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Abstract

The use of Recurrent Neural Networks is not as extensive as Feedforward Neural Networks. Training algorithms for Recurrent Neural

Networks, based on the error gradient, are very unstable in their search for a minimum and require much computational time when the

number of neurons is high. The problems surrounding the application of these methods have driven us to develop new training tools.

In this paper, we present a Real-Coded Genetic Algorithm that uses the appropriate operators for this encoding type to train Recurrent

Neural Networks. We describe the algorithm and we also experimentally compare our Genetic Algorithm with the Real-Time Recurrent

Learning algorithm to perform the fuzzy grammatical inference. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many systems in the real world that we want to identify

are non-linear systems or systems whose behavior depends

on their current state. The Arti®cial Neural Networks that

have given the best results in problems related with this type

of systems are Recurrent Neural Networks (RNNs). In

recent years, a great number of works have studied the

capabilities and limitations of RNNs applied to subjects

associated with pattern recognition and control. However,

the use of RNNs is not as extended as Feedforward Neural

Networks (FNNs) due to the complexity of the development

of the learning algorithms. For FNNs, the error-gradient

information computed using the backpropagation algorithm

has been shown to be an effective and ef®cient tool for

learning complex functions (Bourlard & Wellekens, 1989;

Le Cun et al., 1989; Sejnowski & Rosenberg, 1987; Waibel,

Hanazawa, Hinton, & Shikano, 1989). Unfortunately, the

same does not occur with RNNs. There are algorithms

that extend the backpropagation method to these networks,

but the optimal training of an RNN using conventional

gradient-descent methods is complicated due to many

attractors in the state space. To solve these drawbacks, we

have developed a genetic algorithm (GA) that optimizes the

error made by the RNN.

The use of GAs for ANN training has mainly focused on

FNNs (Blanco, Delgado, & Pegalajar, 2000a; Delgado,

Mantas, & Pegalajar, 1996; Friedrich & Klaus, 1994;

Whitely, Starkweather, & Bogart, 1990), although in recent

years the advantages that GAs offer as training tools for

RNNs have been also studied (Kim, Ku, & Mak, 1997;

Kumagai, Wada, Mikami, & Hashimoto, 1997).

Fuzzy Grammatical Inference is a problem that can be

solved using this kind of network. RNNs are able to carry

out Crisp Grammatical Inference from positive and nega-

tive examples. However, very little has been reported on

fuzzy examples under uncertainty conditions (Blanco,

Delgado, & Pegalajar, 1998, 2000b,c; Omlin, Karvel,

Thornber, & Giles, 1998). This problem seems interesting

from the fuzzy point of view due to the great number of

applications that fuzzy grammars have in areas such as

digital circuit design (Mensch & Lipp, 1990), X-ray analy-

sis (Pathak & Sankar, 1986), detecting and quantifying

fuzzy artery lesions (Lalande & Jaulent, 1996), intelligent

interface design (Hikmet, 1992), clinical monitoring

(Friedrich & Klaus, 1994), lexical analysis (Mateesku,

Salomaa, & Yu, 1995). In this work we carry out fuzzy

grammatical inference using an RNN together with a

linear output neuron.

A related subject is the implementation of fuzzy

®nite-state automata in Arti®cial Neural Networks,

some methods for which have been proposed in the

literature (Grantner & Patyra, 1993, 1994; Lee & Lee,
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1975; Omlin et al., 1998; Omlin, Giles, & Thornber,

1999; Unal & Khan, 1994).

This paper provides a brief introduction to fuzzy

grammatical inference, the neural model used and an adap-

tation of the real-time recurrent learning algorithm in

Section 2. In Section 3, a real-coded genetic algorithm is

introduced. The real-coded genetic algorithm for training

recurrent neural networks is presented in Section 4. In

Section 5, we show the results obtained from both training

algorithms for a particular example. Finally, some conclu-

sions are provided.

2. Fuzzy grammatical inference and neural model

2.1. The fuzzy grammatical inference problem

Below, we provide some basic de®nitions and theorems

for understanding the fuzzy grammatical inference problem.

A more detailed presentation can be found in Dubois and

Prade (1980), Gaines and Kohout (1976), Santos (1968),

Thomason and Marinos (1974) and Wee Wee and Fu

(1969).

De®nition 1. A regular fuzzy grammar (RFG), G, is a

four-tuple G � �N;T ; S;P�; where N is a ®nite set of non-

terminal symbols, T is a ®nite set of terminal symbols, N >
T � B; S [ N is the starting symbol, and P is a ®nite set of

productions of the form A!u a or A!u aB; A;B [ N; a [ T ;

u [ �0; 1�; where u is a membership degree associated with

the production considered.

Unlike the case of ªcrispº regular grammars, where

strings either belong or do not belong to language generated

by the grammar, strings of a fuzzy language have graded

membership.

Example 1. Let G � �N;T ; S;P�; where:

² N � {S;A;B}

² T � {a; b}

² S is the start symbol

² P is the set of productions

P � {S!0:3 aS; S!0:5 aA; S!0:7 aB; S!0:3 bS; S!0:2 bA;A!0:5 b;B!0:4 b}:

De®nition 2. The set of all ®nite strings formed by

symbols in T plus the empty string of length 0 is denoted

by Tp.

De®nition 3. A fuzzy language, L(G), is a fuzzy subset of

Tp with associated membership function m :Tp! [0,1].

De®nition 4. The membership degree m (x) of a string x of

Tp in the fuzzy regular language L(G) is the maximum value

of any derivation of x, where the value of a speci®c deriva-

tion of x is equal to the minimum weight of the productions

used:

mG�x� � mG�S)
p

x� � max

S) x
p

min�mG�S! a1�;

mG�a1 ! a2�;¼;mG�am ! x��
where )p is the production chaining used to obtain the

sequence x.

