Most common kinds of neural networks




Culloch & Pitts neuron

o 1940s

@ Binary-state elements with threshold s

k
y = @(Z WiX; — S)
i=1

: +
O(x) = 1 !fXE'RO
0 if xe R~

@ It can express any logical function

@ Not yet a proper artificial neural network - does not include adaptive
dynamics.



Hebbian rule

@ Any two neurons that are repeatedly active at the same time will tend
to become 'associated’.

@ Change of weight of the connection between two neurons is
proportional to the correlation of their activities.
Aw; =eyxj, i =1,....k

e

e input signals x = (xq, ..., Xk),
e output signal vy,
o learning rate ¢, possibly dependent on x (then denoted )



@ Rosenblatt - 1958 .
Yr = @(Z W,'X,')
i=1

@ Threshold from Culloch & Pitts neuron can be expressed with —wy
for xg =1

@ Activation
\. Fundamental unit of a Neural Network // function
() /
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Inputs



Perceptron learning

@ Learning is performed in epochs.
@ In each epoch:

o A vector (learning sample) x, , r € {1, ..., n} is introduced to the
perceptron and it reacts with output y,.
o Weigths w = (w4, ..., wk) are adjusted unless y, fulfills:

)1 if sample r is class of C,
Yr= 0 if sample r is not class of C,

o weight w; is changed by Aw(; ) = ex(0(r,s) — yr)x;

5(r.s) 1 |r,s=1,..,nr=s
r,s)=
0 |r,s=1,...,nr#s.

@ The solution exists if the classes are linearly separable.



Perceptron learning animation
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Perceptron learning animation
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Perceptron learning animation
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Perceptron learning animation
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Perceptron learning animation
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Perceptron learning convergence

Perceptron Convergence Theorem I.

Assume set of learning samples X C R¥ for which there exists system of
weights (w;)i=1,. « leading to their correct classification into two linearly

separable classes. Let X have the following properties:

k
O AMeRM)(VxeX) 0< Y. x> <M
i=1

k
Q (BeRN)(VxeX)(Vre{l,..,n)xeC= > wix; >0 & x¢
i=1

C = Zf'(:l Wk x; < —0




Perceptron learning convergence

Perceptron Convergence Theorem II.

Then the learning algorithm for which ey is given by the formula

1
P
>t Xi2

finds the system of weights w;" for any initial setting of weights w; and any
finite set of learning samples X in a finite number of iterations.

Ex =

v




Associative memory - motivation

@ Aristotle observed that human memory connects items that are:
o Similar
o Contrary
e Occur in close proximity (spatial)
e Occur in close succession (temporal)
@ AM idea comes from the Hebbian rule

o Cells that fire together wire together.



Associative memory

@ Layer of units defined by:

k
y = @(Z WiX; — S)
i=1

@ Information that should be stored is entered through pairs of binary
vectors (x,y)

@ x = (x1,...,xk) - input pattern, y = (y1, ..., yn) - output pattern

@ To obtain a satisfactory behaviour of the network, we require kK >> n.



Associative memory

Y1

Y>

Yn




Associative memory - training

@ Set all weights w; to 0
@ For each pair (x(j),yU)) from a training set of p training samples:
o change w;,to lifx; =y, =1

o After p pairs were introduced:

(Vi€ {1,....k})(Vre{1,....n})w;, :j:r’rllaxpxi(j)yr(j)



Associative memory - choosing a threshold

@ The threshold s is usually chosen s = [ — % where | is the number of
"1" in input patterns.

@ It can happen that the output y,,q = {1, ...,n} is 1 even if yc(,i) was 0
0 for x() at the input.

o Withs=1/-— % the network is intolerant to errors

e With lowering s, we achieve better tolerance, but a wrong y; =1
occurs more frequently.



Linear Associative memory

Absence of non-linear activation function

@ Units are simplified:

k
Yr= g Wi r X
i=1

y = Wx

Superposition principle
x) e R, yl) e R"

Real-valued inputs might be very useful (e.g. colours of a picture)



Auto Associative memory

B .
Original Degraded Reconstruction



Linear Associative memory - learning weights

o Optimizing weights W* to minimize loss function =

P
> A9, W) = min Zv(y ,wx)
j=1
o for the common loss function least squares this leads to quadratic
optimization

E(W*) = Wrgiznkm E(W), where

k
EW) =5 (9 = 3 wixd)?jw e RE
[ =1



Hopfield network

@ The output signal of each neuron is sent to the input of other neurons.

k

z(t) = 2@(2 wzi(t — 1)) —Lwy,=1

Jj=1

@ At each time t € N, exactly one neuron i € {1, ..., k} is changing its
activity value (asynchronous behavior).

