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Abstract

In this work we study and develop learning algorithms fomwaerks based on regulariza-
tion theory. In particular, we focus on learning possitaitfor a family of regularization
networks and radial basis function networks (RBF networkkg framework above the
basic algorithm derived from theory is designed. It includa estimation of a regular-
ization parameter and a kernel function by minimizationross-validation error.

Two composite types of kernel functions are proposed — a sammekand a product
kernel — in order to deal with heterogenous or large data.

Three learning approaches for the RBF networks — the graliaming, three-step
learning, and genetic learning — are discussed. Based en,ttveo hybrid approaches
are proposed — the four-step learning and the hybrid gelestiaing.

All learning algorithms for the regularization networksdathe RBF networks are
studied experimentally and thoroughly compared.

We claim that the regularization networks and the RBF neita/are comparable in
terms of generalization error, but they differ with respgedheir model complexity. The
regularization network approach usually leads to solstieith higher number of base
units, thus, the RBF networks can be used as a 'cheapematiee in terms of model
size and learning time.
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Chapter

Introduction

It is a very sad thing that nowadays
there is so little useless information.
Oscar Wilde

1.1 Motivation

In the last few years, machine learning has witnessed amaserof interest, which is
a consequence of rapid development of the information immgwsd its need for an
“intelligent” data analysis.

A learning problem can be described as finding a general haleexplains data
given only by a sample of limited size. In addition, collettata may contain measure-
ment errors or noise. Efficient algorithms are required terfibut the noise and capture
the true underlying trend.

In this thesis we will deal witlsupervised learningn such a case we are given pairs
of input objects (typically vectors), and desired outpiitse output can be of continuous
value, or it can contain a class label of the input object. fBis& of supervised learning
is to predict the output value for any valid input object aftaving seen a number of
examples, i.e. input-output pairs. To achieve this, a ‘vaable” generalization from the
presented data to unseen situations is needed. Such amrafpbears in a wide range of
application areas, covering various approximation, diaasion, and prediction tasks.

Artificial neural network§ANNS) represent one of the approaches that are able to
handle the learning problem. The neural network researsdeck to the early 1950s,
when McCulloch and Pitts defined a formal model of neuronhédigh their original
motivation was to model neural systems of living organisnesiral networks are appli-
cable in such diverse fields as modeling, time series asalyattern recognition, signal
processing, and control.
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The primary property of ANNSs is their ability to learn frometin environment and
to improve their performance through learning. There is adgsupply of network
architectures and corresponding learning algorithms (&5]). The model, that is, a
particular type of neural network, is usually chosen in aeaand its parameters are
tuned during learning in order to fit the given data. The diffies that might occur
during the learning process include slow convergenceijngestuck in local optima,
over-fittingetc.

Over-fitting typically occurs in cases where learning wasgrened for too long or
where training examples are rare. Then the network may heamy specific random
features of the training data that have completely no alatd the underlying func-
tion. In this process the performance on the training examglill increases while the
performance on unseen data becomes worse.

The problem of over-fitting can be cured by regularizatiaotly. The regularization
theory is a rigorous approach that formulates the learniaflpm as a function approx-
imation problem. Given a set of examples obtained by randammpsing of some real
function, possibly in the presence of noise, the goal ofiieay is to find this function
or an estimate of it. Since this problem is generally ill-@@dssome a priori knowledge
about the function should be added. Usually it is assumedtlegunction issmooth
where the smoothness is understood in a very general serftan iODmeans that two
similar inputs correspond to two similar outputs and/ot tha function does not oscil-
late too much. The solution is found by minimizing the fuonaotl containing both the
data term and the stabilizer, i.e. the term representingquiori knowledge.

It was shown that for a wide class of stabilizers the solutian be expressed in
the form of feed-forward neural network with one hidden layalledregularization
network Different types of stabilizers lead to different types dfieation functions, i.e.
kernel functiongin the hidden layer.

The regularization network as a solution derived from tlgtarization theory has
as many units in the hidden layer as the number of trainingy@kas was. Such a solu-
tion is unfeasible for bigger data sets, therefore the adég®eneralized regularization
networkswas introduced.

Radial basis function networK®RBF networks) represent a subclass of generalized
regularization networks. They belong among the more retyess of neural networks.
In contrast to classical models (multilayer perceptrois) éhe RBF network is a net-
work with local units, the proposal of which was motivateddrgsence of many local
response units in human brain. Other motivation came fromarical mathematics,
where radial basis functions were first introduced in theitsmh of real multivariate
problems. It was shown that RBF networks possess the uaivapproximation prop-
erty.

Based on a well established theoretical background, tresetaof regularization
networks and RBF networks represent promising approachisatning and deserve
further investigations. Though the theoretical knowletigeery beneficial, it does not
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cover all aspects of their practical applicability. Expeental study of corresponding
learning algorithms may justify the theoretical resultd give an idea of real complex-
ity and efficiency of the algorithms. Both good theoreticadl ood empirical knowl-
edge are the best starting point for successful applicgtionther improvements of the
existing algorithms, or creating new learning approaches.

1.2 Goals and Objectives

The main goal of the work is to study and develop learning raigms for networks
based on the regularization theory. In particular, leayniossibilities for a family
of regularization networks and RBF networks should be suidiThe available ap-
proaches, including gradient techniques, genetic alyost and linear optimization
methods, should be investigated and potential improvesraiggested. Based on the
obtained theoretical and experimental results, new algos should be proposed, pos-
sibly as hybrid methods combining the existing algorithrAi.the algorithms should
be implemented and their behavior studied experimentally.

The goal of the work will be achieved by means of the follownfgectives:

e Study of regularization network learning and its properties

The regularization theory leads to a solution of the regzdar learning problem
in the form of regularization network having as many hiddaiisias the number
of data points is. Such a solution results in quite a strégivard learning algo-
rithm, since the centers of hidden units are fixed to the gdega points and the
output weights are estimated as a solution of linear op#tion problem. Despite
its seeming simplicity, problems may occur due to roundeafbrs, numerical un-
stability, etc. Therefore the real applicability and bebawf the algorithm should
be studied.

In addition, the regularization network learning algamitihequires knowledge of
the regularization parameter and kernel function. To sethege parameters,
good knowledge of the role of regularization parameter ardéd function in the

learning is needed. The impact of regularization parameaterkernel function

choice on the performance of learning algorithm should bdist and different

types of kernel functions compared.

¢ Design of autonomous learning algorithm for regularizatian network

The regularization parameter and kernel function are pearars that represent
our prior knowledge of the given problem. In fact, they aread pf the learning
problem definition, and therefore are considered to be kniowthe theoretical
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assumptions. However, this is seldom true in practice. Istrapplications such
knowledge is not available and a desired learning algorghould be able to es-
timate these parameters itself. The framework above the le@sning algorithm
should be created to establish a fully autonomous learniogggolure.

e Study and design of learning algorithms for generalized reglarization net-
works

A regularization network as an exact solution of the regedal learning problem
has as many kernel functions as the number of data pointshis fdct makes
its learning quite straightforward and simple, but limtspractical applicability.
Since such a solution is unfeasible for larger data setgrgéred regularization
networks were introduced.

Different learning approaches for the generalized regadtion networks should
be studied, with focus on RBF networks. The RBF networksaalyepossess a
wide range of learning possibilities, including gradiesthiniques, combinations
of clustering and linear optimization, and genetic aldoris. The main concern
of further research is the creation of hybrid approaches.

e Performance comparison of regularization network and RBF retwork

Unlike the regularization network, the RBF network typigddas a much smaller
number of basis functions than the size of the data set is. balses functions
are usually distributed over the input space using variaugiktics, so that the
resulting network may be far from the optimal solution. Oa tther hand, the
solution is usually much cheaper, yet viable, in terms otsgamplexity.

The comparison of learning performance of regularizatietwvorks and RBF net-
works might throw new light on the difference between thestdk solution and
the “approximate” solution. Optimally, if this differendg reasonable, the RBF
networks might represent a cheaper alternative to the aggation networks.

1.3 Structure of the Work

Let us describe the structure of this work in order to helpatsder navigate throughout
the book. In general, the organization of this thesis refléo¢ course of development
of our work. It starts with chapters explaining the undertytheory, continues with
description of studied algorithms, and ends with an extenshapter describing exper-
imental results.

Chapter 2 presents the theory underlying the regularizatetworks. The whole
chapter is a compilation of the results published in [12,78,64], and others. It starts
with the definition and formalization of the learning pralbleThen derivation of regu-
larization network is presented, both using the stab#ibaised on the Fourier transform
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and Reproducing Kernel Hilbert Spaces (RKHSs). The laeivdtion slightly differs
from the one published in [59]. Our modification concerndiegahe data term of the
minimized functional in order to avoid numerical unstaljlbut does not cause any im-
portant changes in derivation or solution. Finally, theulagzation network is formally
defined.

Though the chapter does not present any novel work, it ivaatefor the further
chapters and deeper understanding of the problems tacktbem. The definitions of
learning problem and regularization networks will be ugethie rest of the work and
therefore should not be skipped.

In Chapter 3 we propose new solutions to the learning problemroduct kernel
regularization networlkandsum kernel regularization netwarldronszajn’s derivation
of RKHS product and RKHS sum [1] is presented and used to ge@pomposite types
of kernel functions —product kernelandsum kernel The simple “Divide et Impera”
approach is proposed to deal with bigger tasks. The wholpteh& based on the joint
work with T. Samalova [36, 35].

Chapter 4 is devoted to learning by using regularizatiomwasks. The basic regu-
larization network learning algorithm is presented, assuits directly from the theory.
The role of this algorithm parameters, i.e. the regulaidrgparameter and kernel func-
tion, is discussed. The framework above this algorithmappsed in order to create an
autonomous learning procedure. Based on cross-validatiemtroduce two methods
for the regularization parameter and kernel function setuthe adaptive grid search
and the genetic parameter search.

Chapter 5 deals with the learning algorithms for generdliegularization networks,
particularly RBF networks. First, the notion of generalizegularization networks
(as proposed in [12, 58]) is introduced, and RBF networksdascribed. Then, the
three main approaches for RBF networks learning are predentthey are the gradient
learning, three-step learning, and genetic learning. &lhese already been studied in
our previous work [21] to some extent. Finally, two hybridthhals are proposed.

Chapter 6 presents the experimental part of the work. Sinisequite extensive,
we describe its further structure. It is organized into sesgbsections. The first two
subsections state our motivation and goals, and describgetfa sets and methodology
used.

Subsection 6.3 is devoted to experiments with the reg@toa networks. They
demonstrate the role of the regularization parameter armekéunction, test the algo-
rithms for their setup, compare different types of kernektion, study the performance
of product and sum kernels, and finally test the “Divide eténg3 approach.

Subsection 6.4 deals with different learning algorithmstfie RBF networks. The
gradient learning, three-step learning, genetic learrang the hybrid methods — four-
-step learning and hybrid genetic learning — are demomstrand compared on the
experiments.
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Subsection 6.5 compares the regularization networks amRBF networks. In
Subsection 6.6 the application of regularization netwaikd RBF networks to the pre-
diction of river flow rate, made in cooperation with the Unsigy of J.E.Purkyné and
the Czech Hydrometeorological Institutelisti nad Labem, is presented. The last sub-
section brings a summary of the experiments and draws csinalst

The main results of the work are summarized in the last cinaptere several pos-
sible directions for future work are outlined.

1.4 Related Works by the Author

The results presented in this work have been already p@dlishpapers presented at
both international and local conferences, and publishgalimals, or technical reports.
Publications dealing with the regularization networks tiredr learning include [32, 31,
30, 29, 25, 26]. The results concerning product and sum kezgalarization networks
were published in [36, 35, 71]. The comparison of regulaiezanetwork and RBF
network was studied in [33, 20, 28, 27]. Papers and repodérdewith the various
learning approaches for RBF networks include [54, 52, 5323422]. And finally, the
results of application on prediction of river flow rate weresented in [40].

Other papers published by the author, but not directly iredab this work include:
[70, 34] dealing with unsupervised learning, and [51, 18genting the multi-agent sys-
tem Bang that was used as a platform for the implementatidineoélgorithms studied
in this work and realization of the experimental part.



Chapter 2

Regularization Networks

A lack of information cannot be remedied
by any mathematical trickery.
Lanczos, 1964

In this chapter we deal with the problem of supervised legyitly means of function
approximation theory and regularization theory. First, mteoduce the problem and
formulate it in a formal way as a function approximation gesh. In Section 2.2 we
describe the main idea of regularization theory and show ti@mearning problem
is handled. In the next two sections we show a derivation efl#arning problem
solution, aregularization networK12]. In Section 2.3 we present the derivation using
stabilizers based on the Fourier transform [12]; in Secfiohthe derivation taking
advantage of Reproducing Kernel Hilbert Spaces [59]. IiBe.5 we formally define
the regularization network and describe its architecture.

2.1 Learning from Examples

The problem oflearning from examplesr supervised learnings a subject of great
interest at present. In various applications, such asifigson of handwritten digits,
prediction of stock market share values, and weather fetiegg one encounters the
problem when they are given a data sample of limited size armheise description of
the data has to be found.

In the case of supervised learning, the data is a sample of-mytput patterns
(called atraining sampleor training se}, thus a concise description of the data is typ-
ically a function that can produce the output, when givenitipait. Then the task of

7
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learning is to find a deterministic function that maps anyine an output so that the
disagreement with the future input-output observatiomsiresmized.

Now we can formalize the problem of learning from examplea aasction approx-
imation problem.

Definition 2.1.1 (Learning from Examples) We are given a set of examplesgpair
{(xs, 1) € R x R}, (2.1)

that was obtained by random sampling of real functfogenerally in presence of noise.
The problem of recovering the functigifrom data, or finding the best estimate of it, is
calledlearning from example®r supervised learnir)g

Definition 2.1.2 (Training Set) The set of input-output pairs (2.1) is calleadning set

Clearly, whenever we are given an input vector that is pitagehe training set, we
can return the corresponding output, or the output thataepen the highest number
of pairs together with the input vector, in case of duplesti However, generalization
to cases not present in the training set is difficult. In addijtthe training set typically
contains noise, so the above described procedure fails.

In other words, it is not necessary that the function exantlrpolates all the given
data points, but what we need is a function with a ggederalization which is a
function that gives relevant outputs also for the data ndtighed in the training set.

It is easy to see that the problem is generally ill-posed ), The concept of
well-posedandill-posedproblems was introduced by Hadamard [14].

Definition 2.1.3 (Well-Posed Problem) The mathematical problenvedl-posedif it
has the following properties:

1. A solution exists.
2. The solution is unique.

3. The solution depends continuously on the data, in sons®redle topology.

Otherwise the problem is calletf-posed

In case of the learning problem, the first criterion in Defont2.1.3 may be not met
if there is an input appearing together with different otpa the training set. Still,
if the solution exists, there are many functions interpotathe given data points (see
Figure 2.1 for illustration). And finally, presence of noisgy violate the continuity
requirement.

In the rest of this chapter we will deal with the learning desb defined in Defini-
tion 2.1.1. Note that the one-dimensional output does nat the general applicability
of learning techniques presented in the following sections
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f(x)

Figure 2.1: The problem of learning from examples: the umkmtarget functiory, one
of the wrong solutiong”.

2.2 Regularization Approach

A commonly used method that deals with the problem of legrfiom examples, de-
fined in the previous section, empirical riskminimization [68, 69]. It works with a
space (or generally a set) of functions that are considerbd possible solutions. Such
a space is calledlaypothesis space

Then, the empirical cost is minimized over the hypotheseéep It means that the
function f* is sought such that

N

= i 3OV ), 22)

whereV is a suitabldoss function Typically a square of difference is used

N
* . 2
= Ifrg_[l — (f(xi) — wi)" (2.3)

As we have already discussed in the previous section, sudbéem is generally ill-
-posed. However, we are interested only in such soluticaigibssess the generalization
ability. There is no way to solve this problem unless sometemhdl information about
the unknown function is available.

Therefore some a priori knowledge about the function hagtedmsidered. If such
knowledge is not available, it is usually assumed that thetfon issmoothtwo similar
inputs correspond to two similar outputs, or the functioesinot oscillate too much.

Based on this assumption, the solution is stabilized by medrsome auxiliary
nonnegative functional that embeds prior information alloe solution [12]. Then the
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solution is sought as a function minimizing the functional:

N

H[f] = V(f(x:), ) +72[f], (2.4)

i=1

where® is called astabilizeror regularization termand~ > 0 is the regularization pa-
rametercontrolling the trade-off between closeness to the datalagcee of satisfaction
of the desired property of the solution.

Minimizing simultaneously both the data term and the regzddion term is the
basic principle ofregularization widely known asTikhonov regularizatiofj67], — a
general approach to ill-posed problems.

The problem of minimizing the functional (2.4) can be shownrhtive a unique
solution for a wide class of stabilizers and loss functibhsDerivation of the solution
shape is known as the Representer Theorem. It can be foud@jin[L1], where the
stabilizers based on the Fourier transform are used. IntfE$olution is derived with
the help of Reproducing Kernel Hilbert Spaces (RKHSs). Th&tence and uniqueness
of the solution was also proved in [72].

Now we show two ways of deriving the solution. In the next sectve deal with the
case of stabilizers based on the Fourier transform, andatid®e2.4 with the derivation
using RKHSs.

2.3 Stabilizers Based on the Fourier Transform

In this section we present the derivation of solution for ghabilizers based on the
Fourier transform, as it was proposed by Girosi, Jones agdiB¢12].

As we have already mentioned in the previous section, thedayassumption about
a function with a good generalization is that the functioeslaot oscillate too much.
Therefore one can look for a stabilizer measuring the “toity” behavior of the func-
tion.

Such a stabilizer may be constructed with the help of the iEotransform. The
Fourier transform of function produces a spectrum from Wwiine original function can
be reconstructed. In other words, it produces the repragsentof a function in the
frequency domain.

If we consider functions in the frequency domain, a functistillates less than
another one if it has less energy in high frequencies. To uredbe oscillary behavior
of the function, a high pass filter, i.e. a filter passing onlyhhfrequencies, is first
applied. Then the powelr ¢ norm) of the result is taken. So the stabilizer has a form:

o[f] = /R ds2)! (2.5)
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where indicates the Fourier transform ¢f, G is a positive function that goes to zero
for ||s|| — oo, i.e. 1/G is a high-pass filter. The typical example of such a functibn
Is the Gaussian function.

Now the goal is to minimize the functional:

HIf| = (76 — ) + 7 /R s! G((SS))' . (2.6)

Under slight assumptions ofi it can be shown that the minimum of the func-
tional (2.6) has the form of a linear combination of basisctions:

Theorem 2.3.1(Girosi, Jones, Poggio [12]) Let a functiafi : R¢ — R be symmetric,
such that its Fourier transform G is real and symmetric. THemsolution of minimiza-
tion of functional (2.6) has the form:

N k
f(l’) = Z sz(X - Xi) + Z dawab{)? (27)

where{v, }*_, is a basis of thé:-dimensional null spac&/ of the functionaf (in most
cases a set of polynomials). Coefficietitsandw; depend on the data and satisfy the
following linear system:

(G+D)w+Pld=y (2.8)
Pc=0 (2.9)

wherel is the identity matrix, and we have defided

y=,. - yn), W= (wy,...,wy), d=(dy,...,dy) (2.10)
Gij = G(XZ — Xj), \Ilai = wa(xi) (211)

The proof is based on the fact that a minimum of a functionaleast in an interior
point only if the first derivative equals zero. It can be found12], or in more detail
in [73].

For~ = 0 we get a strict interpolation and the solution of the lingestem depends
on the properties of the basis functioh43].

The basis functiod: used in the approximation scheme is set by choice of the-stabi
lizer, function in particular. So the type of the basis function reflects arassump-
tion on the approximated function.

The important classes of functions suitable for the chofcé& @re positive semi-
-definite, positive definite, and conditionally positiversedefinite functions.

1Gij stands for an entry of thiethe row andj-the column of the matric
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Definition 2.3.2 (Positive Semi-Definite Functiody is a nonempty set. Functiaf :
X x X — R satisfying

Zaza] xl,x] ) >0

i,7=0
forall n € N, for all a1,...,a, € R and for allxy,...,x, € X is called apositive
semi-definitfunction.

Definition 2.3.3 (Positive Definite Function) Positive semi-definite fuoicti : X x
X — R satisfying

Zala] (x;,%xj) =0 = Via; =0

i,7=0
forall n € N, forall ay,...,a, € Randforallx;,...,x, € X is called a(strictly)
positive definitfunction.

