***********************************************************************
*                                                                     *
* PSUM - A PRIMAL INTERIOR-POINT VARIABLE METRIC AND DISCRETE NEWTON  *
*        METHODS WITH DIRECT DECOMPOSITION TRUST-REGION SUBALGORITHM  *
*        FOR MINIMIZING LARGE-SCALE SUMS OF ABSOLUTE VALUES.          *
*                                                                     *
***********************************************************************


1. Introduction:
----------------

      The double-precision FORTRAN 77 basic subroutine PSUM is designed
to find a close approximation to a local minimum of a sum of absolute
values

      F(X) =  |FA_1(X)| + |FA_2(X)| + ... + |FA_NA(X)|.

Here X is a vector of NF variables and FA_I(X), 1 <= I <= NA, are
twice continuously differentiable functions. We assume that NF and
NA are large, but partial functions FA_I(X), 1 <= I <= NA, depend
on a small number of variables. This implies that the mapping
AF(X) = [FA_1(X), FA_2(X), ..., FA_NA(X)] has a sparse Jacobian
matrix, which will be denoted by AG(X) (it has NA rows and NF
columns). The sparsity pattern of the Jacobian matrix is stored in
the coordinate form if ISPAS=1 or in the standard compressed row
format if ISPAS=2 using arrays IAG and JAG. For example, if the
Jacobian matrix has the following pattern

                AG = | * * 0 * |
                     | * * * 0 |
                     | * 0 0 * |
                     | 0 * * 0 |
                     | * 0 * 0 |

(asterisks denote nonzero elements) then arrays IAG and JAG contain
elements

IAG(1)=1, IAG(2)=1, IAG(3)=1, IAG(4)=2,  IAG(5)=2,  IAG(6)=2,
IAG(7)=3, IAG(8)=3, IAG(9)=4, IAG(10)=4, IAG(11)=5, IAG(12)=5,
JAG(1)=1, JAG(2)=2, JAG(3)=4, JAG(4)=1,  JAG(5)=2,  JAG(6)=3,
JAG(7)=1, JAG(8)=4, JAG(9)=2, JAG(10)=3, JAG(11)=1, JAG(12)=3

if ISPAS=1 or

IAG(1)=1, IAG(2)=4, IAG(3)=7, IAG(4)=9,  IAG(5)=11, IAG(6)=13,
JAG(1)=1, JAG(2)=2, JAG(3)=4, JAG(4)=1,  JAG(5)=2,  JAG(6)=3,
JAG(7)=1, JAG(8)=4, JAG(9)=2, JAG(10)=3, JAG(11)=1, JAG(12)=3

if ISPAS=2. In the first case, nonzero elements can be sorted in an
arbitrary order (not only by rows as in the above example). Arrays
IAG and JAG have to be declared with lengths NA+MA and MA at least,
respectively, where MA is the number of nonzero elements. In the
second case, nonzero elements can be sorted only by rows. Components
of IAG contain total numbers of nonzero elements in all previous
rows increased by 1 and elements of JAG contain corresponding column
indices (note that IAG has NA+1 elements and the last element is
equal to MA+1). Arrays IAG and JAG have to be declared with length
NA+1 and MA at least, respectively.
      To simplify user's work, an additional easy to use subroutine
PSUMU is added. It calls the basic general subroutine PSUM. All
subroutines contain a description of formal parameters and extensive
comments. Furthermore, test program TSUMU is included, which contains
several test problems (see e.g. [2]). This test program serves as an
example for using the subroutine PSUMU, verifies its correctness and
demonstrates its efficiency.
      In this short guide, we describe all subroutines which can be
called from the user's program. A detailed description of the method is
given in [1]. In the description of formal parameters, we introduce a
type of the argument that specifies whether the argument must have a
value defined on entry to the subroutine (I), whether it is a value
which will be returned (O), or both (U), or whether it is an auxiliary
value (A). Besides formal parameters, we can use a COMMON /STAT/ block
containing statistical information. This block, used in each subroutine
has the following form:

      COMMON /STAT/ NRES,NDEC,NIN,NIT,NFV,NFG,NFH

The arguments have the following meaning:

 Argument  Type Significance
 ----------------------------------------------------------------------
  NRES      O   Positive INTEGER variable that indicates the number of
                restarts.
  NDEC      O   Positive INTEGER variable that indicates the number of
                matrix decompositions.
  NIN       O   Positive INTEGER variable that indicates the number of
                inner iterations (for solving linear systems).
  NIT       O   Positive INTEGER variable that indicates the number of
                iterations.
  NFV       O   Positive INTEGER variable that indicates the number of
                function evaluations.
  NFG       O   Positive INTEGER variable that indicates the number of
                gradient evaluations.
  NFH       O   Positive INTEGER variable that indicates the number of
                Hessian evaluations.


2. Subroutine PSUMU:
--------------------

The calling sequence is

      CALL PSUMU(NF,NA,MA,X,AF,IAG,JAG,IPAR,RPAR,F,GMAX,ISPAS,IPRNT,ITERM)

The arguments have the following meaning.

 Argument  Type Significance
 ----------------------------------------------------------------------
  NF        I   Positive INTEGER variable that specifies the number of
                variables of the sum of absolute values.
  NA        I   Positive INTEGER variable that specifies the number of
                partial functions.
  MA        I   Number of nonzero elements in the Jacobian matrix. This
                parameter is used as input only if ISPAS=1 (it defines
                dimensions of arrays IAG and JAG in this case).
  X(NF)     U   On input, DOUBLE PRECISION vector with the initial
                estimate to the solution. On output, the approximation
                to the minimum.
  AF(NA)    O   DOUBLE PRECISION vector which contains values of partial
                functions.
  IAG(NA+1) I   INTEGER array which contains pointers of the first
                elements in rows of the Jacobian matrix.
  JAG(MA)   I   INTEGER array which contains column indices of the
                nonzero elements.
  IPAR(7)   U   INTEGER parameters:
                  IPAR(1)=MIT,  IPAR(2)=MFV,  IPAR(3)=MFG,
                  IPAR(4)=IEST, IPAR(5)=MED,  IPAR(6)-unused,
                  IPAR(7)=IFIL.
                Parameters MIT, MFV, MFG, IEST, MED are described in
                Section 3 together with other parameters of the subroutine
                PSUM. Parameter IFIL specifies a relative size of the
                space reserved for fill-in. The choice IFIL=0 causes that
                the default value IFIL=1 will be taken.
  RPAR(9)   U   DOUBLE PRECISION parameters:
                  RPAR(1)=XMAX,  RPAR(2)=TOLX,    RPAR(3)=TOLF,
                  RPAR(4)=TOLB,  RPAR(5)=TOLG,    RPAR(6)=FMIN,
                  RPAR(7)=XDEL,  RPAR(8)-unused,  RPAR(9)=ETA5.
                Parameters XMAX, TOLX, TOLF, TOLB, TOLG, FMIN, XDEL,
                ETA5 are described in Section 3 together with other
                parameters of the subroutine PSUM.
  F         O   DOUBLE PRECISION value of the objective function at the
                solution X.
  GMAX      O   DOUBLE PRECISION maximum absolute value of a partial
                derivative of the objective function.
  ISPAS     I   INTEGER variable that specifies sparse structure of the
                Jacobian matrix:
                  ISPAS= 1 - the coordinate form is used,
                  ISPAS= 2 - the standard row compresed format is used.
  IPRNT     I   INTEGER variable that specifies PRINT:
                  IPRNT= 0 - print is suppressed,
                  IPRNT= 1 - basic print of final results,
                  IPRNT=-1 - extended print of final results,
                  IPRNT= 2 - basic print of intermediate and final
                             results,
                  IPRNT=-2 - extended print of intermediate and final
                             results.
  ITERM     O   INTEGER variable that indicates the cause of termination:
                  ITERM= 1 - if |X - XO| was less than or equal to TOLX
                             in two subsequent iterations,
                  ITERM= 2 - if |F - FO| was less than or equal to TOLF
                             in two subsequent iterations,
                  ITERM= 3 - if F is less than or equal to TOLB,
                  ITERM= 4 - if GMAX is less than or equal to TOLG,
                  ITERM= 6 - if termination criterion was not satisfied,
                             but the solution is probably acceptable,
                  ITERM=11 - if NIT exceeded MIT,
                  ITERM=12 - if NFV exceeded MFV,
                  ITERM=13 - if NFG exceeded MFG,
                  ITERM< 0 - if the method failed. Values ITERM<=-40
                             detect a lack of space. In this case,
                             parameter IPAR(7)=IFIL has to be increased
                             (IFIL=2, IFIL=3, etc.).