-
e
';@::*
-




Hopfield network - steady state

@ Hopfield network can be studied in terms of interacting particles
known from statistical physics.

@ Energy function:

k

1
H(Z) = _E Z W(,-,j)ZjZ,"Z S {—1, 1}k
ji=1

e From the function H(z) we can see if the network is in steady state
(local minimum)

o Every Hopfield network will get into steady state after few iterations.



Hopfield network - weights settings

@ Common setting for independent training samples:

1~ (1) ()
W(ij) = ;in Yj
v=1

o Works well for p << k.



Hopfield network - summary

@ Important for theoretical study of recurrent Neural nets properties
@ Does not work well if input vectors are correlated

@ Vector z(0) is not invariant to simple transformations (shift, rotation,
size change)



Multilayer perceptron

@ Topology organized in layers
@ Neurons within a layer are not connected

@ Signals are transferred only from input neurons to output neurons
(feed-forward neural network)

Input Hidden Layer Output
Layer Layer




Multilayer perceptron - backpropagation algorithm |

o We are trying to find a system of weights w* € RIZ*HUHxO|
minimizing
P
E(w) = ~(yY, Fy(x1)))
j=1
@ The most commonly used lost function is the sum of squares (SSE),
typically multiplied by %:

p 10|

Z YY) = Fu (<)% = ZZ w(x))i)?

jlll



Multilayer perceptron - backpropagation algorithm II.

@ The minimum of the function E is found iteratively:
W(uv) = W) — CVAW(U,V), where

~ OE
- 8W(u,v)

AW(u,v) (W)

@ The direction of weight change is opposite to the direction of the
gradient of E (the steepest descent of E)



Multilayer perceptron - backpropagation algorithm IlI.

@ Assume the SSE loss function and any differentiable activation
function f (logistic, arctan).

e For links (u,v) e H x O:

OE P . N . .
w) =S =2 (" winnzd +0.)27

8W(u,v) = hert

2

e For links (u,v) € Z x H :

9z
3W(uv Z—ZZ }/o —z(J)f(ZW(h z,, —|—@)Wvo)8 Oz ( )

j=1 0€0O heH

== Z S0P =2 (D7 Wihoyzd +00)F (O wiinxD +0,)w(y 0px?

j=1 0€0O heH i€T



Multilayer perceptron - backpropagation algorithm IV.

@ This algorithm often leads to a local minimum instead of a global
minimum

@ The function E has [H|(|Z] + |O]) variables and it is very complicated
with many local minima.

@ To overcome this issue, there are many approaches that help us to get
out of local minimum by changing a (cyclic learning rate, learning
rate annealing, ...)



Autoencoder |I.

Autoencoder is is trained to attempt to copy its input to its output.

Hidden layer h that describes a code used to represent the input.

Consists of two parts:

e encoder h = f(x)
o decoder r = g(h)

@ The net aims to learn g(f(x)) = x as precisely as possible.



Autoencoder Il.

@ Autoencoder may be thought of as a special case of feedforward
network

o It is typically trained using minibatch back-propagation.

o Typically used in unsupervised way.
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Undercomplete autoencoder

We hope that training the autoencoder will result in h taking on
useful properties.

= Constrain h to have a smaller dimension than input x.

With nonlinear encoder and decoder functions it can learn a more
powerful nonlinear generalization of PCA.

If the encoder and decoder are allowed too much capacity, the
autoencoder can learn to perform the copying task without extracting
useful information

Similar situation can happen with overcomplete autoencoders in
which the hidden code has dimension greater than the input.

Solution is to use regularization



PCA vs autoencoder

PCA Autoencoder
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Figure: Dimensionality reduction of the MNIST dataset.

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. " Reducing the dimensionality
of data with neural networks.” science 313.5786 (2006): 504-507.



Autoencoder regularization

@ Use a loss function that encourages the model to have other
properties besides the ability to copy its input to its output.
@ Regularization techniques:
e sparsity of the representation,
o small derivatives of the representation,
e robustness to noise or to missing inputs.
@ A regularized autoencoder can be nonlinear and overcomplete but still
learn something useful about the data distribution.



Sparse autoencoder

@ An autoencoder whose training criterion involves a sparsity
penalty Q(h) on the code layer h, in addition to the reconstruction
error:

L(x, g(f(x))) +Q(h),
where g(h) is the decoder output and h = f(x) is the encoder output.