Definition 2.3.4 (Conditionally Positive Semi-Definite FunctioR) is a nonempty set.
FunctionK : X x X — R satisfying

E a;a; K(x;,%;) >0

,j=0

foralln € N, forall ay,...,a, € Rsuchthaty_!  a; =0, andforallx;,...,x, € X
is called aconditionally positive semi-definitiinction.

According to [12], for the class of positive semi-definitaftions, the functionab
is a norm, so its null space is empty and there is no polynoterat in (2.7). For the
case of conditionally positive semi-definite functiofrss a semi-norm and the basis of
its null space is a set of polynomials. In practical applaad, the polynomial term is
usually omitted.

2.3.1 Examples of Stabilizers

The choice of the basis function in an approximation sch&ng énd the choice of the
stabilizer (2.5) are equivalent. They both represent gamwledge or an assumption
about the approximated function. For better illustratie, will show three important
groups of the stabilizers —radial stabilizers tensor product stabilizersandadditive
stabilizersand corresponding basis functions (all proposed in [12]).

o Radial stabilizersare a commonly used group of stabilizers. They are radially
symmetric, which means that they satisfy

O[f(x)] = ®lf(Rx)], (2.12)
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Function Name Type k
G(ry=e 7 Gaussian function p.s.d.
G(r) = vr?2+ ¢ multi-quadratic cpsd 1
G(r) = \/r‘jﬁ inyerse multi.-quadratic p.s.d.
G(r) = r2ntt thin plate splines c.p.s.d.n
G(r) = r*"Inr thin plate splines c.p.s.d.n

Table 2.1: Examples of radial basis functions (p.s.d. stdadpositive semi-definite,
c.p.s.d. conditionally positive semi-definite,stands for the order of the polynomial
term if it is present in the solution).

whereR is an arbitrary rotation matrix. Radial symmetry reflects #ssumption
that all the input variables have equal relevance, thahiexetare no privileged
directions. They lead to eadial basis function=(||x||) and the approximation
model corresponds to the RBF networks. The class of feasabial basis func-
tions is the class of conditionally positive semi-defin@dtions, for which the
functional (2.5) is a semi-norm, and the problem of minimgz(2.6) is well de-
fined.

An important example is th&aussian functionwhich corresponds to the stabi-
lizer of the form

B[f] = /R ds 8 F(s) 2 (2.13)

whereb € R andb > 0. This stabilizer leads to the basis function

2
[1x]]

G(x) = e 5. (2.14)

As the Gaussian function is a positive definite functi®ff] is a norm, its null
space contains only the zero element, and therefore theqoiial terms of equa-
tion (2.7) are not present.

Other Radial Basis Functions are listed in Table 2.1. Thaitmmally positive
semi-definite functions need polynomial terms of orklén the solutions.

e Tensor product stabilizeran be used to derive the tensor product approximation
schema. The tensor product stabilizer has the form

2
B(f) = / as— O (2.15)
Rd Hj:19(3j)
where g is an appropriate one-dimensional function. For positeeisdefinite
functionsg the functional®|f] is a norm and its null space is empty. For condi-
tionally positive semi-definite functionsthe null space can be more complicated,
so these functions are typically not used.
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The stabilizer leads to a tensor product basis function

G(x) = ITj_,g()), (2.16)
whereg is the Fourier transform aj.
An interesting example is the choice gfs) = ﬁ which leads to the basis
function: )
G(x) = H;?Zle—lle — e~ 2j=1 1zl — o= lxlln (2.17)

This basis function is interesting from the point of view @frtiware implemen-
tation, since it requires only the computation Iof norm (instead of the usual
Euclidean norni,).

o Additive stabilizerdhave the form

o[ f] =;%/Rds‘f58‘2, (2.18)

whered,, > 0 are parameters allowing us to impose different degrees obtm
ness on the concrete additive components.

By using such stabilizers it is possible to derive the cldszdalitive approxima-
tion schemeshaving a kernel function

d
G(x) = Oug("). (2.19)

2.4 Kernel Based Approach

Kernels and kernel based approaches play a crucial roleeitedtrning theory and the
modern machine learning, which is dominated by kernel badgdrithms. In this
section we show the derivation of regularized learning [@wmbsolution in the kernel
framework, with the help of Reproducing Kernel Hilbert Sps@ccording to Poggio
and Smale [59].

The Reproducing Kernel Hilbert Space (RKHS) was first defigdronszajn [1].

Definition 2.4.1 (Reproducing Kernel Hilbert Space) Reproducing Kernel Hilbert
Spacsds a Hilbert spaceH of pointwise defined functions on non-empty donaisith
the property, that for eaclt € () the evaluation functional oft? given byF, : f —
f(x) is bounded.

It can be shown that every RKHS can be associated with a p@si@mi-definite
symmetric function — aeproducing kernel
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Theorem 2.4.2 (Aronszajn [1]) LetH be an RKHS. Then there exists a unique pos-
itive semi-definite symmetric functidd : Q x Q@ — R (called reproducing kernégl
corresponding td+ such that

1. For everyy € Q, the functioniy (x) = K(x,y) is an element of{.

2. Foranyf € H andy € Q the following reproducing property holdg(y) =
(f, Ky),where(.,.) is scalar product irf.

On the other hand, every positive semi-definite symmetnction K is a reproducing
kernel for exactly one RKHS.

Theorem 2.4.3 (Aronszajn [1]) LetK be a positive semi-definite symmetric function.
Then there exists exactly one RKHg, such thatk is its reproducing kernelH ; can
be described as

Hy = compl {Zaini; x; €V a; ER,n € N} , (2.20)
i=1

wherecompl means completion of the normed linear spakg, stands for kernel func-
tion K with the second variable fixed 19.

The proofs of Theorems 2.4.2 and 2.4.3 can be found in [1].

The norm in a RKHS is given by a scalar product

(Ky, Kxy) = K(x1,%;5), (2.21)
extending linearly to
(f,9) = <Z a; Ky, ijKxj) = Z aibj K (x;, %;). (2.22)
i=1 j=1 ij=1

Poggio and Smale [59] used RKHSs to derive the solution aflegzed learning
problem in the following way.

Let Hx be an RKHS defined by a symmetric, positive-definite kernetfion K.
Then one can take tHe x as a hypothesis space and define the stabilizer by means of
the norm inH i

O[f] = |1 f1I%- (2.23)
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Theorem 2.4.4 Let’H be a RKHS defined by a positive semi-definite symmetric kernel
function K. Then the minimum of the functiondl| f:

N

H[f] = (i — fx))? + I £11% (2.24)

i=1

overHp is unique and has the form

N
F) =) wiKy,(x) (2.25)
i=1
and the coefficients; satisfy
(K+D)w =1y, (2.26)

wherel is the identity matrixK is the matrixK; ; = K (xi,x;), andy = (y1,...,yn)-
Proof:  (Sketch of the proof) We apply the operagbdtf(t)% (integral of the func-
tional derivative) to the functional (2.24) and set it equeetero. We get:

N

> (i — fx)) () +7(f, [) =0 (2.27)

=1
Since the equation is valid for anfy it is valid also forf = K:

N

D (i = Fx)) E(xi) + (. Kx) = 0 (2.28)

i=1
Applying the reproducing property we get

N

Z(yi — f(x:)) Kx(xi) +7f(x) =0

i=1

and we can write
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Theorem 2.4.4 was presented in [59]. We have slightly chautige functional (2.24).
The change concerns the scaling factor of the data term.i®agd Smale in [59] scale
the data term proportionally to the number of data poingsthey define the task as the
minimization of functional

HIfl = 5 >~ 72+

and obtain a linear system defining the weights:
(K+ NyDhw =y (2.29)

(compare to (2.26)).

Clearly, scaling the data term does not change the solutithreaninimization prob-
lem. However, the solution (2.29) is not numerically feéesilb-or a big data set, i.e. big
values ofV, the diagonal part dominates and the information given bydta set (ex-
pressed by matri¥X) is suppressed. One can argue that this can be cured byiagjust
the regularization parameterto be smaller. But the role of regularization parameter is
to control the trade-off between the data term and the reigatéon term, and we do not
want it to depend omv.

2.5 Regularization Network

In the previous sections we have described the derivatidheofegularized learning
problem solution, first using stabilizers based on the Fesdransform, second with the
help of RKHSs. In both the cases the solution has a form ofeaticombination of

basis (kernel) functions (see Theorems 2.3.1 and 2.4.4)

N
) = wiK(x,x;), (2.30)
i=1

supposing that we are given a training set
{(xi,v;) € R* x R}Y,. (2.31)

The solution derived in Section 2.3 has in addition a poly@brierm. When a
positive semi-definite basis function is used, this termsduogt appear. In Section 2.4
only positive semi-definite functions were considered, l#® golution (2.25) has no
polynomial term. Further we will work mainly with positivesi-definite kernels, and
in other cases we will omit the polynomial term.

The solution (2.30) can be represented as a feed-forwancdineetwork with one
hidden layer and a linear output layer (see Figure 2.2). Titdem layer consists of
kernel unitsrealizing the basis (kernel) functions.
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Figure 2.2: Regularization network scheme.

Definition 2.5.1 (Kernel Unit) Akernel unitis a computational unit witll real inputs
x = x1,...,2xq and one real outpug. It evaluates the function

y(X) = K(Xv C)v
whereK is a suitable kernel functior, € R%. The vectok is called acenter

Note that in the optimal solution the centers of the kernetsyn.e. the second
arguments of the kernel functions, are fixed to the data pa&intSuch a neural network
is called aregularization networKRN) [12].

Definition 2.5.2 (Regularization Network) Aegularization networks a feed-forward
neural network with one hidden layer of kernel units and dnedr output unit. It
represents a function

N
f(x) = Z wi K (x;, ¢;), (2.32)

where N is a number of hidden neurons (i.e. number of basis functjans € R,
c; € RYx; € RY K : RY — R is a chosen kernel (basis) function. To coefficients of
the linear combinationu; we refer as taveights the vectors:; are calledcenters

The practical aspects of learning with the regularizatietworks and the corre-
sponding algorithms will be discussed in detail in Chapter 4



Chapter 3

Product and Sum Regularization
Networks

The whole is more than the sum of its parts.
Aristotle, Metaphysica

In this chapter we propose new types of regularization nedsve— aproduct kernel
regularization networkand asum kernel regularization netwark hese approximation
schemata are based on the composite types of kernel fuactind were first introduced
in [35, 36].

The next section describes our motivation for the compd®iteels. In Section 3.2
the product of two RKHS, a mathematical justification foprduct kernel is con-
structed according to Aronszajn [1]. Then in Section 3.3gheduct kernel and the
product kernel regularization network are introduced. ti8ac3.4 deals with the sum
of two RKHS [1] that is used in Section 3.5 to derive@an kernebnd the sum kernel
regularization network.

3.1 Motivation

The kernel function used in a particular application of tagmation network is typically
supposed to be given in advance, for instance chosen by .a user

In fact, the choice of kernel function is equivalent to theick of prior assumption
about the problem at hand (see Sections 2.3-2.4). It refbestprior knowledge or
assumption about the problem and its solution. Therefarehbice is crucial for the
quality of the solution and should be always done accordirthe given task.

19
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As a kernel function we can use any symmetric, positive sgafinite function,
possibly a conditionally positive semi-definite functiddowever, the most frequently
used kernel function is the Gaussian function. Other comkeomel functions are listed
in Table 2.1. The procedure we use for choosing a suitableekdéunction will be
discussed in the next chapter.

Although only kernels defined on real numbers are considéredghout this work,
in practical applications we often meet data containingiaites of different types, such
as enumerations, sets, strings, texts, etc. Such data nenlberted to real numbers by
suitable preprocessing or the regularization networkniegrframework may be gener-
alized so that it can work on such types. For such a genetialigaophisticated kernel
functions defined on various types were created. The exaopleernel functions de-
fined on objects including graphs, sets, texts, etc. canuoedfon [65].

To sum it up, when choosing the kernel function, two aspeats o be considered.
They are the prior knowledge of the problem and type of tha datnain.

However, the real data are often heterogenous. The heteritgeefers either to
attributes or parts of the input space, or both. By the formemean that different
attributes are of different types or differ in quality. Byethatter we mean that the data
have different qualities (such as density) in differentgaif the input space. Then for
the different parts of the data different kernel functiores suitable.

In such situations, kernel functions created as a comloinati simpler kernel func-
tions might better reflect the character of the data. We caefiidrom the fact that the
set of positive semi-definite functions is closed with respe several operations, such
as sum, product, difference, limits, etc. [1, 64]. Basedtmdperations of sum and
product we introduce two types of composite kernel unitsyelst aproduct kerneland
asum kernel

3.2 Product of RKHSs

In this section we present a derivation of the product of twdHSs and show that its
reproducing kernel is a product of two kernels correspamthbirthe original RKHSs [1].
This will be used in the next section to derive a product kieregularization network.

Let F; on); andF;, on(), be two different RKHSSs, and lét; and K, be their repro-
ducing kernels. The goal is to find a set of function$ba (2, x (2, that forms an RKHS
with the reproducing kernel given bi ((x1,x2), (y1,¥2)) = Ki(x1,y1)K2(x2,y2),
wherex;,y; € € andxsy, yo € (.

First consider the following set of functions 6h= ; x Q,:

F = {Z fl,k(X1)f2,k<X2> ‘ n < N, ka S Fl,fg,k € Fg,Xl € Ql,Xg € Qg} . (31)

k=1
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To transformF” into a Hilbert space, one needs to define a scalar productoi itnake
it complete with respect to the norm given by this scalar pobdThe scalar product is
given by the following lemma.

Lemma 3.2.1 (Aronszajn [1]) Let functiong, g € F’ be expressed as

f(x1,%2) quc X1) fa.r(x2) (3.2)
and
g(x1,%3) Zglj (%1) g2, (x2). (3.3)
Let(f, g) be defined as
y i (fris 91,301 {f20: 92,5)2, (3.4)

k=1 ]:1
where(-, -); denotes the scalar product dn. Then(f, ¢g) is a scalar product orF”.

Now the norm on¥” can be defined as usual.

Definition 3.2.2 (Norm on F”) Let F’ be a function space (3.1). Lét,-) defined
by (3.4) be a scalar product of’. Then the norm ot is defined by

[ ll7 = VS5 f)- (3.5)

To obtain a Hilbert space from a scalar product spicgvith scalar product (3.4)),
one needs to make it complete. The following theorem coatstithe completion of”
with respect to the normh- || 7.

Theorem 3.2.3 (Aronszajn [1]) LetF’ be the set of functions defined in (3.1). Let
{gz-(k)}k be complete orthonormal sequence in the spagefor : = 1,2. Then the
class of functiong” on 2

F={q]g(x1,%2) Zzakl91 2 Xz)}n (3.6)

k=1 I=1
with (¢, ') ZZ |a|* < oo, (3.7)
k=1 I=1

forms a complete Hilbert space and is the completiod’ofvith respect to the norm
|-
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Note that any finite sum of type (3.6) is also of type (3.1) amel morm|| - ||
coincides with the norm defined by (3.7). For the proof see [1]

Definition 3.2.4 (Product of RKHSSs) Let’; be an RKHS o1i); and F, an RKHS on
. Let

F = compl {Z Jir(x) for(x2) [n €N, fir € F1, for € F2} ) (3.8)
k=1

wherecompl means completion of the set with respect to the nprm. F'is called
theproduct of /7 and F;, and write

F=F®F,. (3.9)

The last thing to be proved thatis an RKHS with the reproducing kernel given by
the product of kernel#&’; and K,. According to Aronszajn [1]:

Theorem 3.2.5 (Aronszajn [1]) Fori = 1,2 let F; be an RKHS o1f; with kernel K.
Then the product’ = F} ® F; on€); x 5 is an RKHS with kernel given by

K((x1,%2), (y1,¥2)) = Ki(x1,y1)Ka(x2,y2) (3.10)

wherex;,y; € Q1, X2, y2 € (.

3.3 Product Kernels

In the previous section we showed a derivation of the prodtitvo RKHSs, and that
its reproducing kernel can be obtained as a product of regind kernels of original
RKHSs. Such a kernel we callpgoduct kernel More generally:

Definition 3.3.1 (Product Kernel) LetK, ..., K; be the kernel functions defined on
Q1, ..., (4 € R%), respectively. Lef) = Q; x Qy x --- x . The kernel function
K defined o) that satisfies

K(X17X27 ey Xk Y1,Y2, -4 7yk’) = KI(X17 Y1)K2(X2>YZ) e Kk(xk’v yk’)7 (311)

wherex; € Q;, we call aproduct kernel

A computational unit that realizes the product kernel fiorctvill be called aprod-
uct unit(see Figure 3.1).
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PRODUCT

Figure 3.1: A unit realizing a product kernel.

Definition 3.3.2 (Product Unit) Aproduct unitis a computational unit with multiple
inputs(xy, xa, ..., Xk), X; € €;, and one real outpug, realizing a function

y(X1,X2, ce 7Xk) = K1(X1, CI>K2<X27 Cz) . 'Kk(Xk> Ck),
where; are kernel functions. Vectors are calledcenters

The regularization network with the hidden layer formed byduct kernels is called
aproduct kernel regularization netwolPKRN).

Definition 3.3.3 (Product Kernel Regularization Network)pkoduct kernel regulariza-
tion network(PKRN) is a regularization network realizing a function

N
f(x1,X2,...,XK) = szfﬁ(xl, 1) Ka(x2, o) - - Ki (%, Cr), (3.12)

1=1

wherex;, ¢; € €);, K; are kernel functions.

Product kernels might be useful if a priori knowledge of dauiggests looking for
the solution as a member of a product of two or more functi@cep. This is typically
in a situation when the individual attributes, or groups tifilutes differ in type or
quality. In such situations, we can split the attribute® igtoups, which means that
instead of one input vector € R? we will deal with k& input vectorsx; € R%, for
i =1,..., k. Then the training set has the form

{(xi,x),...,xt y) € RM" x R% x ... x R™ x R\ . (3.13)

Using a product kernel on such training data enables us wepsadifferenk;, i.e.
groups of attributes, separately by different kernel fiomg.
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Figure 3.2: A product kernel from Example 3.3.4.

Though the theory is derived for kernels defined on real nusfe¢ c RY), it
is possible to combine kernel functions defined on diffetgpes. Then attributes in
the input vector may be very diverse, for instance real numityexed with categorical
attributes, strings, texts, or various objects. The irdliai attributes can be divided into
groups of the same type, forming several input vectors. lgmlt vector, i.e. a part of
the original input vector, is then processed by a kerneltioncsuitable for its type.

Example 3.3.4 The simplest example of PKRN is the one using a product of tanss
sian kernels. Suppose that in one dimension the data aebkufbr approximation via
a narrow Gaussian kernel, in the second dimension the iamigtismooth, so we want
to use a broader Gaussian kernel. Then we obtain an approoimsehema

_(Hxl—xiu)z _(uxQ—xéH)Q

f(Xl, X2) = Zwie dy - € d s (314)

whered; andd, are the widths of the Gaussians. See Figure 3.2 for therditish of
the resulting kernel.

3.4 Sum of RKHSs

In this section we construct a sum of two RKHSs and show teakeproducing kernel
can be obtained as a sum of the reproducing kernels of therigioal RKHSs.
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Let F;, and F, be RKHSs of functions of2 ¢ R?. Let K; and K, be the corre-
sponding kernels and||; and||. || the corresponding norms.

Lemma 3.4.1 (Aronszajn [1]) LetK; : Q@ x Q@ — Rand K, : ©2 x Q — R be positive
semi-definite functions. Then the functign 2 x 2 — R defined as

K(Xv y) = KI(X7 Y) + K2(X7 Y)
is also a positive semi-definite function.
Since the sum of two positive semi-definite functions is atp@sdefinite function,
itis a reproducing kernel for an RKHS. Now we show how to finel ¢hass of functions

that form this RKHS.

Definition 3.4.2 (H) Let H be the space of all couplds, f>} on(2 such that

H={{fQ,fo}| 1 € 1, 2 € I3}, (3.15)
and let the metric orH be given by
I fu £2307 = ILANE + (12113 (3.16)
Let Fy be a class of all functiong belonging tof; N F,. We defindd, as
Ho:={{f,—f}: [ € Fo}. (3.17)

H, is a closed subspace é&f, thus we can writed = H, & H’, whereH’ is the
complementary subspace .