Example 2. Let us consider the grammar G in Example 1,

for which the membership degree of sequence ab is:

mG�ab� � mG�S)
p

ab� � max

S)p ab

�min�S!0:5 aA;A!0:5 b�;

min�S!0:7 aB;B!0:4 b� � max

S)p ab

�0:5; 0:4� � 0:5:

In fuzzy regular grammars, all applicable production

rules are executed to some degree. This leaves some uncer-

tainty or ambiguity about the generated string.

De®nition 5. A fuzzy ®nite-state automaton (FFA) is a

six-tuple, M � �T ; Z;Q; d;w; qS�; where T is a ®nite-input

alphabet, Z is a ®nite-output alphabet, Q is a ®nite set of

states, d : T £ Q £ �0; 1� ! Q is the fuzzy-state transition

map, w : Q! Z is the output map, and qS [ Q is the

fuzzy initial state.

It should be noted that a regular fuzzy grammar as well as

a fuzzy ®nite-state automaton are reduced to a conventional

(crisp) one when all the production and transition degrees

are equal to 1 (Dubois & Prade, 1980).

As in the crisp case, there is also an equivalence between

fuzzy ®nite automaton and fuzzy regular grammars.

Theorem 1 (Dubois and Prade, 1980). For a given fuzzy

grammar G there exists a fuzzy ®nite-state automaton M
such that L�G� � L�M� and vice-versa.

Example 3. We consider the grammar G in Example 1,

the fuzzy ®nite-state automaton M � �S;Z;Q; d;w; q0� (see

Fig. 1) such that L�G� � L�M� is:

² S � {a; b}

² Z � {Final;Non-Final}

² Q � {q0; q1; q2; q3}

² The fuzzy state transition map:

d�q0; a; 0:5� � q1; d�q0; b; 0:2� � q1; d�q0; a; 0:3� � q0;

d�q0; b; 0:3� � q0; d�q0; a; 0:7� � q2; d�q1; b; 0:5� � q3;

d�q2; b; 0:4� � q3
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² The output map:

w�q0� � ºNon-finalª; w�q1� � ºNon-finalª; w�q2�
� ºNon-finalª; w�q3� � ºFinalª

The ®nal states are represented by circles with a thicker

edge (Fig. 1).

² The starting state: q0.

De®nition 6. The membership degree of a string x

computed by a fuzzy ®nite-state automaton is the degree

maximum of all the paths accepting the string.

Example 4. The paths to accept the string ab are in Fig. 2.

Therefore, the membership degree is m�ab� �
max�0:5; 0:4� � 0:5:

Theorem 2 (Thomason and Marinos, 1974). Given a fuzzy

®nite-state automaton M, there exists a deterministic ®nite-

state automaton A with output alphabet Z # {u :

u is �a membership degree�} < {0} that computes the

membership functions m : Tp ! �0; 1� of the language

L(M) in the output of its states (output map, w).

This algorithm is an extension to the standard algorithm

which transforms non-deterministic ®nite-state automata

(Hopcroft & Ullman, 1979); unlike the standard transforma-

tion algorithm, we must distinguish accepting states with

different fuzzy membership labels.

Example 5. We consider the fuzzy ®nite-state automaton

M in Example 3. The DFA equivalent A �
�S; Z 0;Q 0; d 0;w 0; d0� is (Fig. 3):

² S � {a; b}

² Z 0 � {0:0; 0:2; 0:3; 0:5}

² Q 0 � {d0; d1; d2; d3; d5; d6}

² The state transition map:

d 0�d0; a� � d1; d 0�d0; b� � d5; d 0�d1; a� � d3;

d 0�d1; b� � d2; d 0�d2; a� � d3; d 0�d2; b� � d6;

d 0�d3; a� � d3; d 0�d3; b� � d4; d 0�d4; a� � d3;

d 0�d4; b� � d3; d 0�d5; a� � d3; d 0�d5; b� � d6;

d 0�d6; a� � d3; d 0�d6; b� � d6

² w 0 is the output map (membership function):

w 0�d0� � 0:0; w 0�d1� � 0:0; w 0�d2� � 0:5;

w 0�d3� � 0:0; w 0�d4� � 0:3; w 0�d5� � 0:0;

w 0�d6� � 0:2:

The FFA-to-DFA transformation algorithm can be found

in Thomason and Marinos (1974). The following corollary

is a consequence of this theorem:

Corollary 1 (Eshelman and Scahffer, 1993). Given a

regular fuzzy grammar G, there exists an equivalent gram-

mar G in which the productions have the form A!u a or

A!1:0 aB:

De®nition 7. Fuzzy Regular Grammatical Inference

(FRGI) is de®ned as the problem of inferring the fuzzy

productions that characterize a grammar or, equivalently,

the states and transitions between states associated with a

fuzzy state-®nite automaton from a training example set.
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The examples are given couples �Pi;mi�; i � 1;¼; n; n

being the number of examples, Pi a symbol sequence and

m i the membership degree of Pi to the fuzzy language to

which it belongs. m i will be provided by either an expert or

any systematic procedure for each given Pi. Based on Theo-

rem 2, the problem of obtaining the fuzzy ®nite-state auto-

maton M is changed to extracting a deterministic ®nite

automaton, A, that calculates the membership function to

the fuzzy language in the output map w of its states.

