
Dropout

 Temporarily removing (dropping out) some input

or hidden neurons during network training

 Neurons are dropped out randomly,

according to a given distribution

 Originally proposed for and most often used

during training of multilayer perceptrons

Bernoulli dropout
 Bernoulli(𝑝) distribution: on 𝑎, 𝑏 with probabilities 1 − 𝑝,𝑝

 Assumptions about 𝑙-th hidden layer, 𝑙 = 1, … , 𝐿:

• vectorial input 𝑧 𝑙 , output 𝑦 𝑙 , weight 𝑤 𝑙 , scalar bias 𝑏 𝑙

• activation function 𝑓 does not depend on 𝑙, relates 𝑦 𝑙 = 𝑓 𝑧 𝑙

• in addition: set 𝑎 = 0, 𝑏 = 1, denote 𝑦 0 = 𝑥 – network input

 Then 𝑧𝑖
𝑙 = 𝑤𝑖

𝑙 𝑟𝑖
𝑙 𝑦𝑖

𝑙−1 + 𝑏 𝑙 , with random 𝑟𝑖
𝑙 ~Bernoulli(𝑝)

Dropout and network training

 Most often using stochastic gradient descent

 Difference from standard MLP: for each training case,

new values 𝑟𝑖
𝑙 are sampled ⟹ a new specific network

• forward- and backpropagation restricted to that individual network

 Gradients are averaged over cases retaining the parameter

• cases with that parameter dopped out ⟹ gradient contribution = 0

Dropout and regularization

 Dropout alone improves training, with regularization even more

 Most often combined with max-norm regularization: 𝑤 ≤ 𝑐

• 𝑤 ‒ vector of all weights, ‒ some norm, 𝑐 ‒ hyperparameter

• ⟹ network learning is then constrained optimization

 Main reason why max-norm regularization is useful:

no weigths blowup through large learning rate ⟹ explorability

Some other properties of dropout

 Sparse representation, even if no sparsity inducing regularizers

 Influence of dataset size relatively to network size:

• very small datasets overfitting even after dropout ⟹ useless

• with increasing dataset size, its usefulness increases, then again

decreases ⟸ for very large datasets, no overfitting occurs

 Training time: 2 − 3 × longer than withouf dropout

Advantages of dropout
1. After dropout, the network has less parameters ⟹

⟹ less prone to overfitting the training data

2. Breaking-up co-adaptations of different hidden neurons,

which impede generalization ⟹ improved generalization

3. Different dropout realizations ≈ different network topologies ⟹

⟹ dropout implies building network ensembles

Dropout ensembles

 For an ensemble 𝑆 built through dropping out subsets

 of the set 𝐻 of hidden neurons: 𝒮 ≤ 2 𝐻

 If during training, ℎ ∈ 𝐻 survives dropout with probability 𝑝, then

 during testing, weights outgoing from ℎ are multiplied by 𝑝

• ⇒ expected weights after training = used testing weights

 Alternative possibility: training weights multilplied by 1
𝑝

More general dropouts

 Used also with other models than multilayer perceptrons

• restricted Boltzmann machine (RBM, will be described later)

• linear regression (will be described later)

 Used also with other distributions than Bernoulli

• Gaussian distribution (will be described later)

Introducing dropout into RBM

 RBM with visible units 𝑣 ∈ 0,1 𝑑𝑣, hidden units ℎ ∈ 0,1 𝑑ℎ and

parameters 𝜃 = 𝑊,𝑎, 𝑏 ,𝑊 ∈ ℝ𝑑𝑣×𝑑ℎ ,𝑎 ∈ ℝ𝑑ℎ , 𝑏 ∈ ℝ𝑑𝑣, which

define 𝑃 ℎ, 𝑣;𝜃 = exp 𝑣⊺𝑊𝑊+𝑎⊺𝑊+𝑏⊺𝑣
𝐶 𝜃

,𝐶 𝜃 - normalizing constant

 Dropout is introduced with a 0,1 𝑑ℎ-valued random vector r

with random components 𝑟𝑗~Bernoulli(p), 𝑟𝑗 = 1 ⟺ ℎ𝑗 = 1,

• consequence: 𝑟𝑗 = 1 ⟹ ℎ𝑗 = 1, 𝑟𝑗 = 0 ⟹ ℎ𝑗 = 0

Dropout RBM probability distribution
 Joint distribution of 𝑣 and ℎ, with a normalizing constant 𝐶 𝜃, 𝑟 :