Definition 3.4.3 (H') Let H be the space defined in Definition (3.4.2) afAg the
space (3.17). Then we defifg as a subspace di such thatd = H, & H'.

To every elemen{f’, f} of H there corresponds a functighix) = f'(x) + f”(x).
So there is a linear correspondence transforniingto a linear class of functions di.

Definition 3.4.4 (F) Let H be the space defined in Definition (3.4.2). We defiraes
F={f]fx)=[f(x)+f"(x),{f [} eH} (3.18)

Elements ofH, are precisely those transformed into the zero function hod the
correspondence betweéfi and F' is one-to-one and has an inverse (for evérg F

we obtain ong g'(f), ¢"(f)}).
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So the metric orf’ can be defined by the following way:

Definition 3.4.5 (Norm onF’) Let I’ be the space defined in Definition 3.4.4. Then we
define the norm o’ as

AP = 1{g' () g" (O = Nlg (OIT + llg" (13-

The last thing to be proved is that the functiiix,y) = K;(x,y) + Kx(x,y) is
the reproducing kernel for the spake

Theorem 3.4.6 (Aronszajn [1]) LetF; and F, be the RKHSs anfl;, K> and||.||1, ||-||2
the corresponding kernels and norms. [Febe defined as in Definition 3.4.4 with the
norm defined in Definition 3.4.5. Then

K(Xv y) = KI(X7 Y) + KQ(Xv Y) (319)
is the kernel corresponding t&.

The claim holds also foF’ defined as a class of all functiolfis= f;+ f> with f; € F;
and norm|| f||? = min(|| f1]|? + || f2]|3) with the minimum taken for all decompositions

f = fi + fowith f;in F}.

3.5 Sum Kernels

The reproducing kernel of the sum of RKHSs shown in the prevgection, which is
the kernel that can be obtained as a sum of other kernel nstis called sum kernel

Definition 3.5.1 (Sum Kernel) The kernel functidii that can be obtained as a sum of
two or more other kernel functiorns,, . . ., K},

k

K(x,y)=)Y_ Kixy), (3.20)

i=1

is called asum kernel

The computational unit realizing the sum kernel is shownigufe 3.3. We call it a
sum unit

Definition 3.5.2 (Sum Unit) Asum unitis a unit with multiple inputx, x € €2, and one
real outputy, realizing a function

y(x) = Ki(x,¢) + Ks(x,¢) + - -+ + Ki(x, ¢),

whereK; are kernel functions. Vectar € 2 is called acenter
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K1 Kz """"" Kk

X4 Xo X3 X4

Figure 3.3: A unit realizing a sum kernel.

The regularization network that has sum units in its hiddgret is called asum
kernel regularization networiSKRN).

Definition 3.5.3 (Sum Kernel Regularization Network) LEt, . . ., K}, be kernel func-
tions on(). Thesum kernel regularization netwof8KRN) is an approximation schema
that has the form

f(x) = Zwi(Kl(X, c)+ ...+ Ki(x,¢)), (3.21)

wherex € Q, ¢c; € Q.

The sum kernel is intended for use in cases when a priori keabyd or analysis of
data suggests looking for a solution being a sum of two or raretions. For exam-
ple, when the data is generated from a function influencedvioysburces of different
frequencies. Then we can use a kernel obtained as a sum oftgogorresponding to
high and low frequencies (see Figure 3.4).

In our experiments in Chapter 6, Subsection 6.3.4, we wdlsthat the kernel ob-
tained as a sum of two Gaussian functions has an interestimgvior. It enables us to
achieve very low errors on the training data while preseyvig generalization ability.
Such an SKRN outperforms a standard regularization netiwor&rms of approxima-
tion error on most tasks we have tested.

3.5.1 Restricted Sum Kernel

Approximation of data with different distributions in dsffent parts of the input space
may be done with the help of @stricted sum kernelWe will take advantage of the
following lemma.
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Figure 3.4: An example of a sum kernel formed by two Gaussiantfons.

Lemma 3.5.4 (Aronszajn [1]) LetF" be an RKHS of real-valued functions Qrwith K
as a kernel. Then functioR 4 defined by

K(x,y) |if x,y €A,

) (3.22)
0 otherwise;

KA(Xv y) = {

is a kernel for the spacé’y = {fa,f € F}, wherefs(x) = f(x)ifx € Aand
fa(x) = 0 otherwise.

Definition 3.5.5 (Restricted Sum Kernel) The kerngl(x,y) (3.22) is called are-
stricted sum kernel

In situations when different kernels are suitable for défé parts of the input space,
we can divide the input space into several disjunct subsets. ., A, and choose dif-
ferent kernelds; for eachA,;.

Then we obtain the kernel as a sum of kernglsrestricted to the corresponding
sets:

Ki(xa y) If X,y € Az

) (3.23)
0 otherwise

K(X,y)Z{
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3.5.2 Divide et Impera

The second application of restricted sum kernels is a dasivaf theDivide et Impera
approach that represents a technique for dealing with bidgfa sets.
Note that an SKRN with restricted sum kernels representaetifan

f(x) = Z wi Ky (x, %) + ...+ Z w; K (X, X;), (3.24)

xX; €A xX;EAL

which can be also interpreted as a sunt oégularization networks, each using its own
kernel functionk,,s =1, ..., k.

In addition, for the case of disjunct sets, always exactly one member of (3.24) is
nonzero. Thus for an input only the regularization network corresponding to the set
A, for whichx € A, has a nonzero output. So we can write

Flx) = § e Waltelo) TS e A (3.25)
0 if Vs :x ¢ A,.

Conversely, to determine the valuewf;, only the training sample§x;, y,)|x; € A}
are needed.

So the patrtitioning of the input space defines the partitigmif the training set into
k subsets. The weights of the SKRN with restricted sum kerraaisbe determined by
solving k& of smaller linear systems (2.26) instead of a big one.

Replacing one linear system ldysmaller ones reduces the space requirements of
learning. In addition the time requirements decrease, which will bews later in
Section 6.3.5. The drawback of this approach is a slighthgér approximation error.

It is caused by the lack of information on the borders of thmitrspace areas, i.e. sets
Ai-

1The space requirements of learning are given by the amowsgaife needed to store and solve the
linear system (2.26). For more details on the learning #lyorsee Section 4.1.






Chapter I

Learning with Regularization Networks

Prediction is difficult,
especially of the future.
Niels Bohr

In this chapter we deal with the learning using the reguddidn networks introduced
in Chapter 2. The following section describes the basiaiegralgorithm for a regular-
ization network. In Section 4.2 we discuss the role of thell@gzation parameter and
the kernel function. In Section 4.3 we propose a framewodvalthe RN learning al-
gorithm that realizes the whole learning procedure inclgdhe setup. The Section 4.4
describes cross-validation, a standard technique for stimmation of neural network
generalization ability that is used in Section 4.5, wherepna@pose thexdaptive grid
searchalgorithm for the estimation of the optimal regularizatiperameter and kernel
function, and in Section 4.6, where thenetic searclalgorithm is proposed.

4.1 The Regularization Network Learning Algorithm

The basic learning algorithm for a regularization netwavkjch is sketched in Algo-
rithm 4.1.1, follows directly from the Representer TheoKeee Theorem 2.3.1 and 2.4.2).
It consists of two steps. First, we set the centers of keunmsttfons to the given data
points, and then we compute the weights solving the linestesy (4.1). The first step

is trivial, but the second step involves linear optimizatamd forms a crucial part of the
algorithm.

31
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Input:  Data set {x;, 7Y, CRIxR
Output: Regularization Network

1. Set the centers of kernels:

ViE{l,...,N}ICZ‘HXi

2. Compute the values of weights
Wy, ..., WN-

(K+~D)w =y, (4.2)

where 1 is the identity matrix,
Kij = K(XZ’,XJ'>, and y = (yl,...,yN),
v > 0.

Algorithm 4.1.1. The RN learning algorithm.

The strength of the algorithm stems from the fact that thedinsystem we are
solving is well-posed for positive semi-definite kerneldtion K, i.e. it has a unique
solution and the solution exi$tfl2, 11, 59, 72].

However, as it will be shown later experimentally (Chapte$6bsection 6.3.1), the
real performance of the algorithm significantly dependshendhoice of regularization
parameter and kernel function. These parameters are sghpmbe given in advance.
We will call themmetaparameter® distinguish them from the parameters of the regu-
larization network itself (weights, centers).

Another aspect of the successful application of the allgorit the choice of method
for solving the linear system. This problem is well studigdnmmerical mathematics
and a variety of algorithms exists [4, 75, 62]. The choicehef method should depend
on the size of the linear system, i.e. the size of the traisgtg

For the data sets of small and medium size, the linear systerhe solved by direct
methods, such as RQ decomposition [62]. Then the algorigheimiple and effective.

The tasks with huge data sets are more difficult to solve, laeglead to solutions of
unreasonable size as well. Other algorithms should be nsaeth cases. One option is
represented by the RBF networks belonging to the familyesferalized regularization
networks discussed later in Chapter 5. Alternatively, in Sectidh3a simple “Divide
et Impera” approach has been proposed, dividing the taséveral smaller subtasks.

Lt hasN variables,N equationsK is positive semdefinite and+I + K) is strictly positive.
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We can apply the basic algorithm on these subtasks and thaim tte resulting network
as a sum of the sub-results.

4.2 Role of Regularization Parameter and Kernel Func-
tion

In the previous section the RN learning algorithm (Algamth.1.1) was described. Now
we will deal with its metaparameters, the regularizatiorapeeter and the kernel func-
tion, in more detail. In particular, we will discuss how thesetaparameters influence
the solution and also the algorithm numerical stability.

Recall that the regularization network found by the RN l@agralgorithm (Algo-
rithm 4.1.1) is the solution of the minimization problem

N

Hf] =) (f(x:) = v:)* + v2If], (4.2)

1=1

where® is astabilizerandy > 0 is the regularization parameter

The regularization parametercontrols the trade-off between the data term and the
regularization term, i.e. the trade-off between the clessrto data and the solution
smoothness. The non-zero regularization parameter pewser-fitting and should
always reflect the noise level. Therefore it has to be set aprding to the given task,
there is no universal value for it.

The second metaparameter is the kernel funcfionin general, the choice of the
kernel function corresponds to

1. Choice of the stabilizer: When using the stabilizers basethe Fourier trans-
form (2.5), the particular form of this stabilizer is givey the choice of a high-
-pass filter (that is the choice 6f). This choice determines the kernel function
used in the solution (see Section 2.3).

2. Choice of a function space for learning: In derivation ¢d Rith the help of
RKHSs (see Section 2.4), the choice of the kernel functicegisivalent to the
choice of an RKHS that is used as the hypothesis space.

In both the cases the kernel function represents our kng@eled assumption about
the problem and its solution. Wolpert [76] introduced tizefree-lunch theorerstating
that there is no general purpose learning algorithm, andmiyeway one strategy can
outperform another is if it is specialized in the specifichgeon under consideration.
Such specialization requires prior knowledge of the giveabjem. Similarly no kernel
can outperform other kernels in all possible problems [64#] a0 the kernel function
should be chosen according to our knowledge of the probldmarad.
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The choice of a value of both metaparameters influencestssaumerical stability
of the linear system (4.1) that has to be solved in the RN legralgorithm (Algo-
rithm 4.1.1).

We have learned that the system is well-posed. But we alsetioaask the question
whether the system is numerically well-posed, i.e. inge@sio small perturbations of
the data.

A rough measure of the problem feasibility to digital (nuroak) computation is
a condition numbef9]. The problem with a low condition number is said towell-
-conditionedwhile the problem with a high condition number is said talbeonditioned

Definition 4.2.1 (Condition Number of a Matrix) LeA be a real matrix. Then the
numberx(A) given by

r(A) = [[A7Y] - [[Al, (4.3)
where|| - || is any consistent norm, is calledcandition number of matrixif || - || is the
L, norm, the condition number can be computed as

Umax<A)
A)=—— 4.4
w(a) = 7, (4.4)

whereo,,..(A) and o,,;,,(A) are the maximal and minimal singular values Afre-
spectively.

The condition number associated with the linear equafien= b gives a bound
on how inaccurate the solutiatn will be after an approximate solution. In fact, the
condition number effectively amplifies the error preserivin

If the parametery is large, the matriXK + ~I has a dominant diagonal and the
condition number is small [9]. So the choiceofias a direct influence on the numerical
properties of the linear system (4.1). However, the chofceshould, at the first place,
reflect the level of noise in our problem, not to cure the diditioning of the problem.
If we choosey too large, the linear system may be easy to solve, but theicolwill
not fit our data at all. So the optimal value pfshould balance the well-conditioning
and the closeness to the data.

Naturally, the numerical properties of the linear systeresioot depend only on the
value of, but also on the properties of the matkxthat is given by the kernel function
choice.

As the most common kernel function is the Gaussian function

_lx—y112

Kxy)=e¢ & (4.5)

we will discuss the properties of the matidik corresponding to the Gaussian kernel
function in more detail.
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Clearly the values of entries of the matiik depend both on the distance between
individual data points and the width The entries on the main diagonal are always
equal to one, all other elements are from the intefval ).

Kij S (07 1>7Z % j

It is easy to see that by decreasing the width we make thexraitries smaller, and

vice versa. Considering a digital representation withdipitecision, both the extremes
result in losing information. Too small width leads to a diagl identity matrixiK and

a trivial linear system; too wide width to matriK with all entries close to one, which
makes the system (4.1) difficult to solve.

Considering the condition number, smaller widths resulnistrices with a domi-
nant diagonal, i.e. a smaller condition number; wider wsdth the other hand lead to
matrices with a high condition number. Again, there is adraff between avoiding the
ill-conditioning and not losing the information. Note thvalhat we mean by small width
and wide width is always relative and depends on the densdgta points. The width
should be always chosen according to the given data.

The case of the Gaussian kernel function was also studietirdP]. Narcowich,
Sivakumar and Ward defined tlseparation radiusas the minimal distance between
two data points. They have shown that for the Gaussian kéunetion the condition
number of matrixiK depends only on two parameters: the dimensiarf the input
space and = %, wheregq is the separation radius ahds the width of the Gaussian. It
justifies the intuitive idea that the denser data we haven#meower Gaussian kernels
are suitable and vice versa.

So in the choice of both the regularization parametend kernel function type,
there is always a trade-off between making the problem e&sigolve and not losing
relevant information, and a trade-off between fitting thering data and making the
solution smooth enough to generalize. Both metaparamed#éiest our prior knowl-
edge about the problem, the regularization parametersqorals to the level of noise,
whereas the kernel function express a general knowledgesangption.

Later, in Chapter 6, Section 6.3.1, the role of metaparametdlustrated on exper-
iments, and it is shown that a wrong choice of kernel functiay lead to the failure of
the RN learning algorithm.

4.3 Learning Framework

The discussion in the previous section indicates that thkeperformance of the algo-
rithm depends significantly on the metaparameters choite rietaparameters are a
part of formulation of the problem we are solving. Clearlyye formulate our problem
improperly, the obtained solution may be useless.



36 CHAPTER 4. LEARNING WITH REGULARIZATION NETWORKS

Ideally, these parameters should be selected by the used lbastheir knowledge
of the problem given. Since this is not possible or very ditficn majority of practical
applications, we need to build a framework above this algorito make it capable of
finding not only the network parameters but also optimal pextameters.

We propose the following procedure:

1. Setup of the algorithm

(a) Choice of a type of the kernel function: By the type we mikat we decide
whether to use a Gaussian, multi-quadratic, sum, prodtect(feor sum and
product kernels it is necessary to determine the type fdteatiels used in
the sum, resp. product).

(b) Choice of the additional parameters of the kernel fumctiSome kernels
have additional parameters that have to be estimated (suttteawidth in
the case of the Gaussian function).

(c) Choice of the regularization parameter

2. Running the RN learning algorithm (Algorithm 4.1.1)

The proposed autonomous learning procedure consists gdavis. In the first part,
we set up the metaparameters of the learning algorithm grséicond part we run the
algorithm on the given data. The setup includes choosingehgel function, tuning its
additional parameters and choosing the regularizatioarpater.

To search for optimal metaparameters, we need to be ablg tersgther one partic-
ular choice is better than another one. In the next secttandard techniques that can
be used to measure the “quality” of a solution will be desaulib

4.4 Cross-Validation

In this section we describe various cross-validation teqphes, which are standard sta-
tistical techniques used to estimate the real performahoewal networks [66, 15].

We say that a network is well-trained or that it performs weit learns enough
about the past to be able to generalize to the future.

The past is represented by the given training set. Howevedoanot typically know
anything about the future. Without any prior knowledge alibe problem we cannot
say if the network is a good solution of the given problem ar gfeneralizes well. But
we can estimate its generalization ability using the atéalaata.

The cross-validation techniques are based on the idea thaplit the data into two
parts, called &aining setand avalidation set The network is trained on the training set
and then the error on the validation set is evaluated. Thailggalgorithm is then run
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on the training set with different setups (metaparametdtsj each resulting network
we evaluate the error on the validation set. The network tiéhlowest error on the
validation set is then picked as a one with the best genatalizability.

There are several types of the cross-validation. In orddeszribe them, we intro-
duce the following notation:

Definition 4.4.1 (RN Trained on Data Sef) Let S = {x;,4;}Y, € R" x R be a
given data set. Then the regularization network found byRhklearning algorithm
(Algorithm 4.1.1) run on the data sétis calledregularization network trained on the
data setS and its function denoted g%’.

Definition 4.4.2 (Error on Data SetS) Let S = {x;, 4}, C R" x R be a given data
set andf be a regularization network. Then the quantity

N

E(f,8) =Y (f(x:) — v’ (4.6)

i=1

is calledthe error on the data sét

The easiest cross-validation approach is known abkdeout cross-validatiofsee
Algorithm 4.4.1). The data points are chosen randomly froeninitial sample to form
the validation dat®,,.; (typically, less than a third of the initial sample), and temain-
ing observations are retained as the training datg,. The estimate of the generaliza-
tion error is given byE), o1dous-

Eholdout - E(fstv-am’ Sval)~ (47)

Input:  Data set S={x;,y}Y, CRIxR
Output: The estimate of generalization error Enotdout

1. Split the data randomly to two subsets Strain
and Sval: S = Strain U Sval and Strain N Sval = (Z)

2. Run the RN learning algorithm on the data set
Strain to obtain fsﬁ‘ain

3- Eholdout — E(fStTaina Sval)

Algorithm 4.4.1. The hold out cross-validation.
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1st trial

2nd trial data subset used for
training

3rd trial

data subset used for
validation

k-th trial

Figure 4.1: Schema of thiefold cross-validation procedure.

Another variant, known as thiefold cross-validationuses partitioning of the orig-
inal data sefS into k subsetsS;, ..., Sy, so thal J,S; = SandVi # j : S;(S; = 0.
The cross-validation process consistg dfials. In each trial, a single subset is retained
as the validation set, and the remaining 1 subsets are used as the training set, so that
each of thek subsamples is used exactly once as the validation set. §aseH.1 for
illustration. Then the: results from the folds can be averaged (or otherwise cordpine
to produce a single estimatiadt, oqs:

Elfolas =

k
> E(fYr%,8)). (4.8)
=1

|

The special case of-fold cross-validation is théeave-one-out cross-validation
where thek is equal to the number of data points in the original dataleetach trial, a
single observation from the original set is used as the &abtd data, and the remaining
points as the training set.

The hold out cross-validation is very sensitive to the piarting of the data into
training and validation subsets, and therefore gives ug@rkry rough estimate of the
real generalization ability. On the other hand, the leave-out cross-validation may
be too time-consuming, except for very small data sets. Afa@d cross-validation
represents a compromise between these two approachesfesglisntly used.

In the rest of our work, we will use the-fold cross-validation; and the estimate of
generalization erroE), ;.4 Will be called across-validation error

Definition 4.4.3 (Cross-validation Error) LetS = {x;,y;}Y, C R™ x R be a given
data set with partitioning;, ..., S : S = Ule S;andVi # j5:.5;(S; = 0. We call
the quantity

CT’OSS

k
Z E(fYi%% ;) (4.9)

NIH

a cross-validation error
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Input:  Data set S ={x;y}¥, CRIxR

keN k>0
Output: The estimate of generalization error Eifoia
1. Split the data randomly into k subsets Sy,...,Sk:

S=UL, S and ¥V i#j:85NS; =0

N

Erforg < 0, 11

w

TS<—UH,éZ

4. Run the RN learning algorithm on the data set
TS to obtain  f7°

5. Eifod < Exfoa + E(fT5,5;)
6. i—i+1,if i<=Fk go to 3
7. Eypod — 1 Exfoia

Algorithm 4.4.2. The k-fold cross-validation.

