each unit.

94 CHAPTER 6. EXPERIMENTS

RN RBF MLP
Etest # units Etest # units Etest arch.

mean std mean std
cancer1 1.76 525 2.11 0.01 15 1.60 0.41 4+2
cancer2 3.01 525 3.12 0.07 15 3.40 0.33 8+4
cancer3 2.80 525 3.19 0.13 15 2.57 0.24 16+8
card1 10.00 518 10.16 0.56 10 10.53 0.57 32+0
card2 12.53 518 12.81 0.01 10 15.47 0.75 24+0
card3 12.32 518 12.09 0.00 10 13.03 0.50 16+8
flare1 0.54 800 0.37 0.00 10 0.74 0.80 32+0
flare2 0.27 800 0.31 0.00 10 0.41 0.47 32+0
flare3 0.34 800 0.38 0.00 10 0.37 0.01 24+0
glass1 6.95 161 6.76 0.02 20 9.75 0.41 16+8
glass2 7.91 161 7.96 0.00 20 10.27 0.40 16+8
glass3 7.33 161 8.06 0.97 20 10.91 0.48 16+8
heartac1 2.78 228 3.69 0.07 10 2.82 0.22 2+0
heartac2 3.86 228 4.98 0.03 10 4.54 0.87 8+4
heartac3 5.01 228 5.81 0.00 10 5.37 0.56 16+8
hearta1 4.40 690 4.36 0.00 15 4.76 1.14 32+0
hearta2 4.05 690 4.05 0.00 10 4.52 1.10 16+0
hearta3 4.43 690 4.29 0.00 10 4.81 0.87 32+0
heartc1 16.02 228 16.17 0.06 10 17.18 0.79 16+8
heartc2 6.10 228 6.49 0.03 10 6.47 2.86 8+8
heartc3 12.66 228 14.35 0.37 10 14.57 2.82 32+0
heart1 13.65 690 14.05 0.15 10 14.33 1.26 32+0
heart2 13.80 690 11.67 0.46 20 14.43 3.29 32+0
heart3 15.99 690 12.02 0.50 15 16.58 0.39 32+0
horse1 11.90 273 11.96 0.04 10 13.95 0.60 16+8
horse2 15.18 273 16.80 0.10 10 18.99 1.21 16+8
horse3 13.58 273 14.56 0.07 10 17.79 2.45 32+0
soybean1 0.66 513 0.73 0.00 30 1.03 0.05 16+8
soybean2 0.49 513 0.60 0.14 30 0.90 0.08 32+0
soybean3 0.58 513 0.72 0.01 30 1.05 0.09 16+0

Table 6.19: Comparison ofEtest of RN, RBF, and MLP.

6.6. RAINFALL-RUNOFF MODELING 95

ing large data amounts, “cheaper” alternatives represented by generalized regularization
networks, such as RBF networks, are more competent.

To show that the RN networks and RBF networks represent competitive learning
methods not only to the MLP, but also to modern learning algorithms, we picked the
comparison to the SVM (Support Vector Machine).

The comparison was made on the classification tasksCANCER and GLASS. The
SVM was trained using the available library [7], which represents a current standard of
SVM learning.

Table 6.20 compares the RN, RBF network, and SVM in terms of classification ac-
curacy on the test set, i.e. the percentage of correctly classified samples. The regulariza-
tion networks achieved the highest accuracy on 3 tasks (CANCER1, GLASS1, GLASS2),
RBF network on 2 tasks (CANCER2, CANCER3), and the SVM on one task (GLASS3).
In general, the results obtained by the three methods are comparable, the differences in
accuracy are not high. We see that both the regularization networks and RBF networks
are worthy alternatives to the SVM.

RN RBF SVM
cancer1 98.85% 98.74% 97.12%
cancer2 95.40% 96.84% 96.55%
cancer3 95.98% 96.95% 95.97%
glass1 75.00% 72.45% 73.58%
glass2 73.07% 64.53% 66.03%
glass3 76.92% 72.26%79.24%

Table 6.20: Comparison of classification accuracy of RN, RBFnetwork, and support
vector machines (SVM).