@ For example:

Q(h):)\Z\h,\,

where )\ is a hyperparameter.



Denoising autoencoder |.

@ Rather than adding a penalty Q to the cost function, change the
reconstruction error term of the cost function.
@ A denoising autoencoder (DAE) minimizes

L(x,g(f(x))),
where X is a copy of x that has been corrupted by some form of noise.
@ Denoising training forces f and g to implicitly learn the structure of
pdata(X)




Denoising autoencoder |II.

@ A corruption process C(X|x) represents a conditional distribution over
corrupted samples X given a training sample x.

@ The autoencoder learns a reconstruction distribution preconstruct (X|X)
estimated from training pairs (x, X) as follows:
© Sample a training example x from the training data.
@ Sample a corrupted version X from C(X|x)
© Use (x,X) as a training example for estimating the autoencoder
reconstruction distribution preconstruct (X|X) = Pdecoder(X|h) with h the
output of encoder f(X) and pyecoder defined by a decoder g(h).



Contractive autoencoder

@ Another strategy for regularizing an autoencoder is to use a penalty
Q, as in sparse autoencoders,

L(x, g(f(x))) + Q(h, x),

with © that penalizes derivatives:
Q(h,x) =AY IV.hill

@ This forces the model to learn a function that does not change much
when x changes slightly.



Convolutional neural network (CNN)

@ Specialized kind of neural network for processing data that has a
known grid-like topology.

e E.g. time-series data (1D grid of values), image data (2D grid of
pixels).

@ CNNs are simply neural networks that use convolution in place of
matrix multiplication in at least one of their layers.



Convolution 1.

@ One dimensional convolution:

[e o]

s(t) = (xxw)(t) = Y x(a)w(t — a),

—00

where x is input, w denotes a kernel and the output s is sometimes
also called feature map.

@ Convolution for two-dimensional input X requires a 2D kernel K:
S(i,j) = (X = K)(i,j) = ZZan (i—m,j—n)

or

S(i,j) = (K X)(i,)) ZZX/—mJ—n)K( n).



Convolution 1.

@ The commutative property of convolution arises because of kernel flip.

o The index into the input increases, but the index into the kernel
decreases.

@ In practice, cross-correlation is used instead, which is the same as
convolution but without flipping the kernel:

S(i,j) = (K * X)(i ZZX!—i-mj-i- n)K(m, n).

@ Many machine learning libraries implement cross-correlation but call it
convolution.



Cross-correlation

Input
Kernel
@ c d
| w
e q h
Y
i k 1
Output
_>
aw b+ bw + cx cw dz
ey fz fy + gz 9y hz
ew fz + fu + gz qw hz
iy Jjz Jjy o+ kz ky Iz




CNNs motivation |.

@ Sparse interactions
o Reduces the memory requirements.
e Improves statistical efficiency.
e Requires fewer operations.
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CNN receptive field




CNNs motivation II.

@ Parameter sharing
e The same parameter is used for more than one function in a model.
o Efficient in memory requirements.
@ Equivariance to translation
o If the input changes, the output changes in the same way.
o If we move the object in the input, its representation will move the
same amount in the output.
e Convolution is not naturally equivariant to some other transformations,
such as changes in the scale or rotation of an image. Other
mechanisms are necessary for handling these kinds of transformations.



Convolutional layer

@ Each convolutional layer usually consists of three stages:
e Convolution stage
o It performs several convolutions in parallel to produce aset of linear
activations.
o Detector stage
o Each linear activation is run through a nonlinear activation function
(e.g. rectified linear activation function).
e Pooling stage
@ Replaces the output of the net at a certain location with a summary
statistic of the nearby outputs (e.g. max pooling).
@ Makes the representation approximately invariant to small translations
of the input.
@ Improves the statistical efficiency and the computational efficiency and
reduces memory requirements.



Convolutional layer stages

| Next layer |

t

Convolutional Layer

Pooling stage

Detector stage:
Nonlinearity
e.g., rectified linear
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Convolution stage:

Affine transform
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Recurrent neural network (RNN)

o Processing sequence of values x(1), ..., x(NV)
@ RNNs can process sequences of variable length.

o A network trained on short sequence is able to predict long sequence
and vice versa.

@ Going from multilayer networks to RNNs — parameters sharing.



Unfolding computational graph I.

o Classical form of a dynamic system:

st = £(st71): 9)

|S()L-_>' g )‘

@ Simple recurrent neural network:

A8 = £(h(E1) X0 g)

/\
B Cr OOl
f\’
f Ullfﬂld



Unfolding computational graph II.