4.5 Adaptive Grid Search

In this section we introduce the algorithm we use for the petiithe RN learning
algorithm (Algorithm 4.1.1).

We suppose that the kernel type is given by the user. Theriganithm searches for
the optimal value of the regularization parameter and oftemtil kernel parameters.
Without the loss of generality, we suppose that the kernebime real parameter The
application of the algorithm on the cases where the kernehlva or more parameters
is straightforward.

We will use the following notation:

Definition 4.5.1 (f7) LetS = {x;,5;} C R"xR be agiven data set. Theff, denotes
the regularization network found by the RN learning algamit (Algorithm 4.1.1) with
the regularization parametey and the kernel parameteron the data sef.

Definition 4.5.2 (E.0ss(7, p, S)) LetS = {x;, y; }¥, C R"xR be a given data set with
partitioning S, ..., S, : S =", S;andVi # j : Si)S; = 0. BY Eeross(7, 1, ) We
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denote the cross-validation error

k
Eeross(7, 9, S Z LS. (4.10)

wl»—‘

We will search for such metaparameters that minimize theseualidation error (4.10).
It means we will choose a solutigff. .. such that

[7*729*] = argminy,pEcross(’yapa S) (411)

Clearly, it is not possible to go through all possible valoéghese parameters.
Therefore we create a grid of couples p] using a suitable sampling and evaluate
the cross-validation error for each point of this grid. Thuenp with the lowest cross-
-validation error is picked.

To speed up the process, we proposedatiaptive grid searclalgorithm (Algo-
rithm 4.5.1). It starts with a coarse grid, i.e. sparse samgphnd then creates a finer
grid around the point with the minimum.

The winning values of parameters found by the AlgorithmX3&se then used to run
the RN learning algorithm (Algorithm 4.1.1) on the wholenrag set.

Input: Data set S ={x;,y}Y, CR"xR
Output: Parameters ~ and p.

1. Create a set of couples {l,pliyi=1,..., K},
uniformly distributed in (Ymins Ymaz) X {Pmin, Pmaz ) -

2. For each [y,p]; for i=1,...,K and for each
couple evaluate the cross-validation error
EZ — Ecross(’Yiaph S)

Cross

3. Select the 1 with the lowest E!

Ccross*

4. If the couple [v,p]; is at the border of the
grid, move the grid (see Figure 4.2a).

5. If the couple [v,p); is inside the grid,
create finer grid around this couple (see
Figure 4.2b).

6. Go to 2 and iterate until the
cross-validation error stops decreasing.

Algorithm 4.5.1. Adaptive grid search.
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The disadvantage of this approach is the high number of atiahs of the Algo-
rithm 4.1.1 needed during the search. Nevertheless, thedeations are completely
independent, so they can be performed in parallel.

We have also observed over-fitting with respect to a padicpartitioning to the
k parts. By the over-fitting we mean that it often happens thatreal generalization
ability of the network obtained by using parameters withwdopcross-validation error
on the particular partitioning to thie parts may be worse than the one of the network
obtained by using parameters with a higher cross-validaioor. However, this prob-
lem is not crucial, since such an increase in error is typyicadt significant. It rather
justifies that a few adaptive grid search iterations areefft.

width

width

new grid . . ) /new grid

reg. parameter

reg. parameter
a) b)

Figure 4.2: a) Move the grid, b) Create a finer grid.

4.6 Genetic Parameter Search

Because the simple adaptive grid search algorithm hasa@rawbacks (the high num-
ber of evaluations needed, danger of over-fitting), we dhice a simple genetic algo-
rithm to our search — thgenetic parameter seargilgorithm 4.6.1).

The genetic algorithms (GAs) [45, 44] represent a stochastarch technique used
to find approximate solutions to optimization and searciblemms. They belong to the
family of evolutionary algorithms that use techniques iresgh by evolutionary biology
such as mutation, selection, and crossover.

The genetic algorithms typically work with a populationindividualsrepresenting
abstract representations of feasible solutions. Eaclviohehl is assigned fitnessthat
is a measure of how good solution it represents. The betgesdtution is, the higher
the fitness value it gets.

The population evolves towards better solutions. The eiaistarts from a popu-
lation of completely random individuals and iterates ing@tions. In each generation,
the fitness of each individual is evaluated. Individualssaioehastically selected from
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Individual used for search including kernel type:

| type of kernel

kernel parameters|

reg. parameter

_1 gamma_l a_l*b_1+(1-a_1)*b_2) | c_l*gamma_l+(1-c_l)*gamma_2

Individual used for Gaussian kernels:

:

g[a
il
I

a_2*b_1+(1-a_2)*b_2) | c_2*gamma_l+(1-c_2)*gamma_2

gamma_2

Figure 4.3: a) Individuals, b) Crossover for Gaussian Kerne

the current population (based on their fitness), and modifyeaheans of operatorau-
tation andcrossoveito form a new population. The new population is then useden th
next iteration of the algorithm.

We work with individuals coding the parameters of the RNéag algorithm. They
are the kernel function type, its additional parameterd,the regularization parameter,
see Figure 4.3a. When the kernel function type is known iraadg, the individual
consists only of the kernel parameter and regularizatioarpater.

Since we want to minimize the cross-validation error, theeBs should reflect it. So
the lower the cross-validation error is, the higher the fitnealue is.

Because the evaluation of fitness is very expensive in tefniisne requirements
(many evaluations are needed to compute the cross-validatror), we use thiazy
evaluationg6]. By the lazy evaluations we mean that each time the fitoéske in-
dividual is being computed, only one part is evaluated (oee trial of k-fold cross-
-validation is performed). In other words, instead of thessrvalidation error we com-
pute only its estimate. Each time the fitness is evaluatemthan part is computed and
this estimate is made more accurate. In addition, this esald to avoid the over-fitting
by selecting a new random partitioning each time the fitressaluated.

New generations of individuals are created by using the aipes of selection
crossoverand mutation Mutation introduces a small random perturbation to the ex-
isting individuals. The crossover (Figure 4.3b) creates hew individuals from two
existing individuals by choosing new parameter valuesoanrid in the interval formed
by the old values. Classical roulette-wheel selection edushe higher the fitness is,
the higher the probability of being selected is).

When we also search for the kernel function type, then theilatipn consists of
different types of individuals (species) and we have twcspmkties of crossover The
former one works as it was described, only with the individua the same type, so
we have to ensure that individuals of the same kind are alwselgsted. The latter one
combines different kinds of kernels together by using therator product and sum as
described in the previous chapter. We recommend to use theyiire of crossover or
allow simple combinations of kernels only, otherwise tharsk time-requirements may
increase significantly.
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1.

© 0o N o g bk~ W

10.

11.
12.

Input: Data set {x;,4}¥, CR"xR
Output: Parameters ~ and p.

Create randomly an initial population Py of M
individuals.

Reset individuals’ counters.

for i=1,...,M:¢;=0,err; =0

10

P 1 — empty set

I, « selection(P;); Iy < selection(F;)

with probability Peross: (11, I) < crossover(Iy, I5)
with probability DPrmutate:  1x — mutate(Ily), k =1,2
insert I, I, into P,

if P, has less then M individuals goto 5

for j=1,...M:1;€ P

divide the data set randomly to Tirain @and T,
let ~,,p; be the parameter values defined by I;
errj «— err; + E(f%?;;;i”, Toal)

Cj < G4 +1

fitness( I;) « C— %errj
J
1 +— 1+ 1

goto 4 and iterate until the fithess stops
increasing

Algorithm 4.6.1. Genetic parameter search.






Chapter 5

Radial Basis Function Networks

Ask not what mathematics can do for biology,
but what biology can do for mathematics.
Stanislaw Ulam

In this chapter we deal with a more universal variant of ragaétion networks, known
asgeneralized regularization network®articularly, we will focus on one subclass of
generalized regularization networks radial basis function networkdRBF networks),
and their learning algorithms.

In the next section, a generalized regularization netwsidefined. In Section 5.2
RBF networks, a subclass of generalized regularizatiowarés, are introduced. Sec-
tions 5.3, 5.4, and 5.5 describe the RBF network learningrdlgns:gradient learning
three-step learningandgenetic learningrespectively. Finally, in Section 5.6 hybrid
learning methods are discussed.

5.1 Generalized Regularization Networks

Throughout the previous chapters we were dealing with tgelagization networks,
whose architecture represents an exact solution of théenéged learning problem. The
regularization network has a form of a linear combinatiork@fel functions, where
the number of kernel functions corresponds to the numbeh@fdiata points in the
corresponding training set, and the centers of the kermetions are fixed to these data
points.

Such an approach benefits from a straightforward learnmgrihm, since only the
weights of linear combinations have to be estimated. Howelie constraint on the
number of kernel functions limits the algorithm applic#@lilLarge data sets lead to the

45
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solutions of unreasonable size and a time-consuming legptiase, which makes this
approach unfeasible.

What size of network is acceptable always depends on theplart application.
In some applications, the goal is to obtain a correct appnakon and the size of the
solution is not important. On the other hand, in many apfibcs the goal is to replace
a large data set by its model of a reasonably small size.

In the situations where the size of the regularization ndtwepresenting the opti-
mal solution is too large, we can search for an approximdtdiea within the set of
networks with a limited number of kernel functions.

Poggio, Girosi, and Jones [12, 58] proposed to use the tegemaralized regular-
ization networkfor a wide class of functions representable by a feed-faiweaural
network with one hidden layer and a linear output layer.

Definition 5.1.1 (Generalized Regularization Networkp@&neralized regularization net-
work s a feed-forward neural network with one hidden layer camiteg kernel units and
a linear output layer. It represents a function

k
f(x) = Z wi K, (x,¢;), (5.1)

wherek is the number of hidden neurons (i.e. the number of basigiting), w; € R,

c; € RY x € RY, K, : R? — Ris a chosen kernel (basis) function with the parameter
p;. To the coefficients of the linear combinatiopwe refer as taveights to the vectors

c; as tocenters

A generalized regularization network has typically muckdehidden units than the
corresponding data set size. On the other hand, each hidhitemas its own parameter
p; modifying the kernel function. For instance, if the kerneh¢tion is the Gaussian,
different hidden units realize the Gaussian functions wifferent widths.

In the case of a regularization network, the optimal valuesetwork parameters
were given by the data set and the corresponding lineamaystethe case of a general-
ized regularization network not only weights have to benested, but also the centers
and kernel parameters. Typically, the values for thosetamadil parameters are found
by various heuristics.

The generalized regularization networks cover a wide rarfifenction classes cor-
responding to the different classes of prior assumptionscanresponding stabilizers.
The most known classes are RBF networks, tensor producespdind additive splines
(see the examples of stabilizers in Section 2.3.1).
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5.2 Radial Basis Function Networks

The history ofradial basis function networksan be traced back to the 1980s, particu-
larly to the study of interpolation problems in numericahbssis. It is where the radial
basis functions were first introduced, in the solution ofréed multivariate interpolation
problem [60, 39].

A radial functionis a function that is determined by itenterand its output depends
only on the distance of the argument from this center. In a@edsional space with the
Euclidean metric, the points with the same output valuesfagircles.

Definition 5.2.1 (Radial Function) Letf : R — R be a function

F(x) = o(l[x = <),

wherey : R — R and|| - || is a suitable norm (typically the Euclidean norm). Thén
is called aradial functionandc is called acenter

The study of radial basis functions was followed by the idtrction of a new type of
neural network — amRBF networld58, 46, 5]. The RBF network is realized as a linear
combination of basis functions and represents an alteméabi the classical models,
such as multilayer perceptrons. Besides its motivationiegritom numerical analysis,
it was inspired by the presence of many local response unitarinan brain.

Both the biological and numerical motivation meet with tegularization theory
that created the theoretical background for the RBF networhitecture. The regular-
ization approach with radial stabilizers leads to the ragpétion networks with radial
basis functions in their hidden layer (see Section 2.34)gdneral, the RBF network
belongs to the family of generalized regularization neksor

The hidden layer of an RBF network consistsRBF unitsrealizing a particular
radial basis function. We consider the radial basis fumctising a general weighted
norm [15].

Definition 5.2.2 (Weighted Norm) Le€ be ad x d matrix. Then the norm defined as
| x ||5= (Cx)"(Cx) = x"CTCx (5.2)
is called aweighted norndetermined by the matri.

It can be seen that the Euclidean norm is a special case ofghigdinorm deter-
mined by the identity matrix. For the sake of simplicity, wélwse the symboB>—1!
instead ofC”C.? In order to use a weighted norm each RBF unit has anotheriaaialit
parameter, a matrig.

1The reason for such notation is that it is inverse of covasamatrixX of a multivariate Gaussian
distribution represented by the corresponding hidden unit
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Figure 5.1: An RBF network.

Definition 5.2.3 (RBF Unit) AnRBF unitis a neuron with multiple real inputs =
(x1,...,z4) and one real output, realizing a function

[ x—cllc

ox) = p() €= 12=C,

whereyp : R — R is a radial basis functiong € R? is acenterb € R is awidth, and
C is a matrix defining the weighted norm.

Definition 5.2.4 (RBF Network) ArRBF networkis a 3-layer feed-forward network
with the first layer consisting af input units, a hidden layer consisting ®RBF units,
and an output layer ofr linear units. Thus, the network computes the following func
tion: f = (f1,..., fe,.- ) fm) : R4 — R™:

h _— .
1) = 3w () 539

wherew;; € R andy is a radial basis function (see Figure 5.1).

The RBF networks benefit from a rich spectrum of learning ipagges. In the fol-
lowing sections, we will describe three main learning apphes — the gradient learn-
ing, three-step learning, and genetic learning. The stddiiese algorithms together
with experimental results was also published in our papgetsg3, 21].

All considered learning algorithms suppose that the nurabeidden units is given
in advance. According to the Cover’s theorem [8], a classific problem cast in a
high-dimensional space non-linearly is more likely to beeéirly separable than in a
low-dimensional space. Therefore it is recommended fontireber of hidden units to
be higher than the dimension of the input space.

Since the RBF networks have generally multiple outputs, aresicler the training
set in the form

T={(x,yi);i=1,...,N,x; e Ry, € R™}, (5.4)
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and work with the following error function, calledteining error:

m

1 k
=5 Z (fj(xs) ym ) (5.5)

i=1 j=1

Minimizing the error function on the training set is alwayscampanied with the
danger of over-fitting. Different kinds of regularizatioarcbe used to prevent the over-
-fitting, such as penalizing the networks with large valueseights or large second
derivatives [3].

Another possibility is to keep a part of the data apart, as\auation setand stop
the learning when the error on the evaluation set starte@sing [15]. This is applicable
for iterative algorithms, such as gradient learning ancegjerearning.

In our experiments, we will also show that the danger of diteng increases with
the number of hidden units. So the control of network size ¥y easy option to
prevent the over-fitting.

5.3 Gradient Learning

The most straightforward approach to the RBF network |egyins based on the well-
-known back-propagation algorithm for the multilayer mgptron (MLP) [63, 74, 15].
The back-propagation learning is a non-linear gradientetlg@salgorithm that modifies
all network parameters proportionally to the partial datiwe of the training error. The
trick is in clever ordering of the parameters so that alliphderivatives can be com-
puted consequently.

Since the RBF network has formally similar structure as thé’Mt can be trained
by the modification of the back-propagation algorithm, ségoAthm 5.3.1.

As the RBF network has only one hidden layer, evaluating énvdtives (5.6)—(5.9)
is rather simple:

N
;UEM = Z GZka (x;) (5.6)
g_(i _ k: Z H — ||Ck (x; Ze Whs (5.7)
OF 1 — Gy
8—6;3 = 2 Z | xi — ¢k [lc, SOk: (%) ; € Whs (5.8)
OF Y — el —el” —

82—;1 - Z 1% — cx e, P (xi) ; €5 Wks, (5.9)
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whereel, = f,(x:) — igs 1 () = o (25215 ), o, (i) = ¢ (5219 ), andy
denotes a derivative of.

The gradient descent algorithm is a basic optimization owtimowadays usually
more sophisticated algorithms are used. We use a gradisnenieenhanced with a
momentum term [57] (see the step 3 of Algorithm 5.3.1) for skepwise parameter
modifications.

Note that the gradient descent algorithm is a local seagrigthm. It depends on
the random initialization and suffers from local minima. eféfore several different
initializations should be tried and the best solution petke

Input: Data set S ={x;,y;}Y, CR?xR™
Output: Network parameters:
Chy b, 23w, s=1,---,m and k=1,--- h

1. 7:=0

Setup randomly  ¢(0), bx(0), :'(0), wis(0) and Acg(0),
Abi(0), AY'(0), Awgg(0) for s=1,---,m and k=1,---,h

2. 7 =7+1
3. Evaluate: s=1,---mak=1,---,h
Acg(r) = —egTE + aAcg(t — 1)
Abk(T) = —|—04Abk(7' — 1)
AN T) = 82 B +aAZ Yr—1)
Awgs(T) = —e—§+aAwks(T—1)
where ¢ € (0,1) is the learning rate, a € (0,1) is the
momentum coefficient.
4. Change the values of parameters: s = 1,---,m a k =
1,---.h
Ck(T = Ck(T — 1) + Ack bk(T) = bk(T — 1) + Abk
Z,;l(T) = 2;1(7' - 1)+ AE,;l Wis(T) = wis(T — 1) + Awyg

5. Evaluate the error of the network.

6. If the stop criterion is not satisfied, go to 2.

Algorithm 5.3.1. Gradient learning.
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More details on the gradient learning algorithm and a dedadlescription of our
algorithm for the computation of derivatives (5.6)—(5.@nhde found in [21].

5.4 Three-Step Learning

The gradient learning described in the previous sectiofiasll parameters by treating
them in the same way. Thhree-step learningon the contrary, takes advantage of the
well-defined meaning of RBF network parameters ([16], [46])

The learning process is divided into three consequent stepssponding to the
three distinct sets of network parameters. The first stegistsnof determining the
hidden unit centers, in the second step the additional hidets parameters (widths,
weighted norm matrices) are estimated. During the third tte output weights are
determined. The algorithm is listed in Algorithm 5.4.1.

The goal of the first step is to distribute the hidden unitshi input space so that
the positions of the centers reflect the density of the datataoThe centers; are set
up so that they minimize the quality

N
By =Y _I[x; —c;, |I*, wherej,, = argmin|x; — c;||, (5.10)
=1
wherex; are the data points. This can be done by using various cingter vector
quantization techniques, such as the k-means algorithin [13
The second step sets up the widths and weighted norm matrcdsthey are
present. These parameters determine the size and the shidggeanea controlled by
the unit.
The suitable parameter values can be found by the gradianitmzation of the

function ,

h
N _ 1
E(bl...bh;zll...zhl)ziz[ng(gw) 2P (5.11)
r=1 Ls=1
_ | cs — ¢ e,
657’ - b/r. Y

where P is the parameter controlling the overlap between the arkEaspmrtance be-
longing to the particular units [47].

In case of widths we can get around the minimization by usimgpke heuristics.
The one used most often is called th@eighbors rule, and it simply sets the width
proportionally to the average distance;afearest neighboring unitg {s typically small
number, such as 2 or 3).

The third step is supervised learning known from the muylétgperceptron networks
reduced to a linear regression task. The only parameters sgtare the weights be-
tween the hidden and the output layer, which represent tb#ficients of the linear
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combinations of RBF units outputs. Our goal is to minimize tverall error func-
tion (5.5) with respect to the weights;.
It can be achieved by using gradient minimization or digestllving the linear sys-
tem:
PW=Y, (5.12)

where the matriXP is ad x h matrix of outputs of RBF unitsW is ad x m matrix of
weights andY is ak x m matrix of the desired outpuss.
As we typically have more training samples than hidden utfits system (5.12) is
overdetermined. So any of various least square methodsdstadind the solution.
The weights can be computed as

W =Py, (5.13)

whereP™ = (PTP)~!'PT is aMoore-Penrose pseudo-invergis, 56]. Alternatively,
the methods based on SVD or QR decomposition [62] can be used.

It is true, however, that the success of this learning steyeidés on the previous
steps.

