Basic concepts of artificial neural networks




Neural network inspiration
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Neural network inspiration

Biological Neural Network (BNN) ‘ Artificial Neural Network (ANN)
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Neural network as a graph

Let u, v € V are neurons represented as vertices of a graph.

Connection links

The tuples (u, v) or (v, u) are connection links represented as oriented
edges. C C V x V is the set of all edges.

(V,C) is a graph representing a neural net. \




Communication with environment

@ In our definition, the neurons can communicate with each other.

@ We need to communicate with an environment .

Input and output connection links
e C{w} x VUV X {w}

Input node

If ((ww, u) € €, then the node u receives signals from the environment.

Output node

If ((v,w) € ¢, then the node v transfers signals to the environment.




Topology

@ The triplet (V, C,¢) is called topology.



Input and output sets

Let us define:

@ input set of neuron v:

i(v) :{u:veV&(u,v)el} J

@ output set of neuron v:

o(v) : {u:ueV&(v,u) eC} |




Neuron types with respect to connections

@ Input nodes:

Z={v:veV&iv)=10} J

@ Output nodes:

O={v:veV&o(v)=0} J

@ Hidden nodes

H=V\(ZUO) |




Important neural net conditions

e The graph (V, C) is non-redundant.

(Vv e V)(3u € V){(u,v),(v,u)} NC #0 J

@ A neuron can transfer a signal to other neurons only if it received a
signal from one or more neurons or from the environment.

@ A neuron that received a signal has to transfer a signal to other
neurons or to the environment.



Neuron types with respect to connections
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Figure: Feed forward neural network organized in layers



Neuron activity

Time: TCR
T =T N(—o0,t)

We can define the activity of a neuron v:

z,:T >R

The activity can have range restrictions:

e z,: T — (0,1) - normalized activity
0 z,: T —(-1,1)

Network state: z(t) = (z,(t))vey



Global active dynamics

@ At each time t the network performs a mapping F; of input neuron
activities to output neuron activities.

@ We define the set of all feasible mappings F;

@ The system (F;)¢c7 is called active dynamics of the network
@ Requirements:

e The same domain for all elements
o A finite number of parameters

(3k € N)(Vt € T)(3D: c {T;” — REN3Er, : RF = (D, — RI°1})
.Ft = Wt(Rk)
o Restrictions on possible parameter values

(3k € N)(Vt € T)EW, c R)(3D; c {T; — RITIY)
(37 : Wr — {D; — RICN)F = 1 (Wh)



Local active dynamics

o System of functions (v{)¢c7,vev\z With the following properties:

@ For each t € T, each F; can be expressed as a composition of
mappings ¥} that transform the activities of the input neurons
i(v),v € V\ T into the activity of the neuron v at the time t.

@ For each time t and each v € V' \ Z, the function 9y is taken from a
set W of possible functions.

© For each time t and each v € V \ Z, all elements of W} have the same
domain.

(Vv € V\ I)(3k, € N)(Vt € T)(BW, c RKk)
3Dy {7y = RIMNGEry : WY — (D} — RY)VY = mf (W)



Local active dynamics II.

@ We can assign each parameter to a neuron v € V\ Z or to a
connection (u,v) € C.

An example neuron parameter: threshold 6, .

A usual connection parameter: connection weight w(, ).

The activity z, of a neuron v € V \ Z is often defined as:

2,() = F( Y wiuw(£)zu(t) + 6(2)),

u€i(v)

where f is a function called activation function.

For output neurons, an identity activation function is often used.



Time-independent global active dynamics

@ Time independent version is very common in practical applications

@ Global active dynamics:
(3D c RINF = {F: D - RI°l}
or with a parametrization:

(3k e N)3EW c RF)@ED c RFYEr: w — {D — RI°N)
F=n(W) (1)



Time-independent local active dynamics

o Local active dynamics:

(Vv € V\ I)(3k, € N)(3W, c R*)@3D, c RIMI)
(Fnry : W, - {D, - R}V, =m,(W,)

@ Time-independent neuron activity:

zZy = f( Z W(u,v)Zu + 9\,)

u€i(v)



Adaptive dynamics

@ We have shown that the neuron activity can be time-dependent.

@ Global and local dynamics can be time-dependent as well:

(Fr)rer . or (¥))reT

@ They depend on the following factors:
e Previous evolution of F;, (FT)TeTt‘\{t}

e Previous evolution and current value of neuron activities (z,|7; )vev
o Information from a supervisor:
@ correct (required) value that the network should output,
@ a non-negative value expressing dissimilarity of output and correct
value (loss function),
@ a non-negative value expressing supervisor's satisfaction.



e Mapping v : RIOI x RIOI Rar.
e Function 7y(d, a) is called error function or loss function, where d is
the correct value and a is output of the network.
@ Common loss functions:
o Sum of least squares: v(a,d) = 1! |a; — ;2
o Cross entropy: v(a,d) = — 319! (diloga; + (1 — d;)log(1 — a7))
o Logistic loss: y(a, d) = —da + log(e? + e77) = log =% e
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