6.6 Rainfall-Runoff Modeling

In this section we describe an application of regularization networks and RBF networks
to the rainfall-runoff modeling, i.e. modeling of river flowrates based on daily flow and
rainfall values.

The research is realized in cooperation with University of J. E. Purkyně and the
Czech Hydrometeorological Institute ińUstı́ nad Labem.

The Ploučnice River in North Bohemia has been chosen as an experimental catch-
ment to calibrate and evaluate the models. The Ploučnice River springs in the southwest
slope of Ještěd hill (1012 meters above sea level) in the altitude of 654 meters above
sea level, and it flows to the Elbe River in the town of Děčı́nin 122 meters above sea
level. For our experiments, we have chosen the Ploučnice valley from its beginning to

96 CHAPTER 6. EXPERIMENTS

the town of Mimoň. The catchment area is 1193,9 km2 in total, from the beginning to
Mimoň it is 267,9 km2 only, the flow length is 106,2 km.

The historical data including daily flow and rainfall valuesfor the Ploučnice valley
between November 1994 and April 2003 have been collected. The data are provided by
the Czech Hydrometeorological Institute inÚstı́ nad Labem.

Name History Current Inputs Outputs Training Test
flow rate samples samples

plouc1 1 day no 2 1 1000 367
plouc1s 1 day yes 3 1 1000 367
plouc2 2 days no 4 1 1000 366
plouc2s 2 days yes 5 1 1000 366

Table 6.21: Overview of data sets for the flow rate forecast onthe river Ploučnice.

The data set has been split into training data — 1000 days between January 1999
and September 2001, and testing data — between October 2001 and April 2003.

We have performed two series of experiments, in the first one we worked with one-
-day history models, in the second one with two-day history ones. In one-day history
models we tried to predict tomorrow’s flow from the today’s values of rainfall amount
and flow. This is handled as fitting the functionf : R

2 → R, which for the values of
flow rate and rainfall from the previous day returns the valueof flow rate for the current
day. The corresponding data set is labeled asPLOUC1.

For two-day history we took the rain falls and flows from two previous days into
consideration. Thus, the approximated function isf : R

4 → R. The data set is referred
to asPLOUC2.

In both the cases, we consider the prediction using the inputvector enhanced by the
current rain fall value. In practical applications, the prediction of such a value is used.
The corresponding data sets are labeled asPLOUC1S andPLOUC2S. All the data sets
are summarized in Table 6.21.

Besides the training and test error (6.1) we evaluate theefficiency coefficient(EC)
that is used to quantitatively measure the performance of rainfall-runoff models. The
efficiency coefficient is defined as

EC = 1−
∑N

i=1(Qmi −Qpi)
2

∑N
i=1(Qmi −Q)2

, (6.2)

whereN is the number of samples,Qmi are the daily measured flows,Qpi the corre-
sponding predicted flows, andQ is the average measured flow value.0 < EC < 1, the
bigger the value is, the better performance.

First we applied a regularization network and an RBF networkon all variants of the
task. Table 6.22 and Figure 6.24 show the results obtained bythe RBF network with

6.6. RAINFALL-RUNOFF MODELING 97

Figure 6.24: The efficiency coefficients
for different data sets.

Figure 6.25: The efficiency coefficient
obtained by the RBF network, the RN
and the PKRN.

RBF network RN
Task Etrain Etest ECtrain ECtest Etrain Etest ECtrain ECtest

plouc1 0.059 0.049 0.617 0.764 0.057 0.048 0.633 0.771
plouc1s 0.061 0.051 0.609 0.756 0.025 0.089 0.834 0.579
plouc2 0.088 0.062 0.435 0.703 0.062 0.182 0.602 0.141
plouc2s 0.099 0.092 0.362 0.565 0.061 0.167 0.608 0.211

Table 6.22: Training and test errors and efficiency coefficients obtained by the RBF
network and the regularization network on the individual data sets.