Input:  Data set S ={x;,y;}r; CRIxR™
Output: Network parameters:

Cry by, 21w, s=1,--- ,m and k=1,--- h

1. Determine the centers c;,i=1,...,h using vector
guantization

2. Set up widths b; and matrices E;l for ¢« = 1,...,h by
minimization of (5.11)

3. Find the values for w;s for 5 = 1,....,hand s = 1,...,m
by solving linear system (5.12) using a least square
algorithm.

Algorithm 5.4.1. Three-step learning.

5.5 Genetic Learning

The third learning method presented here is based on théigaitgorithms (GAs). A
reader who is not familiar with GAs is kindly ask to read Sext#.6.

To apply the GAs to RBF network learning, one has to deviseitatda way of
encoding the parameters and adopt the genetic operatormsrkoon corresponding in-
dividuals.
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Unlike the traditional GAs approaches, we use a direct floabding for the RBF
network parameters. An individual is formed by a sequencblatks. Each block
contains a vector of values of one RBF unit parameters. Spedb.2.

The selection operator is used to choose individuals to apogulation. Each indi-
vidual is associated with the value of the error functionhaf torresponding network
The selection is a stochastic procedure, in which the idd&i probability of being
chosen to the new population is the higher, the smaller ttog &nction of the corre-
sponding network is. In our algorithm we use the standantette-wheetelection.

Individual
B, By || B || By
Block
Ci1y Ci2y" " 5 Ciny Q15 +vs Ay Diy Wity -+ -, Wi

Figure 5.2: An individual representing an RBF network.

The crossover operator composes a pair of new individuatdbaung parts of two
old individuals. First, a crossover point is randomly chrosethe both individuals, and
then the corresponding parts of individuals are swappeel Adgorithm 5.5.1). The
positive effect of the crossover is the creation of new sohg recombining the current
individuals.

Input: I, ={B{,...,B}}
L={B?... B2}
Output: I}, 15
1. keross < random(h)
2. I {Bll, R Bicmss, Biamssﬂ, el B}%}

* 2 2 1 1
3. Iy~ {B{,....B; . ,By __.1.....By}

Algorithm 5.5.1. Crossover.

2In the context of the GAs we often speak about the fitness dhtlieidual. The error plays the same
role, with the difference that a low error corresponds toghliitness, and vice versa.
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Finally, the mutation operator represents small local cam@hanges of an individ-
ual (see Algorithm 5.5.2). Both the crossover and mutati@nagpplied with certain
probabilities only.

Input: I ={By,...,B,}
Output: I*

1. k< random(h)

2. B «— By
3. for pin Bi={ck1, . craaty, .. aky b, wprs o W
do
§ «— random(—1.0,1.0)
p—p+9o
done

4, I*H{Bl,...,BZ,...,Bh}

Algorithm 5.5.2. Mutation.

The sketch of the genetic learning is listed in Algorithm.8.5'he GAs are a robust
mechanism that usually does not suffer from the local ex@éeproblem. The price
for this robustness is a bigger time complexity, especialiythe problems with bigger
individuals resulting in a huge search space.

Besides the standard GAs tailored to the RBF networks we &laeeimplemented
the canonical version of genetic learning described in.[30]s algorithm modifies the
crossover and mutation operators in such a way that theyatgpen a minimal search
space.

For more details on the implementation of the genetic |legrrand its variants
see [21, 54, 24, 23].

5.6 Hybrid Methods

The three described algorithms represent three main bearaftthe wide range of RBF
learning algorithms. For each approach, many variants aridus modifications exist.

Since these learning algorithms have been studied quite welbelieve that the
main potential for the further improvements lies in clevembinations rather than fur-
ther modifications of the available algorithms. The hybb@aches based on com-
binations of the well-known algorithms may achieve a synearffect and thus over-
-perform the single algorithms.
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Input: Data set S ={x;,y;}’Y, CRIxR™
Output: Network parameters:

Ck,bk,lel,wks,S =1,---,m and k=1,---,h
1. Create random initial population of N
individuals Py = {Il,"' ,]N}.
10

2. For each individual compute the error on the
training set.

3. If the minimal error in the current population
is small enough, stop and return the parameters
coded in the individual with the minimal error.

4. Create empty population P, and while the
population has less than N individuals repeat:
Selection: Select two individuals from P,.

Iy « selection(P;)
Iy «— selection(P;)

Crossover: with probability Deross-
(11, I5) < crossover(ly, I)

Mutation: with probability Dmutate-
Iy — mutate(ly), k = 1,2

Insert: insert I,I, into P,
5. Go to 2.

Algorithm 5.5.3. Genetic learning.

In this section, we introduce two hybrid approaches —ftylerid genetic learning
and thefour-step learning algorithm

The genetic learning can be combined with the other algostin various ways. In
particular, the GAs can be used to perform the first one or tepssin the three-step
learning.

In the former case, GAs are applied to solve the vector qeaiiin problem of the
first step, i.e. to find the centers minimizing the error (3.Ihe application of the GAs
is similar as in the genetic learning, but the individual eednly the network centers
and the corresponding error is evaluated according to 5.10
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The latter case replaces both the first and second step byAke The third step
setting the output weights is performed by a linear optitmratechnique. There are
good reasons for such combinations. The first two steps aedban heuristics so the
use of the GAs is appropriate for them. On the other hand, ¢kerghination of output
weights is a linear optimization task, for which many effitialgorithms exist.

Such an approach is call&gbrid genetic learninglt uses the same encoding as the
genetic learning, except that the individual encodes dréyhidden layer, not the output
weights. To evaluate the error associated with the indalidwe first have to find the
weights optimal for the corresponding hidden layer, anah tbvaluate the error of the
obtained network. See Algorithm 5.6.1. More details on Wigrial genetic learning can
be found in [54].

The second hybrid approach is based on the three-steprgaioliowed by the
gradient learning. The result of the three-step learningsél as an initial value for the
gradient learning that further tunes the values of all patans. This algorithm is called
four-step learningSee Algorithm 5.6.2. More details can be found in [53].

Input: Individual I, data set T
Output: Error associated with 1
1. Create the RBF network f represented by the
individual I
2. Run the least squares method to set the weights
of f
3. Compute the error of network f on the data set T

Algorithm 5.6.1. Error evaluation in Hybrid Genetic learning.



5.6. HYBRID METHODS

57

Input: Data set S ={x;,y;}’Y, CRIxR™
Output: Network parameters:

ck,bk,Z,;l,wks,,s:l,---,m and k=1,---,h
1. 7:=0
Run the Algorithm 5.4.1 to setup cx(0), b(0),

Y:10), wrs(0) and Acg(0), AbL(0), AX'(0), Awg(0)
for s=1,---.m and k=1,---,h

2. Ti=7+1
3. Evaluate: s=1,----mak=1,---,h
Acg(r) = —e% + aAcg(t — 1)
Abk(T) = —E(ng + OéAbk(T — 1)
AT = _gaggl +aAY (T —1)
Awgs(T) = —e%}cs + aAwgs(T — 1),
where ¢ € (0,1) is the learning rate, a € (0,1) is
the momentum coefficient.
4. Change the values of parameters: s = 1,---.m a
k=1,---,h
Ck(T) = Ck(T — 1) + ACk bk(T) = bk(T — 1) + Abk
YT = SN D) HAS wee(T) = wes(T — 1) + Awy

5. Evaluate the error of the network.
6. If the stop criterion is not satisfied, go to 2.

Algorithm 5.6.2. Four-step learning.






Chapter 6

Experiments

Errors using inadequate data are much
less than those using no data at all.
Charles Babbage

In this, chapter our experimental study of methods and dlguos described in the pre-
vious chapters is represented. In the next section we explai motivation and set
our goals. Section 6.2 describes data sets and methodoledyave used in our ex-
periments. In Section 6.3 we present experiments illustgategularization network
behavior. Section 6.4 describes experimental resultseraimg various learning meth-
ods for RBF networks. Then, Section 6.5 compares the ragataon network and RBF
network approach. A real-life problem, the prediction gériflow rate, handled by both
the regularization networks and RBF networks, is present8ection 6.6. Finally, Sec-
tion 6.7 summarizes the experimental results.

6.1 Experimental Study of Learning Algorithms

The study of machine learning and neural networks has betbrétical and empirical
aspects. In general, the goal of experimental study is degppkerstanding of behaviors
and the conditions under which they occur. In the case of madbarning, the behavior
is an ability to learn and generalize, and the conditionsleaening algorithms and
domain knowledge [37].

The learning algorithms described in this work benefit froueey good theoretical
background, since they are based on the regularizatiomthRegularization networks
possess a rigorous derivation, while RBF networks as gberedaregularization net-
works are based also on heuristical approaches. We beliatéor the both approaches

59
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the experimental study can further improve our understandf these algorithms and
their behavior. The goal of our experiments is to verify thedretical results and fill in
the gap between the theory and practice.

No matter how strong the theoretical background of a pddrdearning algorithm
is, in practice we always meet numerical inaccuracies,aeafhierrors and other con-
straints given by the hardware limits of contemporary cotefsis The experiments
should provide an additional source of information that barused together with the
theoretical results before applying the individual leagnalgorithm to a real-life prob-
lem.

The main goals of our experiments can be summarized as fioldpw

1. demonstrate the behavior of regularization networks;
2. study the role of regularization parameter and kernedtian;
3. compare different types of kernel functions;

4. demonstrate the behavior of our product kernels and sunelseand compare
them to the the classical solutions;

5. demonstrate the behavior of RBF networks as the repmsears of generalized
regularization networks;

6. compare the regularization networks and RBF networkgderoto find out the
difference between an ‘exact solution* and an ‘approxinsafation’.

The results answering the tasks stated by our goals can be fauhe following
sections. The Section 6.3 deals with Goal 1. Experimentzdigg Goal 2 are presented
in Subsection 6.3.1; and Goal 3 is tackled in SubsectiorB6.3ubsection 6.3.4 and
Subsection 6.3.5 are devoted to Goal 4. Results concernirad) &are presented in
Section 6.4. Finally, Goal 6 is studied in Section 6.5. Iniadd, in Section 6.6 the
regularization networks and RBF networks will be appliediwnprediction of flow rate
on the Czech river PloucCnice as an example of a real-liféicgin.

6.2 Methodology and Data

In order to achieve high comparability of our results, weenaekiosen frequently used
tasks for the experiments with learning algorithms. As bemark tasks we use the data
sets from the ROBENL repository, the artificial taskwo spirals and the well-known
image ofLenna In addition, the task of flow rate prediction was picked tpresent
real-life problems.
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TaSk name n m Ntrain Ntest Type

cancer 9 525 174 class
card 51 518 172 class
diabetes 8 576 192 class

2

2

2
flare 24 3 800 266 approx
glass 9 6 161 53 class
heartac 35 1 228 75  approx
hearta 35 1 690 230 approx
heartc 35 2 228 75 class
heart 35 2 690 230 class
horse 58 3 273 91 class
soybean 82 19 513 170 class

Table 6.1: Overview of Probenl tasks. Number of inpujs Gumber of outputsr(),
number of samples in training and testing sé¥s.{;,,,Vi.s:). Type of task: approxima-
tion or classification.

PROBENL [61] is a repository of benchmark data sets intended foeexgents with
neural networks. It contains approximation as well as diaation tasks. Most of the
tasks are also available in the UCI machine learning repgsjiiO].

Table 6.1 gives a summary of the tasks fromOBENL. Each task is present in
three variants, three different partitioning into traiiand testing data. We refer to this
variants with suffix 1,2, or 3 (e.gCANCER1, CANCER2, CANCER3). More details of
the individual data sets, their source, and qualities cdioulned in [61].

Two spiralgs an artificial two-dimensional classification problemwbtintertwined
spirals. The training set contains 194 data points (see&igd).

ThelLennaimage [17] was used as an approximation task. Our trainihgosgains
2500 samples forming the image®f x 50 pixels, see Figure 6.2.

Figure 6.1: Two spirals problem. Figure 6.2: Lenna.
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The real-life tasks are represented by river flow rate ptextic The data set contains
samples for each day consisting of the present river flowaatetotal rainfall on the
Czech river Ploucnice. The goal is to predict the currew ftate from the previous
values of flow rate. Several variants of the task were crdapgmeprocessing. They are
described in Section 6.6.

In all our experiments we work with distinct data sets foirirag and testing, re-
ferred to as thé&raining setand thetest set The learning algorithm is run on the training
set, including the possible cross-validation. The tesssstver used during the learning
phase, it is only used for the evaluation of error of the &sgihetwork.

If not stated otherwise, the following procedure is usedefqgreriments with RNs:

1. find the values fory and the kernel's parameters with the lowest cross-vabdati
error on the training set,

2. use the whole training set and the parameters found by SStepestimate the
weights of the RN,

3. evaluate the error on the testing set.

For the data sefx;,y;}Y, c R? x R™ and the network representing a functipn
the normalized error is computed as follows:

N
— 1 2
B =100 ) llyi = Sl (6.1)

where|| - || denotes the Euclidean norm.

In the following text, we will use the notatiaf,,.;,, andFE;.,; for the error computed
over the training seta and test set, respectively.

The experiments have been performed in our distributedivagént system called
Bang [51, 2], the standard numerical library LAPACK [38] wesed to solve linear least
square problems (step 2 in Algorithm 4.1.1).

For the experimental study of learning algorithms, morethae single evaluation
of the learning algorithm is needed. Each algorithm has teMaduated under different
conditions, i.e. on different data sets and with differegitips.

Most experiments were run on the computer clusterasond41], JoyceandBlade
The former cluster is the Sun cluster available in Edinbuirghallel Computing Centre,
University of Edinburgh. The latter two are clusters of waietions with the Linux
operating system at the Institute of Computer Science, &wgdof Sciences of the
Czech Republic.

Time requirements listed in following sections refers tolatel Xeon 2.80 GHz
processor. The times are ik : m : s format, whereh stands for hoursy for minutes
ands for seconds; and are they are rounded up to seconds.
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6.3 Regularization Networks

In this section we present the results of our experiments gularization networks.
First we demonstrate the role of the regularization parametd the kernel function,
and show that their choice is crucial for the performancénefRN learning algorithm.
Then, in Subsection 6.3.2, we demonstrate a behavior ofidigts for the setup of
these metaparameters. In Subsection 6.3.3, the most cokamuel functions are com-
pared. Subsection 6.3.4 describes the results of expetsmatin product and sum ker-
nels. Subsection 6.3.5 demonstrates the advantages Divite et Imperaapproach.
Finally, Subsection 6.3.6 gives the brief summary of resptesented throughout this
section.

6.3.1 Role of Regularization Parameter and Kernel Function

The aim of this experiment was to demonstrate the role of paetemeters in the RN
learning and to illustrate how they influence the results.

First, we tried to run the RN learning algorithm (Algorithml4l) on the tasks from
PROBENL. A regularization network with an Gaussian kernel was u3ée setup was
done manually and different values of the regularizatioapeeter and width were used.

Figure 6.3 shows the dependency of errors in the trainingrsgthe test set on the
value of the regularization parameterIn addition, the value of the condition number
of the corresponding linear system is displayed. This paldr image was made on the
data SeHEARTAL.

We can see that the error on the training set increases watlintireasing value
of the regularization parameter On the other hand, the error on the test set is high
when the regularization parameter is close to zero; theadtehses with the increas-
ing regularization parameter and at some point starts t@ase again. This behavior
corresponds to the trade-off between the data term and ¢hutarezation term in the
minimized functional (see Section 2.2). If the regulalimaiparameter is too small, we
observe over-fitting; if it is too high, the data term has nituence on the solution and
both the training and test errors are increasing.

Note also the condition number. It decreases with the istmgaregularization pa-
rameter. That is a simple consequence of the increasindargzation term that makes
the diagonal dominant.

Figure 6.4 illustrates the test error dependency both oretipglarization parameter
~ and the width of the Gaussian kermelt uses the two-dimensional plot with contours.
The darker colors (red) correspond to the lowest valuesptighter colors (yellow,
white) to higher values. So we can see that the optimal paeamare of widtr).3 and
the regularization parameter about01.

The lowest values of the error function are obtained withwidths between 0.2
and 0.4. For the widths of 0.1 and smaller, and 0.7 and higieerror is significantly
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Figure 6.3: Dependency of errors (on the training and tetst skets) and the condition
number of the corresponding linear system on the regulasizparametety. Obtained
by a regularization network with the Gaussian kernel on &is&HEARTAL.

higher. It shows that the width of the Gaussian function grilces the results as well as
the regularization parameter.

The plot is generated from the results obtained on the dataLgessl.

Second, we have chosen an approximation of the Lenna imalge.tréining set
LENNA contains 2500 samples representing the imag&)ok 50 pixels. Again, we
have run the RN learning algorithm with different setupse Bibtained regularization
networks were used to generaté® x 100 image.

Figure 6.5 displays the resulting images. Again, the higherregularization pa-
rameter is, the smoother the result is. For too high requdtidn parameters, we get
black images, as in the lowest row.

The choice of the Gaussian kernel width also plays its roletehe leftmost col-
umn. The widths are too small, so for the inputs not presetftertraining set we get
almost zero output from the hidden layer, which leads tolbkidps. Clearly, such a
problem cannot be cured by the regularization parameter.

Both the experiments illustrate the influence of the regzddion parameter and
the kernel function on the regularization network perfonc& They show that the
choice of these parameters is crucial for successful legroine cannot choose arbitrary
values and some kind of search for optimal metaparameteecisssary. In addition, a
wrong choice of the kernel function (such as narrow Gausdiarthe approximation of
Lenna image) cannot be cured by changing regularizatioanpater, and might result
in completely useless solution.
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Figure 6.4: Dependency of error on the test data set on thigectod regularization
parametety and widthb. Obtained by a regularization network with the Gaussiandier
on the taskGLASSL.

6.3.2 Setup of the Metaparameters

This experiment demonstrates a behavior of the setup of #taparameters, namely
of the adaptive grid search algorithm (see Algorithm 4.%:1g the genetic parameter
search algorithm (see Algorithm 4.6.1).

These algorithms were tested on the tasks fre@@BENL repository, the taskLASS1
was chosen randomly for illustration of the results. Botpoathms were run on this
task. After each iteration the computation was stopped la@deist error was evaluated
using the actual best metaparameters.

A run of the adaptive grid search algorithm on thieassl task is displayed in Fig-
ure 6.6. The cross-validation error decreased signifigaiutting the first two iterations
of the algorithm (i.e. about 40 evaluations of cross-vdiateerror), then the decrease is
very small. The test error also decreased during the firstdldations, then it oscillates.

The genetic parameter search is illustrated in Figure 6hfclwwas also generated
from a run on thesLAss1 task. The population had only 5 individuals. The 100 gen-
erations were computed, but the cross-validation errortaatierror decrease is not
significant during the last 30 generations.

The lazy evaluations mentioned in Section 4.6 were not udédhave tested them
on the tasks from ROBENL repository, and they typically cause divergence of the al-
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Figure 6.5: Images generated by the regularization netlearked on the Lenna image
(50x50 pixels) using Gaussian kernels with the widths from 0.8.@and the regular-
ization parameters from 0.0 to 0.01.
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Figure 6.6: The cross-validation error and the correspantist error during a run of
the adaptive grid search algorithm (Algorithm 4.5.1) on¢h@ssl task.

gorithm. It is probably caused by the fact that all thesedaale rather small so the
differences between the individual partitioning in theodkef cross-validation procedure
are too high.

Both algorithms achieved the similar test error (around.6:fwever, the genetic
parameter search needed much more evaluations of crodsti@h error (100 gener-
ations corresponds to 500 evaluations, while the adapticesgarch needed around
60).

The time requirements needed for 10 evaluations of the arag$ation error on
tasks from ROBENL repository are listed in Table 6.2. The table also contdiesime
requirements of the final rdrof the RN learning algorithm (Algorithm 4.1.1).

In all our following experiments, we use three iterationg évaluations) of the adap-
tive grid search algorithm for the setup of the metapararaeféhe genetic parameter
search might be useful for tasks where more parameters aghtsf.e. more compli-
cated composite kernels with several parameters), so tthé@s more dimensions and
the adaptive grid search would need more evaluations.

li.e. one run of the algorithm on the whole training set
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Figure 6.7: The cross-validation error and the correspantist error during a run of
the genetic parameter search algorithm (Algorithm 4.6nltheGLASS] task.