2.2. The neural model for carrying out fuzzy grammatical

inference

The steps for carrying out fuzzy grammatical inference

using an RNN are shown in Fig. 4. Once the RNN has been

trained from an example set, we extract the automaton that

recognizes the training set. From this automaton, we obtain

the associated fuzzy regular grammar. In this paper, we

focus only on the network training, as the automaton extrac-

tion can be found in Blanco et al. (2000b) and Delgado,

Mantas, and Pegalajar (1996).

The problem of whether an FFA can be learned using an

RNN only through training examples and the extracting

algorithm of the FFA is a question studied in Blanco et al.

(1998, 2000c). These works demonstrate that RNNs are able

to learn a fuzzy example set and internally represent the

equivalent DFA to the FFA, which is extracted together

with the membership function to the fuzzy language,

using an appropriate method of knowledge extraction

(Blanco et al., 1998, 2000b). The neural network that we

use here is composed of a second-order recurrent neural

network (SORNN) and a linear output neuron (Fig. 5).

The activating function of the output neuron is linear

since we intend to weigh the value of the points belonging

to the same cluster in the same way. The output neuron

computes the membership function to the fuzzy language

we are attempting to identify.

The neural model (Fig. 5) proposed for the fuzzy gram-

matical inference consists of:

² N hidden recurrent neurons labeled St
j; j � 0;¼;N 2 1

² L input neurons labeled It
k; k � 0;¼;L 2 1

² N2 £ L weights labeled wijk

² One linear output neuron, O, connected to the hidden

recurrent neurons by N weights labeled uj, j �
0;¼;N 2 1

L being the number of symbols belonging to the input

alphabet.

This neural network accepts an input sequence ordered in

time. Each symbol belonging to a sequence to be processed

is sequentially encoded in the input neurons at each step in

time t. The membership degree is computed by the linear

output neuron once the input sequence has been fully

processed by the SORNN.

The dynamics of the neural network is summarized in the

following steps:

1. The initial values �t � 0� of the recurrent hidden neurons

are ®xed at S0
0 � 1 and S0

i � 0 ;i ± 0:

2. Given an input sequence, Eq. (1) is evaluated for each

one of the hidden recurrent neurons, obtaining the values

they will take at the instant t 1 1; St11
i

St11
i � g�ut

i�; �1�

ut
i �

XN 2 1

j�0

XL 2 1

k�0

It
kSt

jwijk; �2�

g being the sigmoidal function:

g�x� � 1

1 1 e�2x� : �3�

Each element in a sequence to be processed is sequen-

tially encoded in the input neurons at each step in time t

by means of Kronecker's delta. Let us assume the alpha-

bet is the symbol set {a0;¼; aL21}: If the tth character in

the sequence to be processed is ai, then it will be encoded

in the input neurons exactly in time t by: It
i � 1; It

j � 0

;j � 0¼L 2 1; where j ± i:

3. Once the recurrent neural network has fully processed the

input sequence, the value of the output neuron, O, is

obtained from the values Sm
i ; i � 0¼N 2 1 (m being

the sequence length), Eq. (4). The output neuron given

us the membership degree to the fuzzy language L(M)

that the neural network has calculated:

O �
XN 2 1

i�0

uiS
m
i : �4�
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2.2.1. A learning algorithm based on the error gradient

The development of learning algorithms for RNNs has

centered on using gradient descent algorithms, of which

there are two basic types:

² Real Time Recurrent Learning (RTRL) (Pineda, 1988;

Williams & Zipser, 1989). The main drawback of this

algorithm is that it has a high computational cost for

each iteration.

² Backpropagation through time (BTT) (Pearlmutter, 1989;

Rumelhart & McClelland, 1986). The main limitation of

this algorithm is that one must know in advance the

length of the input sequence.

Although these algorithms are based on the backpropaga-

tion algorithm (Rumelhart & McClelland, 1986), they are

computationally much more hard than the backpropagation

algorithm used for feedforward networks.

A variation of the RTRL algorithm to train our neural

network is presented below.

The error function in the output neuron is

E � 1

2
�T 2 O�2; �5�

where T is the desired value for the output neuron and O is

the value obtained for the output neuron.

The training algorithm updates the weights at the end of

the each sequence presentation when E . 1; where 1 is the

error tolerance of the neural network. The modi®cation of

the weights is given by

Dui � 2a
2E

2ui

; �6�

Dwlon � 2a
2E

2wlon

; �7�

where a is the learning rate. The partial derivative in Eq. (6)

can be directly obtained as:

2E

2ui

� �T 2 O�Sm
i ; �8�

where Sm
i is the ®nal value of neuron i once the network has

processed the whole sequence. The derivatives associated

with wlon are calculated by

2E

2wlon

� �T 2 O�
XN 2 1

i�0

uig
0�um

i �

� dilS
m21
o Im11

n 1
XN 2 1

j�0

XL 2 1

k�0

wijkIm21
j

dSm21
j

2wlon

24 35: �9�
Since obtaining 2E=2wlon requires a recursive calculation

associated with 2Sm21
i =2wlon; we ®x an initial value of

2S0
i

2wlon

� 0: �10�

In the training of the recurrent neural network, the

partial derivative of each hidden recurrent neuron related

to each weight must be computed at each time t and the

network consumes much computational time. In fact, the

time complexity of the process is O�N4 £ L2�; which is a

strong incentive for looking for new training algorithms,

since when the number of recurrent neurons N increases,

the algorithm presents serious problems. On the other

hand, it is known that descent gradient training is

unstable in the search for a minimum in the error func-

tion, usually remaining trapped in local minima. All these

drawbacks are increased in the problem of fuzzy gram-

matical inference. Therefore, it is of great interest to

develop new learning algorithms that search not only in

depth, as the gradient does but also in width. With this

aim we have developed the genetic algorithm we present

in Section 4.