30 hidden units and the regularization network with Gaussian kernels. We can see that
the longer history (2 days) has not brought any improvement.The efficiency achieved
on PLOUC2 andPLOUC2S is even smaller than on the tasksPLOUC1 andPLOUC1S. We
think that this is caused by the sparse sampling of the observations. The Ploučnice River
is rather small and it is possible that two-day old information has no influence on the
current flow rate.

In the next experiment, we applied the regularization network with product kernels
on PLOUC1 andPLOUC1S. The flow rate values and the rainfall values were treated
separately, by the Gaussians of different widths. The results are compared to the RBF
network and the RN in Table 6.23 and Figure 6.25. We can see that on thePLOUC1

98 CHAPTER 6. EXPERIMENTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300 350 400

Ploucnice

prediction
real data

Figure 6.26: Prediction of flow rate by the regularization network.

tasks, the PKRN obtained almost the same results4 as the simple RN. However, on the
PLOUC1S it obtained better results in term of the efficiency coefficient than the simple
RN, and slightly better than the RBF network. Finally, Figure 6.26 shows the real and
predicted flow rate.

Task RBF network RN PKRN
Etest ECtest Etest ECtest Etest ECtest

plouc1 0.049 0.764 0.048 0.771 0.048 0.771
plouc1s 0.051 0.756 0.089 0.579 0.048 0.771

Table 6.23: Test errors and efficiency coefficients obtainedby the RBF networks, RN,
and PKRN.

It has been shown that both the RBF networks and regularization networks can be
successfully used for creating small rainfall-runoff models. These models can be built
from historical time series data, without knowing anythingabout the physics of the
process.

Better results were obtained using only one-day history. Itis probable that the results
may be further improved by using more frequent sampling5.

4after round-off
5for example measurements at least every 12 hours

6.7. SUMMARY 99

6.7 Summary

In the experimental results presented in this chapter, we demonstrated the real behavior
of algorithms based on the regularization theory presentedin the previous chapters.

In our experiments with the regularization networks, we illustrated the role of meta-
parameters, i.e. the regularization parameter and the kernel function, and showed that
their choice significantly influences the quality of the solution.

The most common kernel functions were compared on the PROBEN1 benchmark
repository. The best results were achieved by the inverse multi-quadratic and Gaus-
sian kernel functions, which are the representatives of thefamily of kernels with local
response. Such kernels represent a good first choice for the setup of kernel function.

Also product and sum kernels were demonstrated. The sum kernels outperform the
simple Gaussian kernel on most tasks from PROBEN1. In addition, the sum of two
Gaussians of different widths exhibits the ability to achieve a very small training error
while preserving generalization.

TheDivide et Imperaapproach was applied on the benchmark data. It significantly
decreases the time and space requirements, while the results obtained are comparable
with the standard algorithm. Such an approach represents anoption for large data sets
that are not suitable for the processing by the standard algorithm.

In addition to the regularization networks, the RBF networks representing the family
of generalized regularization networks were tested. Different learning approaches were
compared, and we also showed that the individual methods maybe further improved by
hybrid approaches.

Finally, the regularization networks and RBF networks werecompared in order to
illustrate the difference between an ’exact’ and an ’approximate’ solution of the learn-
ing problem. We showed that the RBF networks obtained results competitive to the
regularization networks. They achieved in average only about 6% higher error than reg-
ularization networks, while they have up to 50 times less hidden units. So they can be
used as their cheaper alternative, especially for tasks with large data sets.

As an example of a real-life application we presented the prediction of river flow
rate. The prediction was made on the Ploučnice River. Both the regularization networks
and RBF networks were applied. Both the approaches can be successfully used for
creating small rainfall-runoff models.

Chapter 7
Conclusion

Science is always wrong. It never solves
a problem without creating ten more.

George Bernard Shaw

This chapter summarizes the work achieved in the thesis and its main results. In addi-
tion, several possible directions for the further researchare discussed.