Task Cross-validation RN learning
(10 evals.)

cancer 0:23 0:01
card 1:08 0:01
diabetes 0:28 0:01
flare 4:41 0:03
glass 0:03 0:01
heart 2:19 0:02
hearta 2:20 0:02
heartac 0:10 0:01
heartc 0:10 0:01
horse 0:11 0:01
soybean 1:05 0:02

Table 6.2: Time requirements of the regularization netweakning. Times needed for
10 evaluations of cross-validation error and times for thalfrun of the RN learning
algorithm (Algorithm 4.1.1) are listed.
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6.3.3 Comparison of Kernel Functions

The goal of this experiment was to compare regularizatidwaoks with different ker-
nel functions.

We know that the kernel function represents prior knowlealg®e given problem,
and so it has to be chosen according to the given task. Typisakh prior knowledge
is not available and one has to try several kernel functions.

In our experiments, we try to answer the question, whethenetis a kernel func-
tion that is a better first choice than another and whetheettseany class of kernel
functions that are suitable for most tasks. We do not expetihtl a kernel function
that outperforms the others in all situations, simply beeaitiis not possible. We rather
expect that the experimental study will help us to undedstaatter how the choice of
kernel influences the solution, and give us clues for itsrogkichoice.

For this purpose we have chosen the data collectroE2NL (see Table 6.1). The
regularization networks with the kernel functions listadriable 6.3 (and also shown in
Figure 6.8) were used. They represent the most common kandelctivation functions
used in neural networks and learning methods.

Gaussian Inverse Multi-quadratic Multi-quadratic

o
Iyl

Thin Plate Spline Sigmoid

—

Figure 6.8: Kernel functions.

Table 6.4 compares the training and test errors achievddthase kernels on the
data tasks from ROBENL. For a better illustration, the results are also summadrize
Figure 6.10.

In addition, Figure 6.9 compares the overall error (erransied over all the data
sets) on the training set and the test set.

In Table 6.4 the lowest errors on the test set in each row gtdighted. In most
cases, the lowest error was achieved by the RN with the iavardti-quadratic kernel
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Gaussian K(z,y) = e le—vIF

Inverse Multi-quadratic K (z,y) = (||z — y||> + ¢2)~1/?
Multi-quadratic K(z,y) = (||z — y||> + )'/?
Thin Plate Spline K(z,y) = ||z — y||*"*
Sigmoid K(z,y) = tanh(zy — 0)

Table 6.3: Kernel functions.

400

[ Gaussian
M Multi-quadratic

[ Inverse Multi-
quadratic

[l Sigmoid
[l Thin-Plate Spline

[ Gaussian
W Multi-quadratic

[l Inverse Multi-
quadratic

[l Sigmoid
[l Thin-Plate Spline

training error test error

Figure 6.9: Comparison of overall training error (left) aedt error (right) for different
kernels.

function. For many cases, the Gaussian function achiewesebond lowest test error.
It can be seen also from Figure 6.10 and from the comparis@vefall test errors

at Figure 6.9. Both the functions are functions with locapense, i.e. they give a
relevant output only in the local area around its center. Hsallts justify the usage
of local functions, including the Gaussian function, andwlthat the commonly used
Gaussian function is a good first choice.

Comparing the training errors in Table 6.4, we can see tlelavest error on the
training set was achieved by the RN with the thin plate sgter@el function and multi-
-quadratic function. The multi-quadratic function, howevfailed completely on the
GLAss tasks, therefore the overall training error in Figure 6 Bigher. The almost zero
training error on many tasks is caused by the fact that thersgularization parameter
was chosen by the setup procedure.

The useful property of these kernels is that even withoutrélgilarization term,
they preserve the generalization ability (their test erare not high). Such kernels are
suitable for tasks without noise, for which the close fittofgraining data is desirable.
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Multi- Inv. Multi-  Sigmoid Thin-Plate

Gaussian quadratic quadratic Spline

Etrain Etest Etrain Etest Etrain Etest Etrain Etest Etrain Etest
cancerl 238 1.79 0.00 161 1.792.49 3.02 1.83 0.001.49
cancer2 186 3.01 0.00 3.03 1.48.88 2.54 3.58 0.00 2.88
cancer3 207 279 000 325 18259 266 284 0.00 2.74
cardl 7.7110.00 0.00 22.35 8.69 10.01 24.72 24.98 0.00 11.47
card2 6.79 12.75 0.00 15.21 7.31 1256 26.17 26.45 0.00 14.06
card3 7.1012.32 0.84 14.70 6.00 12.36 11.51 15.39 0.00 14.15
diabetesl 14.17 16.22 15.81 17.25 13.13 16.12 13.77 16.7379 1117.07
diabetes2 13.95 16.85 15.88 17.11 1413380 13.09 18.35 13.63 16.82
diabetes3 13.75 15.99 15.92 16.32 131393 13.97 16.69 11.85 17.18
flarel 0.36 055 0.19 0.64 0354 038 055 0.26 0.58
flare2 042 0.27 021 042 043.27 045 030 0.31 0.34
flare3 040 034 0.20 047 041 034 041 035 0.29 041
glassl 3.90 7.33 84.9170.75 2.26.12 6.76 858 0.00 6.41
glass2 3.58 7.78 3156 27.56 1.88.79 6.90 892 0.00 7.29
glass3 3.87 7.25 2475 36.83 22814 6.74 9.09 0.00 6.20
heartacl 3.80 3.13 0.00 4.08 4.18.82 955 880 0.00 351
heartac2 2.75 395 0.00 500 3.3884 8.15 7.27 0.26 4.77
heartac3 3.12 5.17 0.00 492 3.34 508 543 6.14 0402
heartal 3.46 446 0.00 573 3.14.31 8.44 840 247 5.14
hearta2 3.48 426 0.00 579 318 4.13 8.11 831 0.00 4.86
hearta3 3.39 449 0.00 552 3.1240 853 843 0.00 4.96
heartcl 8.78 15.93 0.00 15.93 9.46 1594 18.86 21.64 OB®5
heartc2 1155 6.52 0.00 7.33 12.3816 24.80 22.71 0.00 6.65
heartc3 6.54 13.66 0.00 14.23 8.03 12.72 20.34 18.68 0.08213.
heartl 9.76 13.69 0.00 16.95 9.5B3.59 26.92 27.69 7.23 13.83
heart2 9.48 13.86 0.00 19.29 9.2B8.74 14.34 16.80 6.82 14.69
heart3 8.92 16.01 0.00 21.84 8.03 16.15 26.27 27.40 0.00618.8
horsel 451 12.47 0.16 12.33 7.184.69 18.43 16.75 0.16 12.13
horse2 414 15.38 1.08 17.72 5.70 15.34 18.08 17.48 0.18216.7
horse3 0.82 1426 0.18 14.52 0.34.00 18.36 18.20 0.18 14.23
soybeanl 0.12 0.67 0.00 0.70 0.1066 4.80 483 0.00 0.68
soybean2 0.17 049 0.01048 0.22 049 4.78 488 0.01 0.50
soybean3 0.15 0.61 0.01 0.67 0.23 058 480 482 0.01 0.66

Table 6.4: Comparison of errors on the training and testa@tsned by regularization
networks with different kernel functions. For each tasle libwest error on the test set
is highlighted.
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Figure 6.10: Comparison of test errors for RNs with differeernel functions on the
tasks from ROBENL repository.

6.3.4 Product and Sum Kernels

The following experiment should demonstrate the feasykali product and sum kernels
proposed in Chapter 3.

For this purpose we have chosen regularization networkstivé Gaussian kernels,
since the Gaussian function is the most common kernel fomctiThe product and
sum kernels were composed as products of two or three Gaufasietions of different
widths, and sums of two Gaussian functions of different hddtrespectively. In case
of the product kernels, the input attributes were split imto, resp. three input vectors
randomly.

The resulting errors achieved by the RNs, PKRNs, and two S&K&i\the tasks from
PROBENL are compared in Table 6.5. Figure 6.11 compares the RN hétisaussian
kernels and sum kernels.

The lowest test error in each row of Table 6.5 is highlight€de SKRN achieved

the lowest error on 23 tasks, the RN on 13 tasks, and the PKRIN®@tasks. However,
the errors of all the three networks are comparable.
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Figure 6.11: Comparison of the sum kernel (green) and the$aukernel (red) on the
tasks from ROBENL. Training error (left) and test error (right).
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Figure 6.12: Chosen kernels for tbeNCER1 task. The Gaussian kernel (green) and
the sum kernel (red).

The SKRN showed an interesting behavior on several data befBable 6.5 and
Figure 6.11 we can see that the training error ondhsCER tasks and almost all vari-
ants ofHEART is almost zero (rounded to zero). Still the correspondist)eéerors are
not high, but comparable to those achieved by the RN and tHeN?Kn many cases
even the lowest ones. In these cases, the regularizatiampéer chosen by the setup
is close to zero, therefore the training error is very lowill 8te SKRNs possess the
generalization ability.

This is caused by the kernel shape. In Figure 6.12 there isn@kinction found by
the setup ortANCERL tasks. It consists of two Gaussians, a wider one and vergwar
one. The behavior of such a kernel has a clear explanatiore nélrow Gaussian
emphasizes the strict interpolation of the training samgilece for the inputs from the
training set, the corresponding hidden unit outweighs theraunits. On the other hand,
the generalization property is assured by the wider Gangsrection. In addition, such
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a kernel leads to the linear system with a dominant diagaodtom this point of view,
the regularization member is not needed.

6.3.5 Divide et Impera

In Section 3.5.2 we proposedvide et Imperaechnique for dealing with bigger data
sets. The main idea is to divide the tasks into several intdg® subtasks, that is
done by partitioning of the data set into several subsetene run the RN learning
algorithm for each of these subsets, and get a result as afsine metworks obtained.

Since the time complexity needed for solving of linear syst&s O(n?), replacing
one bigger linear system by several smaller one does notredlyce the space com-
plexity, but also the time complexity. However, we expeeittbuch an approach would
lead to worse results, i.e. higher errors.

Therefore the goal of another experiment was to comparetémelard algorithm
with the Divide et Imperaapproach. Again we used the repositeoBENL and the
regularization networks with Gaussian kernels.

For theDivide et Imperaapproach, each data set was divided into two subsets, with
the exception oEANCER, DIABETES, FLARE, andSOYBEAN, Where we used the parti-
tioning into three subsets.

Table 6.6 lists the errors obtained by the single RN learalggrithm and the Divide
et Impera approach on the tasks froRdBENL. The lowest test error for each task is
highlighted. As expected, in most cases they were achieyettid basic algorithm.
However, the test errors achieved by the Divide et Imperacgmih are comparable,
even in 8 cases equal to or lower than the errors obtainededyaskic algorithm. Three
of these caseF(ARE2,FLARE2, SOYBEANL1) are the tasks divided into 3 subsets.

Figure 6.13 compares the time needed by the learning abgoriThe reduction of
time complexity is apparent.

TheDivide et Imperaapproach represents one alternative to the bigger datthag¢ts
cannot be processed by the simple RN learning algorithmidDig into two or three
subtasks brings significant reduction of time complexitiyilevit only slightly increases
the result errors.

6.3.6 Summary

In this section, we presented the results of our experimeitlisthe regularization net-
works. We demonstrated the role of metaparameters and shinattheir choice sig-
nificantly influences the solution quality. Algorithms parhing the setup of these
metaparameters were demonstrated.

2Considering a linear systelix = b, whereA is a square matrixn is the number of rows resp.
columns of the matrix.
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Figure 6.13: Time (in clock cycles, using the PAPI librarp]bneeded for one run of
the RN learning algorithm and the Divide et Impera.

Then several common kernel functions have been comparedhéeollection of
benchmarks ROBENL, the best results were obtained with the kernel functioitis av
local response, i.e. the Gaussian function and inversa-odidratic function.

The product and sum kernels proposed in Chapter 3 were dapli¢he tasks from
PROBENL. The results illustrate that they represent a vital a#teve to the simple
Gaussian kernels. To benefit from them, prior knowledge @ptioblem suggesting the
use of a composed kernel is needed.

Yet, the sum kernels outperform the simple Gaussian on naskst The sum of
two Gaussian functions exhibits a good behavior. When fdrime one narrow and
one wide Gaussian function, it possess the ability to gdizeraso the regularization
term is not needed for the tasks with low level of noise. Sambehavior has also
been achieved with the thin-plate spline and multi-quacifanctions, with a suitable
parameter setting.

Also theDivide et Imperaapproach was demonstrated. We have shown that it can
significantly reduce the time complexity, thus it represeant alternative, which can be
applied to bigger data sets.
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RN SKRN PKRN
Task Etrain Etest Etrain Etest Etrain Etest
cancerl 228 1.75 0.00 1.77 2.68 1.81
cancer2 1.86 3.01 0.00 2.96 2.07 3.61
cancer3 211 2.79 0.00 2.73 228 2381
cardl 8.75 10.01 8.81 10.03 8.90 10.05
card2 7.55 12.53 0.00 12.54 8.11 12.55
card3 6.52 12.35 6.5512.32 7.01 12.45
diabetesl1 13.97 16.02 14.016.00 16.44 16.75
diabetes2 14.0016.77 13.78 16.80 15.87 18.14
diabetes3 13.69 16.01 13.695.95 16.31 16.62
flarel 0.36 0.55 0.35 0.54 0.36 0.54
flare2 0.42 0.28 0.44 0.26 0.42 0.28
flare3 0.38 0.35 0.42 0.33 0.40 0.35
glassl 3.37 6.99 2.35 6.15 264 7.31
glass2 432 7.93 1.09 6.97 255 7.46
glass3 3.96 7.25 3.04 6.29 331 7.26
heartl 9.61 13.66 0.00 13.91 9.56 13.67
heart2 9.33 13.83 0.0013.82 9.43 13.86
heart3 9.23 15.99 0.0015.94 9.15 16.06
heartal 3.42 4.38 0.00 4.37 3.47 4.39
hearta2 3.54 4.07 3.51 4.06 3.28 4.29
hearta3 3.44 4.43 0.00 4.49 340 4.44
heartacl 422 2.76 0.00 3.26 4,22 2.76
heartac2 3.50 3.86 0.00 3.85 3.49 3.87
heartac3 3.36 5.01 3.36 5.01 3.26 5.18
heartcl 9.99 16.07 0.0015.69 10.00 16.08
heartc2 12.70 6.13 0.00 6.33 12.37 6.29
heartc3 8.79 12.68 0.0012.38 8.71 12.65
horsel 7.35 11.90 0.20 11.90 14.25 12.45
horse2 7.97 15.14 2.8415.11 12.24 15.97
horse3 4.26 13.61 0.18 14.13 9.63 15.88
soybeanl 0.12 0.66 0.11 0.66 0.13 0.86
soybean2 0.24 0.50 0.25 0.53 0.23 0.71
soybean3 0.23 0.58 0.22 0.57 0.21 0.78

Table 6.5: Comparisons of errors on the training and tedosé¢the RN with the Gaus-
sian kernels, the SKRN, and the PKRN.
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Single algorithm Divide et Impera
TaSk Etrain Etest Etrain Etest
cancerl 2.28 1.75 2.11 1.93
cancer2 1.86 3.01 1.68 3.37
cancer3 211  2.79 1.68 2.95
cardl 8.75 10.01 8.55 10.58
card2 755 12.53 7.22 13.03
card3 6.52 12.35 6.22 12.86
diabetesl 13.97 16.02 12.92 16.66
diabetes?2 14.00 16.77 13.64 17.33
diabetes3 13.69 16.01 12.85 16.34
flarel 0.36 0.55 0.35 0.59
flare2 0.42 0.28 0.41 0.28
flare3 0.38 0.35 0.38 0.34
glassl 3.37 6.99 2.56 6.78
glass2 4.32 7.93 3.27 7.29
glass3 3.96 7.25 3.48 6.44
heartl 9.61 13.66 9.51 13.79
heart2 9.33 13.83 8.52 14.31
heart3 9.23 15.99 8.30 16.75
heartal 3.42 4.38 3.20 4.45
hearta2 3.54 4.07 3.17 4.34
hearta3 3.44 4.43 3.37 4.40
heartacl 422 2.76 3.68 3.37
heartac2 3.50 3.86 2.99 3.97
heartac3 3.36 5.01 3.14 5.13
heartcl 9.99 16.07 6.50 16.07
heartc2 12.70 6.13 11.06 6.69
heartc3 8.79 12.68 9.91 11.74
horsel 7.35 11.90 7.66 12.62
horse2 7.97 15.14 6.84 15.70
horse3 426 13.61 8.56 15.24
soybeanl 0.12 0.66 0.12 0.64
soybean2 0.24 0.50 0.19 0.54
soybean3 0.23 0.58 0.15 0.72

Table 6.6: Comparisons of errors on the training and tegoséthie RNs learned by Al-
gorithm 4.1.1 (single algorithm) and the RNs learned by thed® et Impera approach.
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6.4 RBF Networks

This section presents the results of experiments with RBWwaorés. We demonstrate
the individual learning algorithms on the benchmark data.@ed compare them to each
other and to multi-layer perceptrons.

First, in the next subsection, we illustrate the advantadessing the hidden units
with weighted norms. In the following three subsectionsg, ginadient learning, three-
-step learning, and genetic learning are studied. Then bs&ttion 6.4.5, the experi-
ments with hybrid approaches are presented. Finally, irs&tion 6.4.6 we present a
comparison of the learning algorithms studied and draw lcsians.

6.4.1 RBF Units with Weighted Norms

The goal of the first experiment is to demonstrate advantafjasing the RBF units
with weighted norms. For this aim we have selected an twoedsional classification
problem, known atvo spirals Its objective is to classify two intertwined spirals forthe
by points in the plane (see Figure 6.15a). The geometry optbklem is suitable for
the adaptation of shape of the areas controlled by indiVidioiss.

We tested the RBF networks with 100 units using the Euclideam, and 50 and
70 units using weighted norms. The gradient learning wad ase learning algorithm.

Table 6.7 compares the numbers of iterations that were sageso achieve the
given error threshold. The 70 unit weighted norm networkpetforms the 100 unit
network with the Euclidean norm by the factor of 2—3, for #ireld 1.0 and smaller.

100 Euclidean 70 weighted 50 weighted
iteration time iteration time iteration time
€ avg stddev avg stddev avg stddev

10.0 1188.4 275.2 0:42 830.1 208.7 0:36 1854.9 525.1 1:06
5.0 19444 568.3 1:09 1115.8 340.5 0:48 2991.8 1061.8 1:47
1.0 3739.1 1559.1 2:14 1993.6 769.0 1:26  4965.3 1955.4 2:57
0.5 5362.6 3599.4 3:11 2475.1 967.8 1:46  7277.9 3088.8 4:20
0.1 15842.7 10783.7 9:26 4923.0 1864.9 3:31 24424.6 108149.32

Table 6.7: Two spirals: The number of iterations and timededeo achieve the error
equal or less thaa Gradient learning with 100 hidden units using the Euclidearm,
50 and 70 hidden units using weighted norms.

The solution quality in Figure 6.14, which illustrates tHassification of points in
the plane by the learned RBF network. We can see that the enpdoil, corresponding
to the classification performance of the 70 weighted norn neetiwork, is clearly the
most faithful one. The smaller network with weighted normght) can still achieve
good performance compared to the Euclidean norm networkldaon size (left).
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Figure 6.14: Two spirals: The classification of the inputcgpay the learned RBF
network. a) 100 units with the Euclidean norm (left) b) 70tanvith weighted norms
(center) c) 50 units with weighted norms (right).

Finally, Figure 6.15 shows the position and shape of netwaits in the input space.
Contour lines of a given threshold for the individual RBFtsrare drawn. It illustrates
an intuition that covering the input points by ovals is eagian by circles.

Figure 6.15: Two spirals: a) The training set. b)-d) The shapd position of hidden
units: b) 100 units with the Euclidean norm c) 70 units withgt®ed norms d) 50 units
with weighted norms. a) - d) goes from the left to the right.

In thetwo spiralsproblem, the RBF units with weighted norms outperform tlaes<l
sical units. They benefit from their flexibility and ability tover the input space better.
On the other hand, an RBF unit with a weighted norm has analfae+ 1)/2 param-
eters to estimate (the entries of the diagonal mafiiX, see Section 5.2). So there is
the time overhead for performing one iteration of gradiearhing with the RBF units
with weighted norms. In our experiment, the approximateetirfor 100 training iter-
ations are 3.5 s, 4 s, or 3.5 s for the RBF networks with 100i&ea&h, 70 weighted,
or 50 weighted units, respectively. However, this overhisadasonable, and the RBF
network with 70 weighted norms needed a much smaller nunfliErations to achieve
the given error thresholds; so its learning was faster iretige
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6.4.2 Gradient Learning

The goal of this experiment was to study and demonstrate ¢havior of gradient
learning (see Section 5.3).