 𝑃 ℎ, 𝑣; 𝜃 = exp 𝑣⊺𝑊𝑊+𝑎⊺𝑊+𝑏⊺𝑣
𝐶 𝜃,𝑟

∏ 𝕀 𝑟𝑗 = 1 + 𝕀 𝑟𝑗 = 0 𝕀 ℎ𝑗 = 0𝑑ℎ
𝑗=1

 Conditional distribution of ℎ conditioned on 𝑟 and 𝑣:

 𝑃 ℎ|𝑟,𝑣 = ∏ 𝑃 ℎ𝑗|𝑟𝑗,𝑣 ,𝑃 ℎ𝑗 = 1|𝑟𝑗,𝑣
𝑑ℎ
𝑗=1 = 𝕀 𝑟𝑗 = 1 𝜎 𝑏𝑗 +∑ 𝑊𝑖𝑗𝑣𝑖𝑖

 Conditional distribution of 𝑣 on ℎ (same as without dropout):

 𝑃 𝑣|ℎ = ∏ 𝑃 𝑣𝑖|ℎ ,𝑃 𝑣𝑖 = 1|ℎ = 𝜎 𝑎𝑖 +∑ 𝑊𝑖𝑗ℎ𝑗𝑖
𝑑𝑣
𝑖=1

Dropout in linear regression

 Dropped out are individual training pairs − rows of 𝑋,𝑦

• 𝑋 ∈ ℝ𝑁×𝑑 − matrix of 𝑁 data points, 𝑦 ∈ ℝ𝑑− vector of targets

 Dropout introduced through a component-wise product 𝑋⊙ 𝑅

• 𝑅 ∈ 0,1 𝑁×𝑑 is a 0,1 𝑁×𝑑-valued random matrix

• 𝑅 has all its components random 𝑅𝑖𝑗~Bernoulli(𝑝)

Learning dropout linear regression
 Learning in traditional linear regression consists in finding

a weight vector 𝑤 ∈ ℝ𝑑 minimizing the error 𝑦 − 𝑋𝑤 2

 For dropout linear regression learning, the minimized error

turns to 𝔼𝑅~Bernoulli 𝑝 𝑦 − 𝑋 ⊙ 𝑅 𝑤 2 = (after computation)

= 𝑦 − 𝑝𝑋𝑤 2 + 𝑝 1 − 𝑝 diag 𝑋⊺𝑋
1
2𝑤

2

=

= 𝑦 − 𝑋𝑤� 2 + 1−𝑝
𝑝

diag 𝑋⊺𝑋
1
2𝑤�

2

, with 𝑤� = 𝑝𝑤

Gaussian dropout

 Basic idea: activation ℎ𝑖 of the hidden neuron 𝑖 is

perturbed to hi 1 + r with r~N 0,1 , more generally r~N 0,σ2

 Equivalently: activation ℎ𝑖 is perturbed to ℎ𝑖𝑟′

with 𝑟′ = 1 + 𝑟, hence 𝑟′~𝑁 1,1 , more generally 𝑟′~𝑁 1,𝜎2

 Hyperparameter 𝜎2, like 𝑝 in Bernoulli dropout

What does the Gaussian drop out?
 Formally, Gaussian dropout drops no neurons out,

only perturbs the activations of hidden neurons

 However, for ℎ𝑖𝑟′ with 𝑟′~𝑁 1,𝜎2 , where 𝜎2 = 1−𝑝
𝑝

:

the expectation and variance of 𝑟′ are 𝔼𝑟′ = 1, Var 𝑟′ = 1−𝑝
𝑝

 And the same 𝔼𝑟′ and Var 𝑟′ has 𝑟′~ Bernoulli(𝑝) on 0, 1
𝑝

,

which drops out the hidden neuron 𝑖

	Dropout
	Snímek číslo 2
	Bernoulli dropout
	Snímek číslo 4
	Dropout and network training
	Dropout and regularization
	Some other properties of dropout
	Advantages of dropout
	Snímek číslo 9
	Dropout ensembles
	Snímek číslo 11
	More general dropouts
	Introducing dropout into RBM
	Dropout RBM probability distribution
	Dropout in linear regression
	Learning dropout linear regression
	Gaussian dropout
	What does the Gaussian drop out?