3. Genetic algorithms. Genetic algorithms with real
codi®cation

Genetic algorithms (GAs) are stochastic optimization

algorithms based on the concepts of biological evolutionary

theory (Goldberg, 1989; Holland, 1975). They consists in

maintaining a population of chromosomes (individuals),

which represent potential solutions to the problem to be

solved, that is, the optimization of a function, generally

very complex. Each individual in the population has an

associated ®tness, indicating the utility or adaptation of

the solution that it represents.

A GA starts off with a population of randomly gener-

ated chromosomes and advances toward better chromo-

somes by applying genetic operators, modeled on the

genetic processes occurring in nature. During successive

iterations, called generations, the chromosomes are eval-

uated as possible solutions. Based on these evaluations, a

new population is formed using a mechanism of selec-

tion and applying genetic operators such as crossover

and mutation.

Although there are many possible variants on the basic

GA, the operation of a standard genetic algorithm is

described in the following steps:

1. Randomly create an initial population of chromosomes.

2. Compute the ®tness of every member of the current

population.

3. If there is a member of the current population that satis-

®es the problem requirements then stop. Otherwise,

continue to the next step.

4. Create an intermediate population by extracting members

from the current population using a selection operator.

5. Generate a new population by applying the genetic

operators of crossover and mutation to this intermediate

population.

6. Go back to step 2.

A. Blanco et al. / Neural Networks 14 (2001) 93±105 97



3.1. Real-coded genetic algorithms

The most common representation in GAs is binary (Gold-

berg, 1991). The chromosomes consist of a set of genes,

which are generally characters belonging to an alphabet

{0,1}. Therefore, a chromosome is a vector x consisting

of l genes ci:

x � �c1; c2;¼; cl�; cl [ {0; 1};

where l is the length of the chromosome.

However, in the optimization problems of parameters

with variables in continuous domains, it is more natural to

represent the genes directly as real numbers since the repre-

sentations of the solutions are very close to the natural

formulation, i.e. there are no differences between the geno-

type (coding) and the phenotype (search space). The use of

this real-coding initially appears in speci®c applications,

such as in Lucasius and Kateman (1989) for chemometric

problems, in Davis (1989) for the use of metaoperators to

®nd the most adequate parameters for a standard GA, in

Davis (1991) and Michalewicz (1992) for numerical opti-

mization on continuous domains, etc. See Herrera, Lozano,

and Verdegay (1998) for a review related to real-coded

genetic algorithms.

In this case, a chromosome is a vector of ¯oating point

numbers. The chromosome length is the vector length of the

solution to the problem; thus, each gene represents a vari-

able of the problem. The gene values are forced to remain in

the interval established by the variables they represent, so

the genetic operators must ful®ll this requirement.

Below, we show some crossover and mutation operators

developed for this encoding.

3.1.1. Crossover operators

Let us assume that C1 � �c1
1¼c1

N� and C2 � �c2
1¼c2

N� are

two chromosomes selected for application of the crossover

operator.

Flat crossover (Radcliffe, 1991). An offspring H �
�h1;¼; hi;¼; hN�; is generated, where hi is a randomly

(uniformly) chosen value of the interval

�min�c1
i ; c

2
i �;max�c1

i ; c
2
i ��:

Simple crossover (Michalewicz, 1992; Wright, 1991). A

position i [ {1; 2;¼;N 2 1} is randomly chosen and two

new chromosomes are built:

H1 � �c1
1; c

1
2;¼; c1

i ; c
2
i11;¼; c2

N�;

H2 � �c2
1; c

2
2;¼; c2

i ; c
1
i11;¼; c1

N�:
Arithmetic crossover (Michalewicz, 1992). Two

offsprings, Hk � �hk
1;¼; hk

i ;¼; hk
N�; k � 1; 2; are generated,

where h1
i � lc1

i 1 �1 2 l�c2
i and h2

i � lc2
i 1 �1 2 l�c1

i : l
is a constant (uniform arithmetic crossover) or varies with

regard to the number of generations (non-uniform arith-

metic crossover).

BLX-a crossover (Blend Crossover) (Eshelman & Scahf-

fer, 1993). An offspring, H � �h1;¼; h2;¼; hN� is gener-

ated, where hi is a randomly (uniformly) chosen number

of the interval �cmin 2 Ia; cmax 1 Ia�; cmax � max�c1
i ; c

2
i �;

cmin � min�c1
i ; c

2
i �; I � cmax 2 cmin: The BLX-0.0 crossover

is equal to the ¯at crossover.

Linear BGA (Breeder Genetic Algorithm) crossover

(Schlierkamp-Voosen, 1994). Under the same consideration

as above, hi � c1
i ^ rangi´g´L; where L � �c2

i 2 c1
i �=ic1 2

c2i: The ª 2 ºsign is chosen with a probability of 0.9.

Usually, rangi is 0:5�bi 2 ai� and g � P15
k�0 ak22k

; where

ai [ {0; 1} is randomly generated with p�ai � 1� � 1=16:

Wright's heuristic crossover (Wright, 1990). If C1 is the

parent with the best ®tness, then hi � r�c1
i 2 c2

i �1 c1
i and r

is a random number belonging to [0,1].

3.1.2. Mutation operators

Let us assume that C � �c1;¼; cN� is a chromosome and

ci [ �ai; bi� is a gene to be mutated. Below, the gene, c 0i;
resulting from the application of different mutation opera-

tors is shown.

Random mutation (Michalewicz, 1992). c 0i is a random

(uniform) number from the domain [ai,bi].

Non-uniform mutation (Michalewicz, 1992). If this

operator is applied in a generation t, and gmax is the maxi-

mum number of generations, then

c 0i �
ci 1 D�t; bi 2 ci� if g � 0

ci 1 D�t; ci 2 ai� if g � 1

(
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Fig. 6. Recurrent neural network with two recurrent neurons.