We selected the taskSANCER, GLASS, HEARTA from the FROBENL repository.
The first two represent classification problems, while thedtbne an approximation
problem.

For thecANCER tasks we used an RBF network with 5 units, for teass tasks
one with 10, 15 units, and for theEARTA tasks one with 30, 40, 50 units. Since the
gradient learning starts with random initialization, adheputations were run 10 times
and the means and standard deviations were computed.

Table 6.8 lists the training and test errors achieved by thdignt learning. On the
GLASS tasks, the best results were achieved by the RBF network&itinits, on the
HEARTA tasks by the RBF network with 50 units. So in both the caseséteork
having more hidden units performed better.

Task h Etrain Etest
avg stddev avg stddev

cancerl 249 0.10 1.40 0.23
cancer2 5 2.03 0.89 3.44 0.53
cancer3 2.04 0.50 3.44 051
glassl 4,14 0.36 7.39 0.59
glass2 10 3.72 0.24 8.26 047
glass3 4,27 0.38 741 0.43
glassl 335 0.33 6.59 0.32
glass2 15 2.94 0.19 7.85 0.43
glass3 3.47 031 6.95 0.26
heartal 2.67 0.08 435 0.15
hearta2 30 256 0.10 439 0.10
hearta3 265 0.13 423 0.12
heartal 2.72 0.00 410 0.12
hearta2 40 257 0.08 419 0.12
hearta3 2.62 0.09 4.04 0.08
heartal 2.70 0.13 4.06 0.10
hearta2 50 2.56 0.06 4,13 0.10
hearta3 2.67 0.07 3.95 0.09

Table 6.8: Training and test error of the RBF network foundhmy gradient learning
algorithm.

Tables 6.9, 6.10, 6.11, and Figures 6.16, 6.17 and 6.18 steaumber of iterations
and time needed to achieve a given error threshold on diffeasks. We can see that
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the speed of learning is quite high at the beginning of themdation, but gets smaller
with the number of iterations.

The time needed for 100 iterations of the algorithm was 1 sfeCcANCERtask and
the network with 5 units, 3 s and 6.5 s ferass and 10, resp. 15 units, 52.9 s, 70 s,
and 88.6 s foHEARTA and 30, 40, 50 units, respectively.

Iterations Time

avg stddev avg

cancerl 8.9 12.06 0:01
10.0 cancer2 360.2 612.43 0:04
cancer3 4.1 1.22 0:01
cancerl 11.9 12.98 0:01
5.0 cancer2 366.0 615.46 0:04
cancer3 8.1 1.51 0:01
cancerl 16.0 13.70 0:01
40 cancer2 368.6 616.25 0:04
cancer3 11.4 1.11 0:01
cancerl 194.1 40.78 0:02
3.0 cancer2 3885 611.22 0:04
cancer3 52.2 15.16 0:01
cancerl 2274.1 1104.02 0:24
2.5 cancer2 521.1 562.05 0:06
cancer3 386.2 83.73 0:04

Table 6.9: The number of iterations and time needed to aehles given value of the
training error on thee ANCER task.

The gradient learning (Algorithm 5.3.1) is based on the igmratddescent algorithm,
that is a local optimization algorithm, which starts witmdam initialization. Therefore
there sometimes appear large differences between thésrashieved by different runs
of the algorithm (see the values of standard deviations ieT&.8 and intervals at
Figures 6.17 and 6.18). For real applications, it is recomuhed to run the algorithm
for more different initializations, possibly for a smalleamber of iterations, and pick
the best computation.

The rate of error decrease can be used as an indicator ofvétiain stop criterion.
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Figure 6.16: The number of iterations and time needed tceeselthe given value of the
training error on thee ANCER task.

10 units 15 units
[terations Time Iterations Time
e Data avg stddev avg avg stddev avg
glassl 1.0 0.00 0:01 1.0 0.00 0:01
15.0 glass2 1.0 0.00 0:01 1.7 0.46 0:01
glass3 1.0 0.00 0:01 1.0 0.00 0:01
glassl 96.2 33.44 0:03 90.7 26.42 0:06
10.0 glass2 92.2 24.30 0:03 715 10.93 0:04
glass3 77.9 13.60 0:02 77.9 13.60 0:05
glassl 1123.7 160.01 0:34 950.4 116.17 1:01
7.0 glass2 703.3 125.37 0:21 611.6 31.17 0:40
glass3 953.1 52.80 0:29 953.1 52.80 1:02
glassl 2454.6 405.77 1:16 1910.3 199.25 2:04
6.0 glass2 1270.6 257.06 0:39 1066.6 105.12 1:09
glass3 2043.8 121.60 1:03 2043.8 121.60 2:13
glassl 4806.8 1022.57 2:08 3368.7 363.25 3:39
5.0 glass2 2523.1 385.37 1:07 2130.4 258.38 2:19
glass3 4226.0 702.44 2:00 4226.0 702.44 4:35

Table 6.10: The number of iterations and time needed to eelie given value of the
training error on thesLASS task.
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83
30 units 40 units 50 units
Iterations Time Iterations Time lIterations Time
e Data avg stddev  avg avg stddev  avg avg stddev  avg
heartal 16.8 2.86 0:09 16.8 2.36 0:11 18.2 1.78 0:16
10.0 hearta2 19.3 241 0:10 18.8 3.76 0:13 23.0 434 021
hearta3 16.5 3.47 0:09 17.3 395 0:12 18.2 4.07 0:16
heartal 24.2 3.82 0:13 246 4.10 0:17 25,8 3.37 0:22
7.5 hearta2 278 6.79 0:14 244 496 0:17 324 8.26 0:29
hearta3 224 3.72 0:11 235 496 0:16 241 466 0:21
heartal 64.2 1342 0:34 64.3 7.72 0:45 61.8 8.72 0:54
5.0 hearta2 68.7 10.22 0:36 56.3 9.64 0:39 70.1 9.75 1:02
hearta3 54.1 7.08 0:29 53.8 7.87 0:37 56.8 6.48 0:49
heartal 190.1 38.34 1:41 186.9 9.10 2:10 164.7 17.58 2:25
4.0 hearta2 197.0 3154 144 1734 3560 2:01 1716 23.091 2:3
hearta3 171.1 21.76 1:31 160.9 23.84 1:52 160.7 21.25 2:21
heartal 1217.5 217.38 10:44 1151.3 76.36 13:26 1022.2 @1113:05
3.0 hearta2 1021.0 182.17 9:01 926.6 141.73 10:48 843.6840012:26
hearta3 1199.4 289.31 10:34 993.6 179.36 11:35

160.7 21.221 2

Table 6.11: The number of iterations and time needed to eele given value of the
training error on theiEARTA task.
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Figure 6.17: Time needed to achieve the given value of theitigaerror on thesLASS

task.
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Figure 6.18: Time needed to achieve the given value of thamigerror on thedEARTA
task.



6.4. RBF NETWORKS 85

6.4.3 Three-Step Learning

Now we will present the results of our experiments with the¢astep learning.

Again, we have chosen the task&NCER, GLASS, andHEARTA from the FRROBEN1
repository. On theANCER task we applied networks with 5, 10, 20, and 50 units, on
theGLASStasks with 15, 30, and 50 units, and on H®ARTA task 30, 40, and 50 units.

The training and test errors of RBF networks obtained byhhest-step learning are
summarized in Table 6.12. Figure 6.19 compares the tragigtest errors, including
classification error (percentage of correctly classifietgas), for the RBF networks
of different size OrCANCER task.

At Figure 6.19 we observe the decrease of the training ertbrtive increase of the
number of hidden units. However, for 50 units we obtain higlest errors. The test
error for 50 units ortANCER3 (see Table 6.12) is even higher than for 20 units.

The training error on theLASS andHEARTA tasks (Table 6.12) also decreases with
the increasing number of hidden units. However, this do¢spply on the test errors.
On theGLAss tasks we get higher test errors for 30 and 50 hidden units fibrah5
units. OnGLASSl andGLASS3 the test errors are very high, in case of 50 units the
network has not learned the task at all. @ARTA, this increase of test error is not so
significant; oOnHEARTA2, the test error even decreases with the increasing nunfiber o
units. ONHEARTAL andHEARTA3 the increase is slow.

The observed behavior, the increase of test errors withedstrg train errors, is
caused by over-fitting and losing the generalization abilith the higher number of
hidden units, there is a higher danger of over-fitting. Fdiedent tasks, a different
number of units is suitable, so it is recommended to try sdweariants.

The time needed by the algorithmis 1 s (4 s, 16 s, 1 m 33 SJANCER for the
network with 5 units (10,20, 50units, respectively), 17 sn(T s, 2 m 59 S) OGLASS
with 15 units (resp. 30, 50 units), and 4 m 38 s (7 m 45 s, 11 m 42 S)lEARTA with
30 units (resp. 40, 50 units).
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5 units 20 units
TaSk Etrain Etest Etrain Etest Etrain Etest

avg stddev avg stddev avg stddev avg stddev avg stddev avg devstd
cancerl 3.63 0.06 2.34 0.09 3.24 042 231 0.52 2.45 0.12

50 units

227278
cancer2 3.34 0.36 4.35 053 2.82 042 3.89 0.61 2.12 0.10 3627
cancer3 4.03 151 4.01 1.75 2.74 0.38 291 0.48 2.15 0.06 3337
15 units 30 units 50 units
TaSk Etrain Etest Etrain Etest Etrain Etest
avg stddev avg stddev avg stddev avg

stddev avg stddev avg devstd
glassl 7.55 0.18 10.28 0.90 6.02 0.10 15.86 4.68 4.61 0.1619944.49

glass2 7.41 0.15 9.33 0.25 590 0.16 9.76 0.68 4.48 0.14 14319
glass3 7.54 0.25 10.08 0.84 5.91 0.13 13.54 2.37 4.74 0.1386290.14

30 units 40 units 50 units
TaSk Etrain Etest Etrain Etest Etrain Etest
avg stddev avg stddev avg stddev avg

stddev avg stddev avg devstd
heartal 4.35 0.15 4.64 0.13 4.10 0.12 4.67 0.20 4.06 0.10

4@721
hearta2 4.39 0.10 4.50 0.16 4.19 0.12 446 0.21 4.13 0.10 4@41
hearta3 4.23 0.12 5.07 0.13 4.04 0.08 4.86 0.19 3.95 0.09 4039

Table 6.12: Training error and test errors for the netwookstl by the three-step learn-
ing.

Legend

W Train error

O Train class. error
B Testerror

O Test class. error
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‘ |’

5 units 10 units 20 units

50 units

Figure 6.19: Error and classification error of networks oted by the three-step learn-
ing on theCANCER tasks.
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6.4.4 Genetic Learning

The goal of the following experiment was to demonstrate thiealior of the genetic
learning and compare the classical GAs to the canonical @%sdanonical GAs is a
variant of the GAs proposed in [50]).

An RBF network with 5 units was trained on tk@NCERL, CANCER2, andCAN-
CER3 tasks. All experiments were run 10 times and the mean andatd deviations
of the resulting error values were computed.

The resulting training and test errors are listed in Tabl86.The canonical algo-
rithm obtained better results on tkdaNCER2 andCANCER3 tasks, the classical algo-
rithm onCANCERL.

Table 6.14 and Figure 6.20 show the number of iterations hadcorresponding
time that were necessary to obtain the given error threshdMe can see that initially
the error rate decrease is very high, and then drops down.

The time requirements of 100 generations was 66 s for botbléissical and canon-
ical version of the genetic learning.

Though the time requirements of the genetic learning areedugh, they can be
reduced by parallelization. But still, the genetic algamis are more useful if used in
combination with other methods (see the following subsegti

Canonical algorithm Classical algorithm
Task Etrain Etest Etrain Etest

avg stddev avg stddev avg stddev avg stddev
cancerl 4.97 0.79 420 117 4.80 0.68 3.87 0.95
cancer2 4.74 0.57 5.09 0.52 488 1.12 5.71 1.35
cancer3 4.35 0.54 4,51 0.69 4,45 0.83 4,72 0.77

Table 6.13: The results achieved by the classical and cealogenetic learning.
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Canonical algorithm Classical algorithm
Iterations Time Iterations Time
e Data avg stddev avg avg stddev avg

cancerl 933.8 1019.82 0:10:13 2110.0 2734.89 0:23:06
10.0 cancer2 1100.0 949.39 0:12:03 496.2 385.74 0:05:26
cancer3 501.2 560.01 0:05:29 515.0 375.50 0:05:39
cancerl 33992.5 17454.90 6:12:18 25431.2 18095.75 4:38:32
5.0 cancer2 36893.8 18238.51 6:44:04 20492.5 18929.86 :2&44
cancer3 7191.2 7557.69 1:18:46 24046.2 12981.90 4:23:21
cancerl 46107.5 10253.58 8:24:59 46610.0 9022.01 8:30:29
4.0 cancer2 49765.0 3320.42 9:05:03 47267.5 5223.70 &37:4
cancer3 36428.8 18210.84 6:38:59 40005.0 12522.37 7:18:09

Table 6.14: The number of iterations and time needed to eelie given error thresh-
old by the genetic learning.
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Figure 6.20: Time needed to achieve the given error threshglthe classical and
canonical genetic learnin@ ANCER task).
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6.4.5 Hybrid Methods

In this section we present the results obtained by the hyhathods — the four-step
learning and the hybrid genetic learning. The both algorglwere described in Sec-
tion 5.6.

First, the four-step learning was applied on 8reNCER andGLASS tasks. For the
CANCER we used the networks with 5 and 20 units, @rass the networks with 15
and 30 units.

The results achieved by the four-step learning are sumetizTable 6.15. Com-
paring the test errors to the test errors obtained with treetistep learning (Table 6.12),
the fourth step further improves the results in rather adlesa The only exception are
the GLASS2 andGLASS3 tasks, for which only the training error decreased, whike t
test error is the same.

The method combines the advantages of the two approachegyradient fourth
step further improves the network obtained by the threp-arning, while the first
part, formed by the three-step learning, decreases therémerements by creating a
good starting point for gradient descent search.

TaSk h Etrain Etest TaSk h Etrain Etest

avg stddev avg stddev avg stddev avg stddev
cancerl 240 0.10 1.81 0.06glassl 7.06 0.14 10.02 0.77
cancer2 5 198 0.06 3.15 0.04glass2 15 6.97 0.12 9.08 0.23
cancer3 2.21 0.09 2.70 0.05glass3 7.10 0.27 9.56 0.51
cancerl 1.70 0.12 1.64 0.l6glassl 5.98 0.09 15.81 4.68
cancer2 20 1.41 0.11 2.89 0.07glass2 30 5.89 0.14 9.76 0.67
cancer3 1.43 0.13 2.74 0.20glass3 5.86 0.13 1354 241

Table 6.15: Training and test errors achieved by the fogp-karning.

The second experiment tests the hybrid genetic learningetivark with 5 units
was applied on theANCER tasks. Both the classical and the canonical versions of the
algorithm were tested.

The training and test errors achieved by the hybrid genetiening are listed in
Table 6.16. We can see that on all the three tasks, the cat@hjorithm finds better
solutions than the classical algorithm. If we compare tiselts to the genetic learning
(Table 6.13), we see that the hybrid genetic learning gleautperforms the standard
genetic learning. Moreover, it achieves comparable reswilth the gradient learning
(Table 6.8).

In addition, Figure 6.21 shows the time needed to achievengarror thresholds.
The time required by 100 iterations of hybrid genetic leagnivas 134 s.

The experiment shows that the hybrid genetic search is ctitwpeo other meth-
ods and may achieve better solutions. However, the timenegents are quite high
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(note that for each fithess evaluation, linear optimizatias to be solved). For a real
application, parallelization is desirable.

Canonical algorithm Classical algorithm
TaSk Etrain Etest Etrain Etest
avg stddev avg stddev avg stddev avg stddev
cancerl2.44 0.11 1.800.55 2.51 0.07 1.95 0.27
cancer21.700.58 3.521.39 1.85 0.14 3.74 0.54
cancer32.120.11 2.920.28 2.12 0.18 3.23 0.75

Table 6.16: The results achieved by the hybrid genetic iegrn
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| Time range - canonical alg:-
250 \‘
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Figure 6.21: Time needed by the hybrid genetic learning tueaxe the given error
threshold.

The both presented hybrid approaches improve the behavsimgle learning algo-
rithms. Clever combinations of the available learning athms is a promising way of
obtaining novel superior methods.

6.4.6 Conclusions

Let us generalize the observations from the previous exyaris with the RBF net-
works.

Table 6.17 summarizes the results presented in the presemi®ns and compares
different learning algorithms on th@aNCER task with 5 unit networks, and th&.ASS
task with 15 unit networks. It contains means of training texl errors over the three
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Cancer (5 units) Glass (15 units)
USEd Etrain Etest TI me Etrain Etest TI me
method h:m:s m:s

Grad. learn. 219 2.76 00:00:28 3.25 7.13 1341
Three-step 3.67 3.57 00:00:01 7.50 9.90 00:17
Four-step 2.20 2.55 00:00:36 7.04 9,55 03:32
GAs (can.) 469 4.60 07:24:16 - - -

Hybrid GAs 2.09 2.75 02:30:31 - - -

Table 6.17: Comparison of learning methods on¢h@ CER data set for the network
with 5 hidden units and on the glass data set for the netwotk %% hidden units.
Average training and test error.
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Figure 6.22: Comparison of learning methods ondheCER data set for the network
with 5 hidden units.

variants of given tasks, and time requirements. In addittegure 6.22 compares the
training and test errors (including the classification exydor the CANCER task and
network with 5 units.

First, consider the main three approaches, the gradiemiheg the three-step learn-
ing, and the genetic learning. The gradient-based alguorithable to achieve better
results in terms of error measured on both the training astdstt. The three-step learn-
ing is the fastest method, due to the unsupervised phasettesmenters, and rather fast
linear optimization to set the output weights. The errotsexed are still competitive.
The genetic learning is in general slower of about an orderaxgnitude. While most of
the measured running times were in the order of seconds amatesi it takes minutes
to hours for the GAs to converge to the desired values. Thétsagre still not as good
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RBF network MLP
Data Error Class. Arch. Error Class. Arch.

avg stddev avg stddev avg stddev avg stddev
cancerl 1.64 0.16 1.26 0.43 20 1.60 041 1.47 0.60 4+2
cancer2 2.89 0.07 3.16 0.39 20 340 033 452 070 8+4
cancer3 2.74 0.20 3.05 0.37 20 257 024 337 0.71 16+8
glassl 6.59 0.32 2755 2.56 15 9.75 0.41 39.03 8.14 16+8
glass2 7.85 0.43 35.47 3.46 15 10.27 0.40 55.60 2.83 16+8
glass3 6.95 0.26 27.74 1.47 15 10.91 0.48 59.25 7.83 16+8
heartal 4.84 0.25 - 30 476 1.14 - 32+0
hearta2 4.66 0.08 - 30 452 1.10 - 16+0
hearta3 4.54 0.06 - 30 481 0.87 - 32+0

Table 6.18: Summary: Comparison of learning results ondkigrtg set achieved by the
RBF networks and multilayer perceptrons trained by RPR@Brahm ( [61]). Archi-
tecture (Arch.) is the number of hidden units in case of RBfwneks, and the number
of nodes in the first and second hidden layer in case of MLPsorEtands forE,,;,
Class. stands for the classification error on the test set.

as with the gradient learning. Nevertheless, the GAs — asiargklearning procedure
— has its potential in learning the networks with heterogerseunits; and it is suitable
for parallelization.

Then the table includes the two hybrid methods. The foys-&arning further
improves the results obtained by the three-step learnimgcANCER it achieves com-
parable results with the gradient learning. The hybrid ¢jerlearning achieves very
good results, slightly better than the gradient learningweler, it suffers from high
time requirements.

Table 6.18 compares our results with the multi-layer paroepnetworks (MLP).
The results for MLP are taken from [61]. One can see that the R&works achieved
about the same performance on tt¥eNCER and HEART tasks, while they rather out-
perform the MLP networks on theLASs data, both in terms of the errors and number
of units.

6.5 Regularization Networks vs. RBF Networks

The main aim of the experimental part of this work was to astles relative perfor-
mance of RNs and RBF networks. This section presents théseduhe experiments
comparing these two approaches.