7.1 Main Results

In general, the main goal of our work was to study the possibleways of learning based
on the regularization theory. Learning algorithms, including the RN learning algorithm
(Algorithm 4.1.1) derived directly from the theory, and various learning algorithms for
the RBF networks were investigated.

The basic RN learning algorithm represents an incomplete tool for learning, since it
requires a non-trivial setup of metaparameters. It was shown in the experiments (Sec-
tion 6.3.1) that these metaparameters, the regularizationparameter and the kernel func-
tion, significantly influence the quality of the solution.

Therefore the framework above the basic RN learning algorithm was created (Sec-
tion 4.3), including the estimation of the metaparameters.The metaparameters with
the lowest cross-validation value are sought by the setup phase. Two techniques for
this setup were introduced — the adaptive grid search (Algorithm 4.5) and the genetic
parameter search (Algorithm 4.6.1).

Since the choice of the kernel function plays a crucial role in learning, we decided
that this part of regularization network deserves more attention. It resulted in proposing
the composite types of kernel functions — a product kernel and sum kernel. In the

101

102 CHAPTER 7. CONCLUSION

experiments (Section 6.3.4) we demonstrated their feasibility and showed that they are
a vital alternative to the classical (i.e. simple) kernels.These kernels are especially
useful on the tasks that are heterogenous in some sense, either varying in attributes or
different parts of the input space.

A good behavior was observed while experimenting with the sum kernels. The
setup phase adjusted the widths of the two Gaussians addends, so that one Gaussian
was very narrow and the other wide. Such a kernel function obtained good results even
without the regularization term1. Almost zero training errors were achieved2, while the
generalization property was preserved due to the wider Gaussian. Such kernel functions
may be very useful for the tasks with a low level of noise.

Inspired by the concept of restricted sum kernels, we proposed the “Divide et Im-
pera” approach (Section 3.5.2). It is a simple procedure that splits the tasks into several
disjunct subtasks. The learning algorithm is applied on each of these subtasks, possibly
in parallel. The solution is then computed as a sum of the networks obtained. Such an
approach does not only save the space, but also significantlyreduces the time require-
ments (Section 6.3.5).

Despite the thorough theoretical background, the regularization network may be not
feasible in some situations. Particularly, the solution istoo large for the tasks with huge
data sets. Therefore the notion of generalized regularization networks was introduced.
We focused on one concrete subclass — RBF networks.

The RBF networks benefit from a wide range of learning possibilities. Three main
approaches were described in Section 5.2. These approacheswere compared in the ex-
periments (Section 6.4). The best results, in terms of the training and test error, were ob-
tained by the gradient learning. The three-step learning, on the other hand, represented
the fastest approach, while the resulting errors were stillcompetitive. The genetic learn-
ing was significantly slower, and still it does not outperform the other methods in terms
of error.

Inspired by these results, the two hybrid approaches were proposed — the four-step
learning (Algorithm 5.6.2) and the hybrid genetic learning(Algorithm 5.6.1). Their
behavior was demonstrated in experiments (Section 6.4.5) and it was shown, that they
in some aspects, improve the original algorithms.

The four-step learning adds a gradient optimization to the three-step learning. It
achieves lower errors than the three-step learning and still has lower time requirements
than the gradient learning. The hybrid genetic learning represents a combination of the
genetic learning and the third part of the three-step learning. It achieved very good
results, outperforming the other approaches; however, it suffers from very high time
requirements.

1i.e. with zero regularization parameter
2because of the zero regularization parameter and the narrowGaussian

7.2. FUTURE WORK 103

When studying the learning from the point of view of both the regularization net-
works and RBF networks, the comparison of both the approaches is inevitable. In
our experiments (Section 6.5), the regularization networks and RBF networks achieved
comparable results. So we claim that the RBF networks represent a cheaper alternative
to the regularization networks, in terms of model size and learning time.

Finally, we presented an application to a real-life problem. Both the regularization
networks and RBF networks were successfully applied on the prediction of the river
flow rate.