Fig. 7. Chromosome associated with a RNN with two recurrent neurons.



g is a random number which may have a value of zero or

one and

D�t; y� � y�1 2 r�12�t=gmax��b �;
where r is a random number from the interval [0,1] and b is a

parameter, chosen by the user, that determines the degree of

dependency on the number of iterations. This function gives

a value in the range [0,y] such that the probability of return-

ing a number close to zero increases as the algorithm

advances.

4. A real-coded genetic algorithm to train recurrent
neural networks

As mentioned above, real coding is the most suitable

coding for continuous domains. Since our goal is recurrent

neural network training, it appears logical to use this coding

and genetic operators associated to it. Binary (ordinary) GA

has been not used in this ®eld. Among the advantages of

using real-valued coding over binary coding is increased

precision. Binary coding of real-valued numbers can suffer

loss of precision depending on the number of bits used to

represent one number. Moreover, in real-valued coding,

chromosome strings become much shorter. For real-valued

optimization problems, real-valued coding is simply much

easier and more ef®cient to implement, since it is concep-

tually closer to the problem space. In particular, our aim is to

train an RNN to perform fuzzy grammatical inference from

a fuzzy example set. In other words, a weight set must be

found so that the RNN behaves as the fuzzy ®nite-state

automaton that recognizes the example set.

A chromosome or genotype consists of all the network

weights. One gene of a chromosome represents a single

weight value. The weights of the neural network are placed

on a chromosome, as shown in the example below.

Example 6. We consider a Second-Order Recurrent

Neural Network consisting of two hidden recurrent

neurons, two input neurons, connected to a linear output

neuron (Fig. 6). In this example, the chromosomes have

10 genes (Fig. 7). In general, a chromosome has N2 £ L 1
N genes, where N is the number of hidden recurrent

neurons and L is the number of input neurons.

Fitness function. The ®tness function should re¯ect the

individual's performance in the current problem. We have

chosen 1/me as a ®tness function, where me is the average

error in the training set. The best individual in the popula-

tion is the one with the minimum error.
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Table 1

Real time recurrent learning results

N a Training error % Training answer Test error % Test answer Second Cycles

2 0.001 0.0025134 0.0 0.0066073 0.0 28 499

2 0.001 0.0020750 27.3 0.0055342 21.33 28 499

2 0.01 0.0000696 70.7 0.0036460 74.00 28 500

2 0.01 0.0005002 50.0 0.0042157 47.33 28 500

2 0.1 0.0000439 93.3 0.0041507 86.67 28 499

2 0.1 0.0000357 100.0 0.0040093 90.67 28 500

2 0.15 0.0000445 94.0 0.0055345 86.67 28 494

2 0.15 0.0000179 100.0 0.0032868 90.00 28 493

2 0.2 0.0000310 99.3 0.0045314 90.00 28 500

2 0.2 0.0000227 100.0 0.0031371 90.0 28 500

3 0.001 0.00215536 35.3 0.0061612 30.0 81 370

3 0.001 0.00076021 22.7 0.0037913 17.4 81 405

3 0.01 0.00083431 0.0 0.0035844 0.0 81 420

3 0.01 0.00067655 49.3 0.0033454 38.5 81 400

3 0.1 0.00006457 88.0 0.0044989 79.2 81 410

3 0.1 0.00002442 100.0 0.0027916 90.0 81 410

3 0.15 0.00002102 100.0 0.0040773 91.33 81 415

3 0.15 0.00002094 100.0 0.0030103 92 81 430

3 0.2 0.00002512 99.3 0.0031494 88.67 81 415

3 0.2 0.00002670 100.0 0.0025400 92.2 81 425

4 0.001 0.0006315 8.0 0.0034830 0.0 128 195

4 0.001 0.0013394 0.0 0.0044371 0.0 128 209

4 0.01 0.0012158 3.6 0.004361 0.0 128 209

4 0.01 0.0000713 71.3 0.0030726 63.3 128 209

4 0.1 0.0000234 99.3 0.0021705 82.0 128 209

4 0.1 0.0000202 99.3 0.0027550 89.33 128 210

4 0.15 0.0000344 100.0 0.0018895 90.0 128 210

4 0.15 0.0000244 99.3 0.0029299 90.0 128 210

4 0.2 0.0000350 99.3 0.0043744 86.7 128 210

4 0.2 0.0000420 99.3 0.0025164 90.0 128 289



As no gradient information is needed, we can also use the

percentage of correct answers in the training set as an alter-

native (Blanco et al., 2000a; Delgado et al., 1996).

Stopping criterion. The algorithm stops when an indivi-

dual recognizes all the examples or when a maximum

number of generations has been run.

Creating an intermediate population. Selection mechan-

ism. The selection process of stochastic sampling with

replacement is used to create the intermediate population

P 0 (Goldberg, 1991; Holland, 1975).

For each chromosome Ci in population P, the probability,

ps(Ci), of including a copy of this chromosome in the inter-

mediate population P 0 is calculated as:

ps�Ci� � Fitness�Ci�XuPu

j�1

Fitness�Cj�
;

where uPu is the number of individuals in the population P.

Thus, the chromosomes with above-average ®tness tend

to receive more copies than those with below-average

®tness.

Next the population is mapped onto a roulette wheel.

Chromosomes, Ci, are selected in quantities according to

their relative ®tness values (after ranking). The probability

that a chromosome x is selected, is equal to its relative

®tness. Thus:

pselect�x� � f �x�P
f
:

The roulette wheel operator is best visualized by imagin-

ing a wheel where each chromosome occupies an area that is

related to its ®tness.