      The subroutine PSUMU requires the user supplied subroutines FUN and
DFUN that define partial functions and their gradients and have the form

      SUBROUTINE  FUN(NF,KA,X,FA)
      SUBROUTINE DFUN(NF,KA,X,GA)

The arguments of the user supplied subroutines have the following
meaning.

 Argument  Type Significance
 ----------------------------------------------------------------------
  NF        I   Positive INTEGER variable that specifies the number of
                variables of the objective function.
  KA        I   INTEGER index of the partial function.
  X(NF)     I   DOUBLE PRECISION an estimate to the solution.
  FA        O   DOUBLE PRECISION value of the KA-th partial function at
                the point X.
  GA(NF)    O   DOUBLE PRECISION gradient of the KA-th partial function
                at the point X. Note that only nonzero elements of this
                gradient have to be assigned.


3. Subroutine PSUM:
-------------------

      This general subroutine is called from all subroutines described
in Section 2. The calling sequence is

      CALL PSUM(NF,NA,MMAX,X,IX,AF,AFO,AG,AGO,GA,AH,AS,AZ,G,H,IH,JH,IA,
     & IAG,JAG,S,XO,GO,GS,COL,PSL,PERM,INVP,WN11,WN12,WN13,WN14,XMAX,
     & TOLX,TOLF,TOLB,TOLG,FMIN,XDEL,ETA5,GMAX,F,MIT,MFV,MFG,IEST,MED,
     & IPRNT,ITERM)

The arguments NF, NA, X, AF, IAG, JAG, GMAX, F, IPRNT, ITERM have the
same meaning as in Section 2. Other arguments have the following meaning:

 Argument  Type Significance
 ----------------------------------------------------------------------
  MMAX       I   INTEGER size of array H.
  IX(NF)     A   INTEGER auxiliary array.
  AFO(NA)    A   DOUBLE PRECISION auxiliary array.
  AG(MA)     A   DOUBLE PRECISION nonzero elements of the Jacobian
                 matrix
  AGO(MA)    A   DOUBLE PRECISION difference between the current and the
                 old Jacobian matrices. This array is used only if MED=1.
  GA(NF)     A   DOUBLE PRECISION gradient of the partial function.
  AH(MH)     A   DOUBLE PRECISION approximation of the partitioned
                 Hessian matrix. This array is used only if MED=1.
  AS(NA)     A   DOUBLE PRECISION vector of slack variables.
  AZ(NA)     A   DOUBLE PRECISION vector of Lagrange multipliers.
  G(NF)      A   DOUBLE PRECISION gradient of the objective function.
  H(MMAX)    A   DOUBLE PRECISION nonzero elements of the approximation
                 of the Hessian matrix and nonzero elements of the
                 Choleski factor.
  IH(NF+1)   I   INTEGER array which contains pointers of the diagonal
                 elements in the upper part of the Hessian matrix.
  JH(MMAX)   I   INTEGER array which contains column indices of the
                 nonzero elements and additional working space for the
                 Choleski factor.
  IA(NA)     A   INTEGER auxiliary array.
  S(NF)      A   DOUBLE PRECISION direction vector.
  XO(NF)     A   DOUBLE PRECISION array which contains increments of
                 variables.
  GO(NF)     A   DOUBLE PRECISION array which contains increments of
                 gradients.
  GS(NF)     A   DOUBLE PRECISION auxiliary array.
  COL(NF)    A   INTEGER auxiliary array.
  PSL(NF+1)  A   INTEGER pointer vector in the compact form of the
                 Choleski factor.
  PERM(NF)   A   INTEGER permutation vector.
  INVP(NF)   A   INTEGER inverse permutation vector.
  WN11(NF+1) A   INTEGER auxiliary array.
  WN12(NF+1) A   INTEGER auxiliary array.
  WN13(NF+1) A   INTEGER auxiliary array.
  WN14(NF+1) A   INTEGER auxiliary array.
  XMAX       U   DOUBLE PRECISION maximum stepsize; the choice XMAX=0
                 causes that the default value 1.0D+16 will be taken.
  TOLX       U   DOUBLE PRECISION tolerance for the change of the
                 coordinate vector X; the choice TOLX=0 causes that the
                 default value TOLX=1.0D-16 will be taken.
  TOLF       U   DOUBLE PRECISION tolerance for the change of function
                 values; the choice TOLF=0 causes that the default
                 value TOLF=1.0D-12 will be taken.
  TOLB       U   DOUBLE PRECISION minimum acceptable function value;
                 the choice TOLB=0 causes that the default value
                 TOLB=FMIN+1.0D-12 will be taken.
  TOLG       U   DOUBLE PRECISION tolerance for the Lagrangian function
                 gradient; the choice TOLG=0 causes that the default
                 value TOLG=1.0D-6 will be taken.
  FMIN       U   DOUBLE PRECISION lower bound for the minimum function
                 value. It is significant only if IEST=1. If IEST=0,
                 the default value FMIN=-1.0D+60 will be taken.
  XDEL       U   DOUBLE PRECISION trust region stepsize; the choice
                 XDEL=0 causes that a suitable default value is
                 computed.
  ETA5       U   DOUBLE PRECISION minimum permitted value of the barrier
                 parameter; the choice ETA5=0 causes that the default
                 value ETA5=1.0D-8 will be taken.
  MIT        U   INTEGER variable that specifies the maximum number of
                 iterations; the choice MIT=0 causes that the default
                 value 5000 will be taken.
  MFV        U   INTEGER variable that specifies the maximum number of
                 function evaluations; the choice MFV=0 causes that
                 the default value 5000 will be taken.
  MFG        U   INTEGER variable that specifies the maximum number of
                 gradient evaluations; the choice MFG=0 causes that
                 the default value 10000 will be taken.
  IEST       I   INTEGER estimation of the minimum functiom value for
                 the line search:
                   IEST=0 - estimation is not used,
                   IEST=1 - lower bound FMIN is used as an estimation
                            for the minimum function value.
  MED        U   INTEGER variable that specifies the method used.
                   MED=1 - partitioned variable metric method,
                   MED=2 - safeguarded discrete Newton method.
                 The choice MED=0 causes that the default value 1 will
                 be taken.

The choice of parameter XMAX can be sensitive in many cases. First, the
objective function can be evaluated only in a relatively small region
(if it contains exponentials) so that the maximum stepsize is necessary.
Secondly, the problem can be very ill-conditioned far from the solution
point so that large steps can be unsuitable. Finally, if the problem has
more local solutions, a suitably chosen maximum stepsize can lead to
obtaining a better local solution. A suitable choice of parameter ETA5
(larger than 1.0d-8) can sometimes improve the efficiency of the method.
      The subroutine PSUM requires the user supplied subroutines FUN
and DFUN which are described in Section 2.