7.2 Future Work

The thesis would be incomplete if we did not mention the possible directions of further
research. Some of them, namely the control of learning parameters and composite ker-
nels, have already been in the state of work in progress, the others are just ideas that
appeared during work on this thesis.

• Parallelization: parallelization may bring significant speed-up to the learning.
The learning techniques based on the GAs and the setup techniques based on
cross-validation are suitable for straightforward parallelization, since they con-
tain many independent evaluations of subtasks. On the otherhand, the learning
algorithms based on the gradient descent are known to be difficult to parallelize.

• Pruning: though the number of hidden units of regularization network is usually
high, not all of them are necessarily needed. Since similar results were obtained
by much smaller RBF networks on rather all tasks, it is probable that the network
may be pruned in some way (for example by examining the outputweights) and
its size reduced.

• Regularization: the regularization presented in this works corresponds tothe
well-known Tikhonov regularization. The ill-posed problems are well-studied
by numerical mathematics, and various approaches and techniques exist. The
possibilities of application of other approaches (e.g. non-linear regularization) in
the context of machine learning deserve more attention.

• Composite Kernels: more complicated composite kernel functions should be
investigated, especially for the application to diverse data, i.e. data containing not
only numbers, but objects like strings, trees, documents, etc. One should search
for new ways of designing kernel functions and create the composite ones.

• Large Data: nowadays rather real problems work with very large data sets. It is
more than necessary to study the ways of time and space complexity reductions,
making the algorithms more effective and applicable on suchtasks.

104 CHAPTER 7. CONCLUSION

• Control of the Learning Parameters: the performance of learning algorithms
based on the gradient descent algorithm (back-propagation, gradient learning for
RBF networks, etc.) depends on the setup of learning parameters, especially the
learning rate. Developing automatic adaptive controllersthat will tune the learn-
ing parameters during learning may speed up the learning.

Bibliography

[1] N. Aronszajn. Theory of reproducing kernels.Transactions of the AMS, 68:337–
404, 1950.

[2] Project Bang,http://bang.sf.net/ .

[3] Ch. Bishop. Improving the generalization properties ofRBF neural networks.
Neural Computation, 3:579–588, 1991.

[4] E. Björk. Numerical methods for least square problems. SIAM, Philadelphia,
1996.

[5] D.S. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive
networks.Complex Systems, 2:321–355, 1988.

[6] O. Buchtala, M. Klimek, and B. Sick. Evolutionary optimization of radial basis
function classifiers for data mining applications.IEEE Transactions on Systems,
Man and Cybernetics, 35(5):928–947, Oct. 2005.

[7] Ch. Chih-Chung and L. Chi-Jen. Libsvm: a library for support vector machines,
2002.http://www.csie.ntu.edu.tw/˜cjlin/libsvm/ .

[8] T.M. Cover. Geometrical and statistical properties of systems of linear inequal-
ities with applications in pattern recognition.IEEE Transactions on Electronic
Computers, pages 326–334, 1965.

[9] J. W. Demmel. The geometry of ill-conditioning.J. Complex., 3(2):201–229,
1987.

[10] C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of machine
learning databases, 1998.

105

106 BIBLIOGRAPHY

[11] F. Girosi. An equivalence between sparse approximation and support vector ma-
chines. Technical report, Massachutesetts Institute of Technology, 1997. A.I.
Memo No. 1606.

[12] F. Girosi, M. Jones, and T. Poggio. Regularization theory and Neural Networks
architectures.Neural Computation, 2:219–269, 7 1995.

[13] R. M. Gray. Vector quantization.IEEE ASP Magazine, 1:4–29, 1984.

[14] J. Hadamard. Sur les problèmès aux dèrivèes partielles et leur signification
physique. InPrinceton University Bulletin, pages 49–52. 1902.

[15] S. Haykin. Neural Networks: a comprehensive foundation. Tom Robins, 2nd
edition, 1999.

