
Dropout 

 Temporarily removing (dropping out) some input 

or hidden neurons during network training 

 Neurons are dropped out randomly, 

according to a given distribution 

 Originally proposed for and most often used 

during training of multilayer perceptrons 





Bernoulli dropout 
 Bernoulli(𝑝) distribution: on 𝑎, 𝑏  with probabilities 1 − 𝑝,𝑝  

 Assumptions about 𝑙-th hidden layer, 𝑙 = 1, … , 𝐿: 

• vectorial input 𝑧 𝑙 , output 𝑦 𝑙 , weight 𝑤 𝑙 , scalar bias 𝑏 𝑙  

• activation function  𝑓  does not depend on 𝑙, relates 𝑦 𝑙 = 𝑓 𝑧 𝑙  

• in addition: set 𝑎 = 0, 𝑏 = 1, denote 𝑦 0 = 𝑥 – network input 

 Then 𝑧𝑖
𝑙 = 𝑤𝑖

𝑙 𝑟𝑖
𝑙 𝑦𝑖

𝑙−1 + 𝑏 𝑙 , with random 𝑟𝑖
𝑙 ~Bernoulli(𝑝)  





Dropout and network training 

 Most often using stochastic gradient descent 

 Difference from standard MLP: for each training case,  

new values 𝑟𝑖
𝑙  are sampled ⟹ a new specific network 

• forward- and backpropagation restricted to that individual network 

  Gradients are averaged over cases retaining the parameter 

• cases with that parameter dopped out ⟹ gradient contribution = 0 



Dropout and regularization 

 Dropout alone improves training, with regularization even more 

 Most often combined with max-norm regularization: 𝑤 ≤ 𝑐 

• 𝑤 ‒ vector of all weights,  ‒ some norm, 𝑐 ‒ hyperparameter 

• ⟹ network learning is then constrained optimization 

 Main reason why max-norm regularization is useful:  

no weigths blowup through large learning rate ⟹ explorability 



Some other properties of dropout 

  Sparse representation, even if no sparsity inducing regularizers 

  Influence of dataset size relatively to network size: 

• very small datasets overfitting even after dropout ⟹ useless 

• with increasing dataset size, its usefulness increases, then again 

decreases ⟸ for very large datasets, no overfitting occurs 

 Training time: 2 − 3 × longer than withouf dropout 

 



Advantages of dropout 
1.  After dropout, the network has less parameters ⟹ 

⟹ less prone to overfitting the training data 

2.  Breaking-up co-adaptations of different hidden neurons,  

which impede generalization ⟹ improved generalization  

3.  Different dropout realizations ≈ different network topologies ⟹ 

⟹ dropout implies building network ensembles 

 





Dropout ensembles 

 For an ensemble 𝑆 built through dropping out subsets 

    of the set 𝐻 of hidden neurons: 𝒮 ≤ 2 𝐻   

 If during training, ℎ ∈ 𝐻 survives dropout with probability 𝑝, then 

    during testing, weights outgoing from ℎ are multiplied by 𝑝 

• ⇒ expected weights after training = used testing weights  

 Alternative possibility: training weights multilplied by 1
𝑝
 





More general dropouts 

 Used also with other models than multilayer perceptrons 

•  restricted Boltzmann machine (RBM, will be described later) 

•  linear regression (will be described later) 

  Used also with other distributions than Bernoulli 

•  Gaussian distribution (will be described later) 

 



Introducing dropout into RBM 

 RBM with visible units 𝑣 ∈ 0,1 𝑑𝑣, hidden units ℎ ∈ 0,1 𝑑ℎ and 

parameters 𝜃 = 𝑊,𝑎, 𝑏 ,𝑊 ∈ ℝ𝑑𝑣×𝑑ℎ ,𝑎 ∈ ℝ𝑑ℎ , 𝑏 ∈ ℝ𝑑𝑣, which 

define 𝑃 ℎ, 𝑣;𝜃 = exp 𝑣⊺𝑊𝑊+𝑎⊺ℎ+𝑏⊺𝑣
𝐶 𝜃

,𝐶 𝜃  - normalizing constant 

  Dropout is introduced with a 0,1 𝑑ℎ-valued random vector r 

with random components 𝑟𝑗~Bernoulli(p), 𝑟𝑗 = 1 ⟺ ℎ𝑗 = 1,  

• consequence: 𝑟𝑗 = 1 ⟹ ℎ𝑗 = 1, 𝑟𝑗 = 0 ⟹ ℎ𝑗 = 0 



Dropout RBM probability distribution 
  Joint distribution of 𝑣 and ℎ, with a normalizing constant 𝐶 𝜃, 𝑟 :  