Selecting a chromosome can be thought of as spinning the

roulette wheel. When the wheel stops, a ®xed marker deter-

mines which chromosome will be selected. This is repeated

until the number of chromosomes required for the inter-

mediate population, P 0, is obtained.

Generating a new population by applying the genetic

operators to the intermediate population. Once the inter-

mediate population is created, the next step is to for the

population of the next generation by applying the crossover

and mutation operators on the chromosomes in P 0. Two

chromosomes are randomly selected from this intermediate

population and serve as parents. Depending upon a prob-

abilistic chance pc (crossover rate), it is decided whether

these two will be crossed over. After applying these genetic

operators, the resulting chromosome (offspring) is inserted

into the new population. This step is repeated until the new

population reaches the population size less two individuals
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Table 2

Wright's heuristic crossover results

N Pc Pm Training error Training answer Test error % Test answer Seconds Generations

2 0.6 0.01 0.0000251 75.33 0.0028465 75.33 28 80

2 0.6 0.01 0.0000266 78.67 0.0025786 77.33 28 80

2 0.6 0.01 0.0000392 78.0 0.0038066 73.33 28 80

2 0.6 0.01 0.0000090 100.0 0.0028505 89.33 28 80

2 0.6 0.01 0.0000072 100.0 0.0034316 90.67 28 80

2 0.8 0.01 0.0000260 78.0 0.0040743 70.0 28 80

2 0.8 0.01 0.000013 90.66 0.0032212 80.0 28 80

2 0.8 0.01 0.000031 80.0 0.0042969 77.33 28 80

2 0.8 0.01 0.0000273 82.00 0.0050467 74.67 28 80

2 0.8 0.01 0.0000125 88.0 0.0042650 79.33 28 80

3 0.6 0.01 0.000005237 100.0 0.005130825 90.67 81 130

3 0.6 0.01 0.000006411 99.33 0.001658639 88.67 81 130

3 0.6 0.01 0.000003922 100.0 0.001160350 89.0 81 130

3 0.6 0.01 0.000004582 99.33 0.00240903 82.3 81 130

3 0.6 0.01 0.000001520 100.0 0.003658780 90.0 81 130

3 0.8 0.01 0.000000835 100.0 0.003327544 90.0 81 130

3 0.8 0.01 0.000001039 100.0 0.0033645703 90.67 81 130

3 0.8 0.01 0.000002704 100.0 0.005277894 92.7 81 130

3 0.8 0.01 0.000005178 98.67 0.002864849 91.4 81 130

3 0.8 0.01 0.000001513 100.0 0.003457828 97.3 81 130

4 0.6 0.01 0.00000766 99.33 0.0067284 88.0 128 130

4 0.6 0.01 0.00000413 100.0 0.00418239 90.0 128 130

4 0.6 0.01 0.00000659 98.0 0.00304362 86.0 128 130

4 0.6 0.01 0.00000185 100.0 0.00324213 90.67 128 130

4 0.6 0.01 0.00000338 100.0 0.0034262 92.0 128 130

4 0.8 0.01 0.00000140 100.0 0.00217766 90.67 128 130

4 0.8 0.01 0.00000815 98.67 0.0042978 85.33 128 130

4 0.8 0.01 0.00000224 100.0 0.0037389 89.33 128 130

4 0.8 0.01 0.00000595 99.33 0.0009753 90.67 128 130

4 0.8 0.01 0.00000144 99.33 0.0044461 89.33 128130



�uPu 2 2�: Moreover, the two best individuals in the current

population are included in the new population (elitist strat-

egy; De Jong, 1975), to make sure that the best-performing

chromosome always survives intact from one generation to

the next. This is necessary since the best chromosome could

disappear, due to crossover or mutation.

Wright's heuristic crossover operator (Wright, 1990) (see

Section 3.1.1) is used because of its good experimental

behavior. After the application of the crossover operator,

each of the genes of the resulting chromosome is subject

to possible mutation, which depends on a probabilistic

chance pm, the mutation rate. The mutation operator used

is random mutation (see Section 3.1.2).

5. Simulation

The simulation is designed as follows:

1. We start from a fuzzy ®nite-state automaton, M, from

Example 3 (Fig. 1), from which we will generate a set of

500 couples, �Pi;mi�; recognized by M. Taking into

account that now the running of M is to process any

element from Tp and to give it a membership degree

(which may be equal to 0 in the case that the string is

not really a string of the fuzzy language), obtaining those

500 examples will be performed according to the follow-

ing steps:

² We calculate its length, f. We choose a random

number f in the interval [0¼Max], where Max is the

maximum length of an example, Max � 30:

² We calculate a symbol sequence, Pi. We randomly

choose f symbols belonging to the alphabet, S �
{a; b}:

² We process sequence Pi by the automaton M, obtain-

ing the membership degree mM�Pi� to the fuzzy

language recognized by M.

2. The example set obtained is divided into two subsets, a

training set and a test set.

3. Once we have built an example set, our aim is to obtain

the weights of the neural network that minimize the error

of the training set. To obtain these weights we have

trained a neural network with the RTRL algorithm and

our genetic algorithm.

4. Finally, the results obtained by the two methods are

compared.