[16] K. Hlaváčková and R. Neruda. Radial basis function networks. Neural Network
World, 3(1):93–101, 1993.

[17] Lenna Image.http://www.lenna.org .

[18] V. Kůrková. Learning from data as an inverse problem.In Antoch J., editor,
Computational Statistics, pages 1377–1384. Heidelberg, Physica Verlag, 2004.

[19] P. Krušina, P. Kudová, Z. Petrová, and R. Neruda. Hybrid AI models using bang.
Technical Report V-879, Institute of Computer Science, AS CR, 2002.

[20] P. Kudová. Comparison of kernel based regularizationnetworks and RBF net-
works. Abstract. In Antoch J., editor, COMPSTAT’2004. Bookof abstracts, page
191. Prague, 2004.

[21] P. Kudová. Neuronové sı́tě typu RBF pro analýzu dat. Master’s thesis, MFF UK,
2001.

[22] P. Kudová. Učenı́ neuronových sı́tı́ typu RBF. Technical Report V-846, Institute
of Computer Science, AS CR, 2001.

[23] P. Kudová. Genetic and eugenetic learning of RBF networks. Technical report,
Institute of Computer Science, AS CR, 2002.

[24] P. Kudová. Hybrid learning of RBF networks. IňSafránková J., editor,WDS03
Proceedings of Contributed Papers, volume 1. Mathematics and Computer Sci-
ences, pages 102–107. Praha, MATFYZPRESS, 2003.

[25] P. Kudová. Learning of generalized regularization networks. Technical Report
V-851, Institute of Computer Science, AS CR, 2003.

BIBLIOGRAPHY 107

[26] P. Kudová. Learning of generalized regularization networks. In Hakl F., editor,
Doktorandsḱy den 03, pages 60–66. Praha, MATFYZPRESS, 2003.

[27] P. Kudová. Comparison of kernel based regularizationnetworks and RBF net-
works. In Vojtáš P., editor,Information Technologies - Applications and Theory.
Prrodovedeck fakulta Univerzity Pavla Jozefa afrika, 2004.

[28] P. Kudová. Kernel based regularization networks and RBF networks. In Hakl F.,
editor, Doktorandsḱy Den 2004, Paseky nad Jizerou, pages 59–65. Praha, MAT-
FYZPRESS, 2004.

[29] P. Kudová. Kernel based regularization networks. In Hakl F., editor,Doktorandsḱy
den 05, pages 65–74. Praha, MATFYZPRESS, 2005.

[30] P. Kudová. Learning with kernel based regularizationnetworks. InInformation
Technologies - Applications and Theory, pages 83–92. Košice, Prı́rodovedecká
fakulta Univerzity Pavla JozefǎSafárika, 2005.

[31] P. Kudová. Learning with regularization networks in Bang. In TAM’06,
http://www.bsc.es/TAM200/talks.htm , 6 2006.

[32] P. Kudová. The role of kernel function in regularization network. InIn proceedings
of conference ITAT’2006, 2006. IN PRINT.

[33] P. Kudová and R. Neruda. Kernel based learning methods: Regularization net-
works and RBF networks. In Lawrence N. Winkler J., Niranjan M., editor,De-
terministic and Statistical Methods in Machine Learning, pages 124–136. Berlin,
Springer-Verlag, 2005.

[34] P. Kudová, H.Řezanková, D. Húsek, and V. Snášel. Categorical data clustering
using statistical methods and neural networks. In E. Barashev, S. Kuznetsov, P. Ve-
likhov, and Novikov B., editors,SYRCoDIS’2006, Spring Young Researchers Col-
loquium on Database and Information Systems, 3, pages 19–23, Moscow, Russia,
2006.

[35] P. Kudová and T.̌Sámalová. Product kernel regularization networks. In Ribeiro
B., Albrecht R.F., Dobnikar A., Pearson D.W., and Steele N.C., editors,Adaptive
and Natural Computing Algorithms, pages 433–436. Wien, SpringerVerlag, 2005.