 𝑃 ℎ, 𝑣; 𝜃 = exp 𝑣⊺𝑊𝑊+𝑎⊺ℎ+𝑏⊺𝑣
𝐶 𝜃,𝑟

∏ 𝕀 𝑟𝑗 = 1 + 𝕀 𝑟𝑗 = 0 𝕀 ℎ𝑗 = 0𝑑ℎ
𝑗=1  

 Conditional distribution of ℎ conditioned on 𝑟 and 𝑣: 

 𝑃 ℎ|𝑟,𝑣 = ∏ 𝑃 ℎ𝑗|𝑟𝑗,𝑣 ,𝑃 ℎ𝑗 = 1|𝑟𝑗,𝑣
𝑑ℎ
𝑗=1 = 𝕀 𝑟𝑗 = 1 𝜎 𝑏𝑗 +∑ 𝑊𝑖𝑖𝑣𝑖𝑖  

 Conditional distribution of 𝑣 on ℎ (same as without dropout): 

 𝑃 𝑣|ℎ = ∏ 𝑃 𝑣𝑖|ℎ ,𝑃 𝑣𝑖 = 1|ℎ = 𝜎 𝑎𝑖 +∑ 𝑊𝑖𝑖ℎ𝑗𝑖
𝑑𝑣
𝑖=1  



Dropout in linear regression 

 Dropped out are individual training pairs − rows of 𝑋,𝑦  

•  𝑋 ∈ ℝ𝑁×𝑑 − matrix of 𝑁 data points, 𝑦 ∈ ℝ𝑑− vector of targets 

 Dropout introduced through a component-wise product 𝑋⊙ 𝑅 

•  𝑅 ∈ 0,1 𝑁×𝑑 is a 0,1 𝑁×𝑑-valued random matrix 

•  𝑅 has all its components random 𝑅𝑖𝑖~Bernoulli(𝑝) 



Learning dropout linear regression 
 Learning in traditional linear regression consists in finding  

a weight vector 𝑤 ∈ ℝ𝑑 minimizing the error 𝑦 − 𝑋𝑋 2 

 For dropout linear regression learning, the minimized error 

turns  to 𝔼𝑅~Bernoulli 𝑝 𝑦 − 𝑋 ⊙ 𝑅 𝑤 2 = (after computation) 

= 𝑦 − 𝑝𝑝𝑝 2 + 𝑝 1 − 𝑝 diag 𝑋⊺𝑋
1
2𝑤

2

= 

= 𝑦 − 𝑋𝑤� 2 + 1−𝑝
𝑝

diag 𝑋⊺𝑋
1
2𝑤�

2

, with 𝑤� = 𝑝𝑝  



Gaussian dropout 

 Basic idea: activation ℎ𝑖 of the hidden neuron 𝑖 is  

perturbed to hi 1 + r  with r~N 0,1 , more generally r~N 0,σ2  

 Equivalently: activation ℎ𝑖 is  perturbed to ℎ𝑖𝑟′  

with 𝑟′ = 1 + 𝑟, hence 𝑟′~𝑁 1,1 , more generally 𝑟′~𝑁 1,𝜎2  

  Hyperparameter 𝜎2, like 𝑝 in Bernoulli dropout 



What does the Gaussian drop out? 
 Formally, Gaussian dropout drops no neurons out,  

only perturbs the activations of hidden neurons 

 However, for ℎ𝑖𝑟′ with 𝑟′~𝑁 1,𝜎2 , where 𝜎2 = 1−𝑝
𝑝

: 

the expectation  and variance of 𝑟𝑟 are 𝔼𝑟′ = 1, Var 𝑟′ = 1−𝑝
𝑝

 

 And the same 𝔼𝑟′ and Var 𝑟′ has 𝑟′~ Bernoulli(𝑝) on 0, 1
𝑝

, 

which drops out the hidden neuron 𝑖  
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