@ Typical RNN adds additional output layers.

o h(®) is a kind of lossy summary of the task relevant aspects of the
past sequence inputs up to time t

@ The topologies of RNNs differ in their ability to hold information from
the past.
@ The unfolding process has two major advantages:

o Regardless of the sequence length, the learned model always has the
same input size.

o It is possible to use the same activation function f with the same
parameters at every time step.



RNN examples I.

@ RNNs differ in the unfolded graph topology.
@ Examples:

o Networks that produce an output at each time step and have recurrent
connections between hidden units.




RNN examples II.

@ RNNs differ in the unfolded graph topology.

@ Examples:
o Networks that produce an output at each time step and have recurrent
connections only from the output at one time step to the hidden units
at the next time step.




RNN examples IlI.

@ RNNs differ in the unfolded graph topology.
@ Examples:

o Network with recurrent connections between hidden units that read an
entire sequence and then produce a signle output.




Recurrent neural networks - Forward propagation

a® =p 4+ Wht=1) 4 Ux(®),
h(t) =tanh(a(®)),
o) =c 4+ vh(®),

98 =softmax(o®)

@ b and c are biases

e U,V and W are weight matrices (input-to-hidden, hiden-to-output
and hidden to hidden).



Recurrent neural network - Loss

@ Total loss is sum of the losses over all time steps:

L({X(1)7 "’7X(T)}7 {y(l)? 7y(T)} = Z L(t))
t

= - Z Iog Pmodel (y(t)‘{x(1)7 --wX(t)})
t

@ Computing the gradient of this loss function is expensive .
e Forward pass through unrolled graph followed by backward propagation

pass.
e The runtime O(7) can not be reduced by parallelization.
e States computed in forward pass have to be stored. — memory cost is

o(r).



Recurrent neural network - Back Propagation

@ Algorithm: Back propagation trough time (BPTT)

@ The network is unrolled and traditional back propagation is applied.



The Challenge of Long-Term Dependencies

@ Simple recurrent neural network recurrence relation:
At — wh(t=1)

might be simplified to:
A — Witp0)

If W admits an eigendecomposition of the form:
W = QAQT,
with orthogonal Q, the recurrence may be simplified to:
K(t) — — QA! QTh

@ Eigenvalues with magnitude less than one decays to zero and
eigenvalues with magnitude greater than one explodes.



Long-term dependencies

@ The gradient of a long-term interaction has exponentially smaller
magnitude than the gradient of a short-term interaction.

o It might take a very long time to learn long-term
dependencies,because the signal about these dependencies will tend
to be hidden by the smallest fluctuations arising from short-term
dependencies

@ Learning long dependencies in traditional RNN via SGD is almost
impossible for sequences of only length 10 or 20.



Long-term dependencies - solutions

@ Design that operates at multiple time scales:

e The part of the model that operate at fine-grained time scales can
handle small details

e The part of the model that operate at coarse-grained time scales can
transfer information from the distant past.

@ Add skip connections trough time.

@ Have units with linear self-connections with the weight near one
(similar to running average). Such hidden units are called " Leaky
units”.



Long Short Term Memory (LSTM)

o Gated RNN.

@ Similar to leaky units but the connection weights may change at each
time step instead of using a manually chosen constant.

o Can accumulate information and forget old states.

@ Instead of manually deciding when to forget the state, the network
learns it by itself.



Vanilla RNN vs LSTM RNN
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LSTM cell in detail I.

o Cell state stores internal information that is used in output gate.

@ It is regulated by forget and input gates.

Cio : G




LSTM cell in detail II.

@ Forget gate is a sigmoid layer that decides what information will be
removed from the cell state.

f fi=0 (Wf-[htfl.,l‘t] + bf)

hiy

Ty



LSTM cell in detail Ill.

@ Input gate is a sigmoid layer that decides which values will be

updated.
@ Another tanh layer creates a vector of new candidate values that
could be added to the cell state.

ip =0 (Wi-lhe—1,2¢] + by)
Cy =tanh(We-[hy—1, 2] + be)




LSTM cell in detail IV.

@ The old cell state C;_y) is updated.

C
Ci_y - N
() »

)
ftT b C‘f: Cy = f % Ceo1 +iy % Cy




LSTM cell in detail V.

@ The output (hidden state) combines the tanh of the cell state and a
sigmoid layer called output gate.

hgT
G@nb Oy = U(Wo [ht—17l‘i] + bO)

o o
o] ht = o4 * tanh (Cy)

heo1 he

A
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