4. Verification of the subroutines:
-----------------------------------

      Subroutine PSUMU can be verified and tested using the program
TSUMU. This program calls the subroutines TIUB15 (initiation), TAFU15
(function evaluation) and TAGU15 (gradient evaluation) containing
22 unconstrained test problems with at most 200 variables [2]. The
results obtained by the program TSUMU on a PC computer with Microsoft
Power Station Fortran compiler have the following form.

NIT=  337  NFV=  355  NFG=  338  F= 0.193178806E-13  G= 0.254E-05  ITERM=  3
NIT=  127  NFV=  151  NFG=  128  F= 0.120336380E-12  G= 0.424E-05  ITERM=  3
NIT=   25  NFV=   28  NFG=   26  F= 0.383710546E-09  G= 0.331E-06  ITERM=  4
NIT=   67  NFV=   77  NFG=   68  F=  126.863549      G= 0.358E-02  ITERM=  2
NIT=    6  NFV=    7  NFG=    7  F= 0.494049246E-14  G= 0.666E-07  ITERM=  3
NIT=   13  NFV=   17  NFG=   14  F= 0.663150090E-13  G= 0.141E-06  ITERM=  3
NIT=   73  NFV=  108  NFG=   74  F=  2391.16999      G= 0.209E+00  ITERM=  2
NIT=  241  NFV=  243  NFG=  242  F= 0.383133726E-07  G= 0.708E-06  ITERM=  4
NIT=  209  NFV=  251  NFG=  209  F=  552.682636      G= 0.267E+01  ITERM= -6
NIT=   84  NFV=  106  NFG=   85  F=  131.888475      G= 0.242E-05  ITERM=  2
NIT=  732  NFV=  751  NFG=  733  F= 0.799693645E-12  G= 0.581E-05  ITERM=  3
NIT=  203  NFV=  237  NFG=  204  F=  612.723020      G= 0.601E-04  ITERM=  2
NIT=   90  NFV=  111  NFG=   91  F=  2940.50941      G= 0.245E-03  ITERM=  2
NIT=   84  NFV=  107  NFG=   85  F=  112.314955      G= 0.480E-05  ITERM=  2
NIT=   39  NFV=   64  NFG=   40  F=  36.0935678      G= 0.163E-01  ITERM=  2
NIT=   67  NFV=  108  NFG=   67  F=  13.2000005      G= 0.139E-03  ITERM=  6
NIT=  337  NFV=  344  NFG=  338  F= 0.100472795E-13  G= 0.167E-06  ITERM=  3
NIT= 3637  NFV= 3794  NFG= 3638  F= 0.199840144E-14  G= 0.419E-09  ITERM=  3
NIT=   23  NFV=   24  NFG=   24  F= 0.938360500E-12  G= 0.217E-04  ITERM=  3
NIT=   22  NFV=   44  NFG=   22  F= 0.121058719E-11  G= 0.398E-05  ITERM=  6
NIT=   65  NFV=   90  NFG=   66  F=  262.921649      G= 0.108E-05  ITERM=  2
NIT=  608  NFV=  627  NFG=  609  F=  593.367735      G= 0.525E-02  ITERM=  2
NITER = 7089    NFVAL = 7644    NSUCC =   21
TIME= 0:00:02.80

The rows corresponding to individual test problems contain the number of
iterations NIT, the number of function evaluations NFV, the number of
gradient evaluations NFG, the final value of the objective function F,
the norm of gradient G and the cause of termination ITERM.

References:
-----------

[1] Luksan L., Matonoha C., Vlcek J.: LSA: Algorithms for large-scale
    unconstrained and box constrained optimization. Research Report
    V-896, Institute of Computer Science, Academy of Sciences of the
    Czech Republic, Prague, Czech Republic, 2004.

[2] Luksan L., Vlcek J.: Sparse and partially separable test problems
    for unconstrained and equality constrained optimization. Research
    Report V-767, Institute of Computer Science, Academy of Sciences
    of the Czech Republic, Prague, Czech Republic, 1998.