The benchmark data collectioRBBENL was used to perform the comparison.
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The regularization networks have been trained by the RNhiegralgorithm (Algo-
rithm 4.1.1) with the metaparameters set up by the adaptigesgarch (Algorithm 4.5.1).

The RBF networks have been trained by the gradient learrimg;statistics are
always computed from 10 repetitions of the runs. A very senpiocedure has been
applied to determine the best architecture for the RBF nidsv@ few reasonable sizes
of hidden layer (10, 15, 20, 30 units) have been tried and é&s¢ dne selected for the
comparison. It is possible that cross-validation mightHer improve these settings;
nevertheless, the current results are already competitive

Table 6.19 compares the results obtained by the RNs and RiBeriks by means of
the test error. In addition, the results are related to titopaance of MLP. Figure 6.23
brings the comparison of the training and test errors ofleggation networks and RBF
networks.

, , ; ; ; ; ; ; . ,
Regularization Network Wl Regularization Network Il
RBF Network RBF Network

| |
or on the testing set

Error on
E

L L L L L L L L L L L L L L L L L L
Glass1 Glass2 Glass3 Horsel ~ Horse2 Horse3 Heartal Hearta2 Hearta3 Glassl Glass2 Glass3 Horsel ~ Horse2  Horse3 Heartal Hearta2 Hearta3
Data set Data set

Figure 6.23: Comparison of error values of RBF vs. RN resuitghe training and test
set.

In terms of the test error, the regularization networks el the best results on
23 tasks; the RBF networks on 8 tasks (see Table 6.19). Onsemthat both the
training and test errors are quite comparable, the diffaxes in average about 6%. In
addition, the RBF networks need a 10 to 50 times lower numbkidden units to ob-
tain comparable approximation and generalization perdmize. The time requirements
needed to achieve the listed errors varied from 1 to 30 msgpending on the size of
the particular data set, and were similar for both the regaton networks and RBF
networks.

The Regularization networks, in their exact form, are tfareesuitable rather for the
tasks with smaller data sets, where is a high danger of oiergfi For the tasks possess-

3Note that the RBF unit has more parameters (center, widthpasibly weigthed norm matrix) than
the RN unit (only center). In this case, RBF units withoutmanatrices are used, so there is only one
extra parameter in each unit.
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RN RBF MLP
Ei..e #units . # units Eiest arch.
mean std mean std
cancerl 1.76 525 2.11 0.01 15 1.60 041 4+2

cancer2 3.01 525 3.12 0.07 15 3.40 0.33 8+4
cancer3 2.80 525 3.19 0.13 15 257 0.24 16+8
cardl 10.00 518 10.16 0.56 10 10.53 0.57 32+0
card2 12.53 518 12.81 0.01 10 15.47 0.75 24+0
card3 12.32 518 12.09 0.00 10 13.03 0.50 16+8
flarel 0.54 800 0.37 0.00 10 0.74 0.80 3240
flare2 0.27 800 0.31 0.00 10 0.41 0.47 3240
flare3 0.34 800 0.38 0.00 10 0.37 0.01 24+0
glassl 6.95 161 6.76 0.02 20 9.75 0.41 1648
glass2 7.91 161 7.96 0.00 20 10.27 0.40 16+8
glass3 7.33 161 8.06 0.97 20 10.91 0.48 16+8
heartacl 2.78 228 3.69 0.07 10 2.82 0.22 240
heartac2 3.86 228 4,98 0.03 10 454 0.87 8+4
heartac3 5.01 228 5.81 0.00 10 5.37 0.56 16+8
heartal 4.40 690 4.36 0.00 15 476 1.14 32+0
hearta2 4.05 690 4.05 0.00 10 452 1.10 1640
hearta3 4.43 690 4.29 0.00 10 481 0.87 3240
heartcl 16.02 228 16.17 0.06 10 17.18 0.79 16+8
heartc2 6.10 228 6.49 0.03 10 6.47 2.86 8+8
heartc3 12.66 228 14.35 0.37 10 1457 2.82 32+0
heartl 13.65 690 14.05 0.15 10 14.33 1.26 32+0
heart2 13.80 690 11.67 0.46 20 14.43 3.29 32+0
heart3 15.99 690 12.02 0.50 15 16.58 0.39 32+0
horsel 11.90 273 11.96 0.04 10 13.95 0.60 16+8
horse2 15.18 273 16.80 0.10 10 18.99 1.21 16+8
horse3 13.58 273 14.56 0.07 10 17.79 2.45 32+0
soybeanl 0.66 513 0.73 0.00 30 1.03 0.05 16+8
soybean2 0.49 513 0.60 0.14 30 0.90 0.08 32+0
soybean3 0.58 513 0.72 0.01 30 1.05 0.09 16+0

Table 6.19: Comparison df,.,; of RN, RBF, and MLP.
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ing large data amounts, “cheaper” alternatives repreddmtgeneralized regularization
networks, such as RBF networks, are more competent.

To show that the RN networks and RBF networks represent ctitinpdearning
methods not only to the MLP, but also to modern learning algars, we picked the
comparison to the SVM (Support Vector Machine).

The comparison was made on the classification taskéCER and GLASS. The
SVM was trained using the available library [7], which reg@ets a current standard of
SVM learning.

Table 6.20 compares the RN, RBF network, and SVM in termsaxfsification ac-
curacy on the test set, i.e. the percentage of correctlgified samples. The regulariza-
tion networks achieved the highest accuracy on 3 taskSCERL, GLASSL, GLASS2),
RBF network on 2 tasksCANCER2, CANCER3), and the SVM on one task(ASS3).

In general, the results obtained by the three methods arpa@ile, the differences in
accuracy are not high. We see that both the regularizatitwanks and RBF networks
are worthy alternatives to the SVM.

RN RBF SVM
cancerl 98.85% 98.74% 97.12%
cancer2 95.40% 96.84% 96.55%
cancer3 95.98% 96.95% 95.97%
glassl 75.00% 72.45% 73.58%
glass2 73.07% 64.53% 66.03%
glass3 76.92% 72.26%79.24%

Table 6.20: Comparison of classification accuracy of RN, REvork, and support
vector machines (SVM).

6.6 Rainfall-Runoff Modeling

In this section we describe an application of regularizatietworks and RBF networks
to the rainfall-runoff modeling, i.e. modeling of river flonates based on daily flow and
rainfall values.

The research is realized in cooperation with University .oEJPurkyné and the
Czech Hydrometeorological Institute Wsti nad Labem.

The Ploucnice River in North Bohemia has been chosen aseriexental catch-
ment to calibrate and evaluate the models. The Ploucniger Bprings in the southwest
slope of Jestéd hill (1012 meters above sea level) in ttieidd of 654 meters above
sea level, and it flows to the Elbe River in the town of Dé&ii22 meters above sea
level. For our experiments, we have chosen the PlouCniben@aom its beginning to
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the town of Mimon. The catchment area is 1193,% kmtotal, from the beginning to
Mimon it is 267,9 kni only, the flow length is 106,2 km.

The historical data including daily flow and rainfall values the Ploucnice valley
between November 1994 and April 2003 have been collecteel data are provided by
the Czech Hydrometeorological Institutelisti nad Labem.

Name History Current Inputs Outputs Training Test

flow rate samples samples
ploucl 1day no 2 1 1000 367
ploucls 1day yes 3 1 1000 367
plouc2 2days no 4 1 1000 366
plouc2s 2days vyes 5 1 1000 366

Table 6.21: Overview of data sets for the flow rate forecaghermniver Ploucnice.

The data set has been split into training data — 1000 dayseeetwWanuary 1999
and September 2001, and testing data — between October Aa04pail 2003.

We have performed two series of experiments, in the first cm@varked with one-
-day history models, in the second one with two-day historgso In one-day history
models we tried to predict tomorrow’s flow from the today’sues of rainfall amount
and flow. This is handled as fitting the functign: R? — R, which for the values of
flow rate and rainfall from the previous day returns the valtigow rate for the current
day. The corresponding data set is labeledlasucl.

For two-day history we took the rain falls and flows from tw@yious days into
consideration. Thus, the approximated functiori isR* — R. The data set is referred
to aspPLOUC2.

In both the cases, we consider the prediction using the vgxtbr enhanced by the
current rain fall value. In practical applications, thegiotion of such a value is used.
The corresponding data sets are labeleglasucls andpLouc2s. All the data sets
are summarized in Table 6.21.

Besides the training and test error (6.1) we evaluateetfieiency coefficienteC)
that is used to quantitatively measure the performanceiofatkrunoff models. The
efficiency coefficient is defined as

N 0.2
EC=1- Eijvl(Q"” %”) , (6.2)
Zi:l(@mi - Q)2
where N is the number of sa_mpleé;)mi are the daily measured flowg),,; the corre-
sponding predicted flows, arid is the average measured flow vale< EC < 1, the
bigger the value is, the better performance.

First we applied a regularization network and an RBF netveorkll variants of the
task. Table 6.22 and Figure 6.24 show the results obtainatidRBF network with
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Figure 6.24: The efficiency coefficients
for different data sets.
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Figure 6.25: The efficiency coefficient
obtained by the RBF network, the RN
and the PKRN.

RBF network RN
Task Etrain Etest Ectrain Ectest Etrain Etest Ectrain Ectest
ploucl 0.059 0.049 0.617 0.764 0.057 0.048 0.633 0.771
ploucls 0.061 0.051 0.609 0.756 0.025 0.089 0.834 0.579
plouc2 0.088 0.062 0.435 0.703 0.062 0.182 0.602 0.141
plouc2s 0.099 0.092 0.362 0.565 0.061 0.167 0.608 0.211

Table 6.22: Training and test errors and efficiency coefiisieobtained by the RBF
network and the regularization network on the individuabdsets.

30 hidden units and the regularization network with Gausk&rnels. We can see that
the longer history (2 days) has not brought any improvemeéhe efficiency achieved
onpPLouUC2 andrPLoucC2s is even smaller than on the tagksoucl andpLoucls. We
think that this is caused by the sparse sampling of the ohgens. The Ploucnice River
is rather small and it is possible that two-day old informathas no influence on the

current flow rate.

In the next experiment, we applied the regularization neétwath product kernels
on pLoucl andpLoucls. The flow rate values and the rainfall values were treated
separately, by the Gaussians of different widths. The tesué compared to the RBF
network and the RN in Table 6.23 and Figure 6.25. We can séeththepPLouCl
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Figure 6.26: Prediction of flow rate by the regularizatiotwak.

tasks, the PKRN obtained almost the same reSakshe simple RN. However, on the
PLOUCLS it obtained better results in term of the efficiency coeffitithan the simple
RN, and slightly better than the RBF network. Finally, Fig&.26 shows the real and
predicted flow rate.

Task RBF network RN PKRN

Etest ECtest Etest ECtest Etest ECtest
ploucl 0.049 0.764 0.048 0.771 0.048 0.771
ploucls 0.051 0.756 0.089 0.579 0.048 0.771

Table 6.23: Test errors and efficiency coefficients obtalmethe RBF networks, RN,
and PKRN.

It has been shown that both the RBF networks and regulasizagtworks can be
successfully used for creating small rainfall-runoff misdel'hese models can be built
from historical time series data, without knowing anythigout the physics of the
process.

Better results were obtained using only one-day historg.dtobable that the results
may be further improved by using more frequent sampling

4after round-off
Sfor example measurements at least every 12 hours
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6.7 Summary

In the experimental results presented in this chapter, weodstrated the real behavior
of algorithms based on the regularization theory presentdtke previous chapters.

In our experiments with the regularization networks, westtated the role of meta-
parameters, i.e. the regularization parameter and theekkmction, and showed that
their choice significantly influences the quality of the sin.

The most common kernel functions were compared on thesBN1 benchmark
repository. The best results were achieved by the inverdé-quadratic and Gaus-
sian kernel functions, which are the representatives ofahely of kernels with local
response. Such kernels represent a good first choice foethp sf kernel function.

Also product and sum kernels were demonstrated. The sunelkayatperform the
simple Gaussian kernel on most tasks fromoBENL. In addition, the sum of two
Gaussians of different widths exhibits the ability to agki@ very small training error
while preserving generalization.

The Divide et Imperaapproach was applied on the benchmark data. It significantly
decreases the time and space requirements, while thesresti#tined are comparable
with the standard algorithm. Such an approach represeraptéon for large data sets
that are not suitable for the processing by the standarditigo

In addition to the regularization networks, the RBF netveapresenting the family
of generalized regularization networks were tested. Dafielearning approaches were
compared, and we also showed that the individual methodsom&yrther improved by
hybrid approaches.

Finally, the regularization networks and RBF networks wasepared in order to
illustrate the difference between an 'exact’ and an 'appnae’ solution of the learn-
ing problem. We showed that the RBF networks obtained resainpetitive to the
regularization networks. They achieved in average onlyab% higher error than reg-
ularization networks, while they have up to 50 times lessl@rdunits. So they can be
used as their cheaper alternative, especially for taskslaige data sets.

As an example of a real-life application we presented théiptien of river flow
rate. The prediction was made on the Ploucnice River. Bathi@¢gularization networks
and RBF networks were applied. Both the approaches can leessfally used for
creating small rainfall-runoff models.






Chapter ;

Conclusion

Science is always wrong. It never solves
a problem without creating ten more.
George Bernard Shaw

This chapter summarizes the work achieved in the thesistamdain results. In addi-
tion, several possible directions for the further researehdiscussed.

7.1 Main Results

In general, the main goal of our work was to study the possilalgs of learning based
on the regularization theory. Learning algorithms, inahgcthe RN learning algorithm
(Algorithm 4.1.1) derived directly from the theory, and ieaus learning algorithms for
the RBF networks were investigated.

The basic RN learning algorithm represents an incomplet€ado learning, since it
requires a non-trivial setup of metaparameters. It was shiowhe experiments (Sec-
tion 6.3.1) that these metaparameters, the regularizpticameter and the kernel func-
tion, significantly influence the quality of the solution.

Therefore the framework above the basic RN learning algaritvas created (Sec-
tion 4.3), including the estimation of the metaparameté&rie metaparameters with
the lowest cross-validation value are sought by the set@sgh Two techniques for
this setup were introduced — the adaptive grid search (Atlgor4.5) and the genetic
parameter search (Algorithm 4.6.1).

Since the choice of the kernel function plays a crucial roleearning, we decided
that this part of regularization network deserves morengitia. It resulted in proposing
the composite types of kernel functions — a product kernel sum kernel. In the

101



102 CHAPTER 7. CONCLUSION

experiments (Section 6.3.4) we demonstrated their fdagiand showed that they are
a vital alternative to the classical (i.e. simple) kernelhese kernels are especially
useful on the tasks that are heterogenous in some sensa, \@tlying in attributes or
different parts of the input space.

A good behavior was observed while experimenting with the sernels. The
setup phase adjusted the widths of the two Gaussians addemtisat one Gaussian
was very narrow and the other wide. Such a kernel functioainbtl good results even
without the regularization tertn AlImost zero training errors were achie¥edhile the
generalization property was preserved due to the wider $sausSuch kernel functions
may be very useful for the tasks with a low level of noise.

Inspired by the concept of restricted sum kernels, we preghdise “Divide et Im-
pera” approach (Section 3.5.2). It is a simple proceduregpids the tasks into several
disjunct subtasks. The learning algorithm is applied omedthese subtasks, possibly
in parallel. The solution is then computed as a sum of the ordswobtained. Such an
approach does not only save the space, but also significaulces the time require-
ments (Section 6.3.5).

Despite the thorough theoretical background, the re@#atian network may be not
feasible in some situations. Particularly, the solutiotocslarge for the tasks with huge
data sets. Therefore the notion of generalized regulasizaietworks was introduced.
We focused on one concrete subclass — RBF networks.

The RBF networks benefit from a wide range of learning polsds. Three main
approaches were described in Section 5.2. These approaehesompared in the ex-
periments (Section 6.4). The best results, in terms of theitrg and test error, were ob-
tained by the gradient learning. The three-step learninghe other hand, represented
the fastest approach, while the resulting errors werecstitipetitive. The genetic learn-
ing was significantly slower, and still it does not outpenfidhe other methods in terms
of error.

Inspired by these results, the two hybrid approaches wengosed — the four-step
learning (Algorithm 5.6.2) and the hybrid genetic learni#dgorithm 5.6.1). Their
behavior was demonstrated in experiments (Section 6.4d)tavas shown, that they
in some aspects, improve the original algorithms.

The four-step learning adds a gradient optimization to btred-step learning. It
achieves lower errors than the three-step learning aridhasillower time requirements
than the gradient learning. The hybrid genetic learninge®ggnts a combination of the
genetic learning and the third part of the three-step legrnilt achieved very good
results, outperforming the other approaches; howeveufiers from very high time
requirements.

li.e. with zero regularization parameter
2because of the zero regularization parameter and the n@eamssian



7.2. FUTURE WORK 103

When studying the learning from the point of view of both tlegularization net-
works and RBF networks, the comparison of both the appre&ach@evitable. In
our experiments (Section 6.5), the regularization netwarkd RBF networks achieved
comparable results. So we claim that the RBF networks reptescheaper alternative
to the regularization networks, in terms of model size aadiimg time.

Finally, we presented an application to a real-life probld3oth the regularization
networks and RBF networks were successfully applied on thdigtion of the river
flow rate.

7.2 Future Work

The thesis would be incomplete if we did not mention the gaedirections of further
research. Some of them, namely the control of learning petens and composite ker-
nels, have already been in the state of work in progress, ttterare just ideas that
appeared during work on this thesis.

e Parallelization: parallelization may bring significant speed-up to the leayn
The learning techniques based on the GAs and the setup ¢e&mbased on
cross-validation are suitable for straightforward paiahtion, since they con-
tain many independent evaluations of subtasks. On the btrat, the learning
algorithms based on the gradient descent are known to beutlifio parallelize.

e Pruning: though the number of hidden units of regularization nekwsiusually
high, not all of them are necessarily needed. Since sinefsults were obtained
by much smaller RBF networks on rather all tasks, it is prédéiat the network
may be pruned in some way (for example by examining the owteights) and
its size reduced.

e Regularization: the regularization presented in this works correspondshéeo
well-known Tikhonov regularization. The ill-posed protvle are well-studied
by numerical mathematics, and various approaches anditemmexist. The
possibilities of application of other approaches (e.g.-ho@ar regularization) in
the context of machine learning deserve more attention.

e Composite Kernels: more complicated composite kernel functions should be
investigated, especially for the application to diversediee. data containing not
only numbers, but objects like strings, trees, documents,@ne should search
for new ways of designing kernel functions and create thepmsite ones.

e Large Data: nowadays rather real problems work with very large data $eis
more than necessary to study the ways of time and space cdtgpleductions,
making the algorithms more effective and applicable on sasks.
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e Control of the Learning Parameters: the performance of learning algorithms
based on the gradient descent algorithm (back-propagajradient learning for
RBF networks, etc.) depends on the setup of learning paeameispecially the
learning rate. Developing automatic adaptive controllees will tune the learn-
ing parameters during learning may speed up the learning.
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Appendix

Obtaining the thesis electronically

The thesis in postscript and PDF format and additional nesecan be found on the
CD enclosed. The directory structure of the CD is following:

thesis/ contains the text of the thesis in postscript and PDF format
other/ contains the extended thesis abstract, author's CV

and list of publications
data/ contains the data sets used in the experimental part of ok wo

Alternatively, the thesis, as well as the other materias, lse download from:

http://www.cs.cas.cz/ petra/phd/

The experiments presented in the thesis were performed osinimplementation of
the studied algorithms. The implementation was realized part of the multi-agent
system Bang that is developed at the Institute of Computen8e, Academy of Sci-
ences of the Czech Republic. The Bang system can be obtam&i/s:

cvs -d:pserver:anonymous@bang.cvs.sourceforge.net:/cvsroot/bang login
cvs -z3 -d:pserver:anonymous@bang.cvs.sourceforge.net:/cvsroot/bang
checkout -P bang3

You may also consult the home page of the project:

http://bang.sf.net/
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112 APPENDIX A. OBTAINING THE THESIS ELECTRONICALLY

To compile and run the Bang system, one needs a POSIX stanctamtbrming operat-
ing system. For example, Linux, OpenBSD, FreeBSD and Irouhwork. A recent
C++ compiler conforming to ISO C++ standards is also necgs$aNU C++ 3.x is a
good choice, but other compilers should work as well.

In case of any difficulties, contact the author by e-mgéftra@cs.cas.cz.