[36] P. Kudová and T.̌Sámalová. Sum and product kernel regularization networks.
In L. Rutkowski, R. Tadeusiewicz, L.A. Zadeh, and J. Zurada,editors,Artificial
Intelligence and Soft Computing, Lecture Notes in Artificial Intelligence, pages
56–65. Berlin, Springer-Verlag, 2006.

108 BIBLIOGRAPHY

[37] P. Langley. Machine learning as an experimental science. Machine Learning,
3(1):5–8, 1988.

[38] LAPACK. Linear algebra package,
http://www.netlib.org/lapack/ .

[39] W.A. Light. Some aspects of radial basis function approximation. InApproxima-
tion Theory, Spline Functions and Applications, pages 163–190. Kluwer Academic
Publishers, 1992.

[40] Neruda M., R. Neruda, and P. Kudová. Forecasting runoff with artificial neural
networks. In Arattano M. Maraga F., editor,Progress in Surface and Subsurface
Water Studies at Plot and Small BAsin Scale, pages 65–69. Paris, UNESCO, 2005.

[41] Lomond machine. Introduction to the University of Edinburgh HPC
service, http://www.epcc.ed.ac.uk/computing/services/sun/
documents/hpc-intro/hpc_introdoc.pdf .

[42] H. N. Mhaskar. When is approximation by gaussian networks necessarily a linear
process?Neural Networks, 17(7):989–1001, 2004.

[43] C. A. Micchelli. Interpolation of scattered data: Distance matrices and condition-
ally positive definite functions.Constructive Approximation, 1986.

[44] Z. Michalewicz.Genetic algorithms + data structures = evolution programs (3rd
ed.). Springer-Verlag, London, UK, 1996.

[45] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
1996.

[46] J. Moody and C. Darken. Fast learning in networks of locally-tuned processing
units. Neural Computation, 1:289–303, 1989.

[47] J. Moody and C. Darken. Fast adaptive k-means clustering: some empirical results.
In Proceedings of the IJCNN’90, volume 2, pages 233–238, San Diego, 1990.

[48] E. H. Moore. On the reciprocal of the general algebraic matrix. In Bulletin of the
American Mathematical Society, volume 26, pages 394–395. 1920.

[49] F.J. Narcowich, N. Sivakumar, and J.D. Ward. On condition numbers associated
with radial-function interpolation.Journal of Mathematical Analysis and Applica-
tions, 186:457–485, 1994.

[50] R. Neruda.Functional Equivalence and Genetic Learning of RBF networks. PhD
thesis, MFF UK, Charles University, Prague., 1997.

BIBLIOGRAPHY 109

[51] R. Neruda, P. Krušina, P. Kudová, P. Rydvan, and G. Beuster. Bang 3: A compu-
tational multi-agent system. In Zhong N., Bradshaw J., Pal S.K., Talia D., Liu J.,
and Cerrone N., editors,Intelligent Agent Technology, pages 563–564. Piscataway,
IEEE, 2004.

[52] R. Neruda and P. Kudová. Hybrid learning of RBF networks. In Sloot P.M.A., Tan
C.J.K., Dongarra J.J., and Hoekstra A.G., editors,Computational Science, pages
594–603. Berlin, Springer, 2002.

[53] R. Neruda and P. Kudová. Hybrid learning of RBF networks. Neural Network
World, 12(6):573–585, 2002.

[54] R. Neruda and P. Kudová. Learning methods for radial basis functions networks.
Future Generation Computer Systems, 21:1131–1142, 2005.

[55] PAPI. Performance application programming interface,
http://icl.cs.utk.edu/papi/ .

[56] R. Penrose. A generalized inverse for matrices. InProceedings of the Cambridge
Philosophical Society, volume 51, pages 406–413. 1955.

[57] D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experiments on learning by back prop-
agation. Technical Report CMU-CS-86-126, Carnegie-Mellon University, 1986.

[58] T. Poggio and F. Girosi. A theory of networks for approximation and learning.
Technical report, Cambridge, MA, USA, 1989. A. I. Memo No. 1140, C.B.I.P.
Paper No. 31.