5.1. Real-time recurrent learning algorithm results

We have trained neural networks with two, three and four

hidden recurrent neurons. For each neural network we have
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Table 3

FLAT crossover results

N Pc Pm Training error % Training answer Test error % Test answer Seconds Generations

2 0.6 0.01 0.0002645 6 0.0027777 0.0 28 80

2 0.6 0.01 0.0003348 49.33 0.0028329 48.67 28 80

2 0.6 0.01 0.0003763 27.33 0.0033377 13.0 28 80

2 0.6 0.01 0.0005090 50.0 0.0039493 47.33 28 80

2 0.6 0.01 0.0000351 75.33 0.0044056 72.67 28 80

2 0.8 0.01 0.0001075 62.0 0.0037328 50.0 28 80

2 0.8 0.01 0.0002236 26.66 0.0044952 31.33 28 80

2 0.8 0.01 0.0001097 62.0 0.0027442 55.33 28 80

2 0.8 0.01 0.0001617 49.33 0.0039485 48.00 28 80

2 0.8 0.01 0.0003253 50.00 0.0046291 36.0 28 80

3 0.6 0.01 0.00005226 62.0 0.00192591 62.0 81 125

3 0.6 0.01 0.00007457 48.0 0.00198125 46.67 81 125

3 0.6 0.01 0.00001302 100 0.00311659 88.67 81 125

3 0.6 0.01 0.00004462 62.0 0.00216208 61.33 81 125

3 0.6 0.01 0.00011352 49.3 0.0042735 48.67 81 125

3 0.8 0.01 0.00008057 62.0 0.00579852 61.33 81 130

3 0.8 0.01 0.00001843 84.0 0.00270929 84.0 81 130

3 0.8 0.01 0.00002087 87.3 0.00323798 78.0 81 130

3 0.8 0.01 0.00018110 30.6 0.00725754 25.33 81 130

3 0.8 0.01 0.00001015 90.6 0.00209595 79.33 81 130

4 0.6 0.01 0.0000564 66.0 0.00156253 66.0 128 140

4 0.6 0.01 0.0000457 84.0 0.00419596 83.3 128 140

4 0.6 0.01 0.0000248 89.33 0.00286092 78.0 128 140

4 0.6 0.01 0.0000146 99.33 0.00274103 90.0 128 140

4 0.8 0.01 0.0000142 99.33 0.00288451 90.67 128 140

4 0.8 0.01 0.0000509 74.66 0.00280194 72.67 128 140

4 0.8 0.01 0.0000273 83.33 0.00561753 73.33 128 140

4 0.8 0.01 0.0000136 95.33 0.00159258 84.67 128 140

4 0.8 0.01 0.0000111 100.0 0.00174343 91.33 128 140



performed 10 simulations. Each simulation has been run a

certain number of seconds (seventh column). The initial

weights were randomly chosen in the interval [21,1]. The

results obtained are shown in Table 1. The ®rst column

represents the number of neurons used. The second column

shows the learning rate. The third and fourth columns give

the Error and the percentage of successes in the training set.

The ®fth and sixth columns show the Error and the

percentage of successes in the test set. The number of

seconds that the algorithm has been run and the cycles

performed are shown in the seventh and eighth columns,

respectively.

Rows 1±10 in Table 1 show the results obtained for an

RNN with two recurrent neurons. The best result appears in

row 8, with a training error of E � 0:0000179: The mean

training error for the simulations of two recurrent neurons is

5:3539 £ 1024
:

Rows 11±20 in Table 1 give the results for an RNN with

three recurrent neurons. The best result is a training error,

E � 0:00002094 (row 18). The mean training error for three

recurrent neurons is 4:6092 £ 1024
:

Rows 21±30 in Table 1 show the results obtained with an

RNN with four recurrent neurons. The best result obtained is

a training error, E � 0:0000202 (row 26). The mean training

error for four recurrent neurons is 3:4374 £ 1024
:

5.2. Real-coded genetic algorithm results

Wright's heuristic crossover. As in the previous algo-

rithm, we have trained the RNN with two, three and four

hidden recurrent neurons. For each network we performed

10 simulations for a certain number of seconds, with a

population of 50 individuals. The interval where the genes

can take their values is [21,1]. The parameters associated

to each simulation and the results obtained appear in

Table 2. Column 1 gives the number of neurons used in

each simulation. Columns 2 and 3 show the crossover and

mutation probabilities, respectively. The error and

percentage of successes for the training set are presented

in columns 4 and 5. The information associated with the

test set appears in columns 6 and 7. Column 8 shows the

seconds that the genetic algorithm has been run and

column 9 the cycles performed during that time. Table

2 is associated with the RNN with two, three and four

recurrent neurons.

Rows 1±10 in Table 2 show the results for an RNN with

three recurrent neurons. The best result is simulation 5, with

a training error of E � 0:0000072: The mean training error

for two recurrent neurons is 2:168 £ 1025
:

Rows 11±20 in Table 2 show the simulations asso-

ciated to the RNN with three recurrent neurons. The
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Table 4

BLX Crossover results

N Pc Pm Training error % Training answer Test error % Test answer Seconds Generations

