Dropout

Temporarily *removing* (dropping out) *some* input

or hidden *neurons during* network *training*

Neurons are dropped out *randomly*,

according to a given distribution

 Originally proposed for and most often used during training of multilayer perceptrons

Bernoulli dropout

- Bernoulli(*p*) distribution: on $\{a, b\}$ with probabilities (1 p, p)
- Assumptions about *l*-th *hidden layer*, l = 1, ..., L:
 - vectorial input $z^{(l)}$, output $y^{(l)}$, weight $w^{(l)}$, scalar bias $b^{(l)}$
 - activation function f does not depend on l, relates $y^{(l)} = f(z^{(l)})$
 - in addition: set a = 0, b = 1, denote $y^{(0)} = x$ network input

• Then $z_i^{(l)} = w_i^{(l)} r_i^{(l)} y_i^{(l-1)} + b^{(l)}$, with random $r_i^{(l)} \sim \text{Bernoulli}(p)$

• • • • •

Dropout and network training

- Most often using stochastic gradient descent
- Difference from standard MLP: for each *training case*,

new values $r_i^{(l)}$ are sampled \Rightarrow a new specific network

- forward- and backpropagation restricted to that individual network
- Gradients are averaged over cases retaining the parameter
 - cases with that parameter dopped out \Rightarrow gradient contribution = 0

Dropout and regularization

- Dropout alone improves training, with regularization even more
- Most often combined with *max-norm regularization:* $||w|| \le c$
 - w vector of all weights, $\| \|$ some norm, c hyperparameter
 - \Rightarrow network learning is then constrained optimization
- Main reason why max-norm regularization is useful:

no weigths blowup through large learning rate \Rightarrow explorability

Some other properties of dropout

- Sparse representation, even if no sparsity inducing regularizers
- Influence of dataset size relatively to network size:
 - very small datasets overfitting even after dropout \Rightarrow useless
 - with increasing dataset size, its usefulness increases, then again decreases ← for very large datasets, no overfitting occurs
- Training time: $2 3 \times$ longer than withouf dropout

Advantages of dropout

- 1. After dropout, the network has less parameters \Rightarrow \Rightarrow less prone to *overfitting* the training data
- 2. Breaking-up co-adaptations of different hidden neurons, which impede generalization \Rightarrow improved *generalization*
- 3. Different dropout realizations \approx different network topologies \Rightarrow \Rightarrow dropout implies building network *ensembles*

Dropout ensembles

- For an ensemble *S* built through dropping out subsets of the set *H* of hidden neurons: $|S| \le 2^{|H|}$
- If during training, $h \in H$ survives dropout with probability p, then during testing, weights outgoing from h are multiplied by p
 - ⇒ expected weights after training = used testing weights
- Alternative possibility: training weights multilplied by $\frac{1}{p}$

More general dropouts

- Used also with other models than multilayer perceptrons
 - *restricted Boltzmann* machine (RBM, will be described later)
 - *linear regression* (will be described later)
- Used also with other distributions than Bernoulli
 - Gaussian distribution (will be described later)

Introducing dropout into RBM

♦ RBM with visible units $v \in \{0,1\}^{d_v}$, hidden units $h \in \{0,1\}^{d_h}$ and

parameters $\theta = (W, a, b), W \in \mathbb{R}^{d_v \times d_h}, a \in \mathbb{R}^{d_h}, b \in \mathbb{R}^{d_v}$, which

define $P(h, v; \theta) = \frac{\exp(v^{\mathsf{T}}Wh + a^{\mathsf{T}}h + b^{\mathsf{T}}v)}{C(\theta)}$, $C(\theta)$ - normalizing constant

Dropout is introduced with a $\{0,1\}^{d_h}$ -valued random vector r

with random components $r_j \sim Bernoulli(p)$, $r_j = 1 \Leftrightarrow h_j = 1$,

• consequence:
$$r_j = 1 \Longrightarrow h_j = 1$$
, $r_j = 0 \Longrightarrow h_j = 0$

Dropout RBM probability distribution

• Joint distribution of v and h, with a normalizing constant $C(\theta, r)$:

$$P(h,v;\theta) = \frac{\exp(v^{\mathsf{T}}Wh + a^{\mathsf{T}}h + b^{\mathsf{T}}v)}{C(\theta,r)} \prod_{j=1}^{d_h} \left(\mathbb{I}(r_j = 1) + \mathbb{I}(r_j = 0) \mathbb{I}(h_j = 0) \right)$$

Conditional distribution of h conditioned on r and v:

$$P(h|r,v) = \prod_{j=1}^{d_h} P(h_j|r_j,v), P(h_j=1|r_j,v) = \mathbb{I}(r_j=1)\sigma(b_j+\sum_i W_{ij}v_i)$$

Conditional distribution of v on h (same as without dropout):

$$P(v|h) = \prod_{i=1}^{d_{v}} P(v_{i}|h), P(v_{i} = 1|h) = \sigma(a_{i} + \sum_{i} W_{ij}h_{j})$$

Dropout in linear regression

- Dropped out are individual training pairs rows of (X, y)
 - $X \in \mathbb{R}^{N \times d}$ matrix of N data points, $y \in \mathbb{R}^{d}$ vector of targets
- Dropout introduced through a component-wise product $X \odot R$
 - $R \in \{0,1\}^{N \times d}$ is a $\{0,1\}^{N \times d}$ -valued random matrix
 - *R* has all its components random $R_{ij} \sim Bernoulli(p)$

Learning dropout linear regression

- Learning in traditional linear regression consists in finding a weight vector $w \in \mathbb{R}^d$ minimizing the error $||y - Xw||^2$
- For dropout linear regression learning, the *minimized error*

turns to $\mathbb{E}_{R \sim \text{Bernoulli}(p)} ||y - X \odot R w||^2 = (after computation)$

$$= \|y - pXw\|^{2} + p(1 - p) \left\| \left(\operatorname{diag}(X^{\mathsf{T}}X) \right)^{\frac{1}{2}} w \right\|^{2} =$$
$$= \|y - X\widetilde{w}\|^{2} + \frac{1 - p}{p} \left\| \left(\operatorname{diag}(X^{\mathsf{T}}X) \right)^{\frac{1}{2}} \widetilde{w} \right\|^{2}, \text{ with } \widetilde{w} = pw$$

Gaussian dropout

• Basic idea: *activation* h_i of the hidden neuron *i* is

perturbed to $h_i(1 + r)$ with $r \sim N(0,1)$, more generally $r \sim N(0,\sigma^2)$

• Equivalently: activation h_i is *perturbed to* $h_i r'$

with r' = 1 + r, hence $r' \sim N(1,1)$, more generally $r' \sim N(1,\sigma^2)$

• Hyperparameter σ^2 , like p in Bernoulli dropout

What does the Gaussian drop out?

• Formally, Gaussian dropout drops no neurons out,

only perturbs the activations of hidden neurons

• However, for $h_i r'$ with $r' \sim N(1, \sigma^2)$, where $\sigma^2 = \frac{1-p}{p}$:

the expectation and variance of r' are $\mathbb{E}r' = 1$, $\operatorname{Var}r' = \frac{1-p}{n}$

• And the same $\mathbb{E}r'$ and $\operatorname{Var}r'$ has $r' \sim \operatorname{Bernoulli}(p)$ on $\left\{0, \frac{1}{p}\right\}$,

which drops out the hidden neuron *i*