[59] T. Poggio and S. Smale. The mathematics of learning: Dealing with data.Notices
of the AMS, 50:536–544, 5 2003.

[60] M.J.D Powel. Radial basis functions for multivariableinterpolation: A review.
In IMA Conference on Algorithms for the Approximation of Functions and Data,
pages 143–167, RMCS, Shrivenham, England, 1985.

[61] L. Prechelt. PROBEN1 – a set of benchmarks and benchmarking rules for neural
network training algorithms. Technical Report 21/94, Universitaet Karlsruhe, 9
1994.

[62] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, 1986.

[63] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-
tions by error propagation. pages 318–362, 1986.

110 BIBLIOGRAPHY

[64] B. Schoelkopf and A. J. Smola.Learning with Kernels. MIT Press, Cambridge,
Massachusetts, 2002.

[65] J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[66] M. Stone. Cross-validation: A review.Mathematics, Operations and Statistics.,
9:127 – 140, 1978.

[67] A.N. Tikhonov and V.Y. Arsenin.Solutions of Ill-posed Problems.W.H. Winston,
Washington, D.C, 1977.

[68] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-
Verlag, Berlin, 1982.

[69] V. N. Vapnik. Statistical Learning Theory. Wiley, New-York, 1998.

[70] H. Řezanková, D. Húsek, P. Kudová, and V. Snášel. Comparison of some ap-
proaches to clustering categorical data. InCOMPSTAT 2006 [CD-ROM], pages
607–613, Roma : Universita degli Studi di Roma La Sapienza, 2006.

[71] T. Šámalová and P. Kudová. Sum and product kernel networks.Technical Report
V-935, Institute of Computer Science, AS CR, 2005.

[72] T. Šidlofová. Existence and uniqueness of minimization problems with fourier
based stabilizers. InProceedings of Compstat, Prague, 2004.

[73] G. Wahba. Spline models for observational data.Series in Applied Mathematics,
59, 1990.

[74] P. J. Werbos.Beyond Regression: New Tools for Prediction and Analysis inthe
Behavioral Sciences. PhD thesis, Harvard University, 1974.

[75] J. H. Wilkinson and C. Reinsch.Handbook for Automatic Computation, volume 2
of Linear Algebra. Springer, Berlin, 1971.

[76] D.H. Wolpert. The lack of a priori distinctions betweenlearning algorithms.Neu-
ral Computations, 8(7):1341–1390, 1996.

Appendix A
Obtaining the thesis electronically

The thesis in postscript and PDF format and additional materials can be found on the
CD enclosed. The directory structure of the CD is following:

thesis/ contains the text of the thesis in postscript and PDF format
other/ contains the extended thesis abstract, author’s CV

and list of publications
data/ contains the data sets used in the experimental part of our work

Alternatively, the thesis, as well as the other materials, can be download from:

http://www.cs.cas.cz/˜petra/phd/

The experiments presented in the thesis were performed using our implementation of
the studied algorithms. The implementation was realized asa part of the multi-agent
system Bang that is developed at the Institute of Computer Science, Academy of Sci-
ences of the Czech Republic. The Bang system can be obtained via CVS:

cvs -d:pserver:anonymous@bang.cvs.sourceforge.net:/cvsroot/bang login
cvs -z3 -d:pserver:anonymous@bang.cvs.sourceforge.net:/cvsroot/bang
checkout -P bang3

You may also consult the home page of the project:

http://bang.sf.net/

111

112 APPENDIX A. OBTAINING THE THESIS ELECTRONICALLY

To compile and run the Bang system, one needs a POSIX standards conforming operat-
ing system. For example, Linux, OpenBSD, FreeBSD and Irix should work. A recent
C++ compiler conforming to ISO C++ standards is also necessary. GNU C++ 3.x is a
good choice, but other compilers should work as well.

In case of any difficulties, contact the author by e-mail:petra@cs.cas.cz.