2 0.6 0.01 0.0000292 74.66 0.0034141 70.0 28 80

2 0.6 0.01 0.0000879 27.33 0.0040177 20.5 28 80

2 0.6 0.01 0.0000290 82.0 0.0030317 79.6 28 80

2 0.6 0.01 0.0000154 94.0 0.0033146 88.0 28 80

2 0.6 0.01 0.0000198 89.3 0.0042698 83.0 28 80

2 0.8 0.01 0.0000171 86.6 0.0032124 79.0 28 80

2 0.8 0.01 0.0000076 98.66 0.0030808 89.5 28 80

2 0.8 0.01 0.0000124 100.0 0.0031278 91.33 28 80

2 0.8 0.01 0.0000270 78.0 0.0026403 78.0 28 80

2 0.8 0.01 0.0000077 100.0 0.0037394 91.33 28 80

3 0.6 0.01 0.00000769 100.0 0.00355957 89.33 81 120

3 0.6 0.01 0.00000699 99.3 0.00340276 91.33 81 120

3 0.6 0.01 0.00001455 99.3 0.00323907 89.33 81 120

3 0.6 0.01 0.00000423 99.3 0.00186712 90.0 81 120

3 0.6 0.01 0.00000123 100.0 0.00222766 90.67 81 120

3 0.8 0.01 0.00002105 99.3 0.00283124 84.67 81 120

3 0.8 0.01 0.00000663 100 0.00189647 90.67 81 120

3 0.8 0.01 0.00001166 98 0.00181295 94.0 81 120

3 0.8 0.01 0.00001459 84 0.00153861 80.0 81 120

3 0.8 0.01 0.00000689 99.3 0.00297651 88.67 81 120

4 0.6 0.01 0.000006872 100.0 0.00207004 90.67 128 140

4 0.6 0.01 0.000016593 90 0.00291990 79.33 128 140

4 0.6 0.01 0.000004080 100 0.00244884 90.0 128 140

4 0.6 0.01 0.000018792 90 0.00211171 82.67 128 140

4 0.6 0.01 0.000011337 99.3 0.00387898 88.67 128 140

4 0.8 0.01 0.000005364 98.6 0.00338552 86.0 128 140

4 0.8 0.01 0.000003909 99.3 0.00208693 91.33 128 140

4 0.8 0.01 0.000001072 100 0.00325102 90.67 128 140

4 0.8 0.01 0.000005037 100 0.00244563 88.67 128 140

4 0.8 0.01 0.000026694 93.3 0.00442973 81.33 128 140



best result is a training error of E � 0:000000835 (row

16). The mean training error for three recurrent neurons

is 3:2922 £ 1026
:

Rows 21±30 in Table 2 show the simulation results for

the RNN with four recurrent neurons. Simulation 26 gives

the best results, E � 0:00000140: The mean training error

for four recurrent neurons is 4:279 £ 1026
:

5.2.1. Using other crossover operators

In this section we have used other crossover operators to

experimentally demonstrate that Wright's crossover is best.

Next, we show the results obtained with the BLX and FLAT

crossovers. The parameters used in the GA are the same as

in the previous case.

FLAT crossover. For the case of two neurons (rows 1±10

in Table 3), the best result obtained is E � 0:0000351 (row

5). The mean training error for two recurrent neurons is

2:4475 £ 1024
:

For three neurons (rows 11±20 in Table 3), the best result

is in simulation 20, E � 0:00001015: The mean training

error for three recurrent neurons is 6:0911 £ 1025
: Finally,

for four neurons (rows 21±30 in Table 3), the best result

obtained is E � 0:0000111 (simulation 30). The mean train-

ing error for four recurrent neurons is 2:586 £ 1025
:

BLX Crossover. For the case of two neurons (rows 1±10

in Table 4), the best result obtained with the BLX cross-

over is in simulation 7 with an error of E � 0:0000076:

The mean training error for two recurrent neurons is

2:531 £ 1025
:

Rows 11±20 in Table 4 show the results obtained for the

simulations with a neural network of three neurons. The best

result appears in row 15, E � 0:00000123: The mean train-

ing error for three recurrent neurons is 9:551 £ 1026
:

Finally, the result obtained with four neurons appears in

rows 21±30 (Table 4). The best simulation obtained a train-

ing error, E � 0:000001072 (row 28). The mean training

error for four recurrent neurons is 9:975 £ 1026
:

5.3. Comparison of results

If we observe the results obtained in Tables 1±4, we see

that the Real-Coded Genetic Algorithm behaves better than

the RTRL algorithm in the search of the Recurrent Neural

Network weights.
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Fig. 8. The best simulation for a recurrent neural network with two recur-

rent hidden neurons.
Fig. 9. The best simulation for a recurrent neural network with three recur-

rent hidden neurons.



Comparing the results summarized in Tables 1±4, we can

conclude the following:

² In the RTRL algorithm, if smaller learning rates are used,

the learning is more stable, although the training is

slower. On the other hand, if large learning rates are

used, then the training is more unstable.

² When N increases, the RTRL is hard to apply, because it

becomes very slow.

² The genetic algorithm with any crossover (BLX, Flat or

Wright's heuristic crossover), provides better mean

results than RTRL and, furthermore, is quicker in the

search for a good result. Figs. 8, 9 and 10 show the

best simulation performed (the simulation with the least

error), case four, with two, three and four neurons,

respectively. We can observe that the genetic algorithm

obtains the best results more quickly than the RTRL.

² The genetic algorithm with Wright's heuristic crossover

obtains the best mean results, although the BLX-cross-

over gives ones very close to it. Hence, both crossovers

can be used indistinctly.

² The crossover producing the worst results is the Flat cross-

over.

6. Conclusions

The RTRL algorithm is an unstable algorithm searching a

global minimum and may easily remain trapped in local

minimums. It has the drawback that if a small learning

rate is used the training is slow, and if, on the contrary, a

large learning rate is used, the training is unstable. Further-

more, this algorithm has a high complexity time, O�N4 £
L2 1 N�: When N increases, the RTRL algorithm presents

serious problems. All this leads us to outline new training

methods to smoothen these problems. The GAs are able to

search not only in depth, like the RTRL algorithm, but also

in width. The most appropriate coding for neural network

training is therefore real-coding. Experimentally, our Real-

Coded Genetic Algorithm using Wright's heuristic cross-

over and random mutation obtains the best results. The

time complexity of this GA is O�N2 £ L2 1 N�; which

means the training cost is still manageable as the number

of neurons increases. In addition, our genetic algorithm

using a BLX or Flat crossover obtains the best mean results

and does so more quickly than the RTRL.
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