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1 Introduction

Embedding problems play central role in Graph Theory. Aetgrof graph embeddings (sub-
graphs, minors, subdivisions, immersions, etc) have baatiesl extensively. A graph (finite,
undirected, loopless, simple; here as well as in the resisothtesisH embedsn a graphG if there
exists an injective mapping: V(H) — V(G) which preserves edges Hf, i. e., p(X)p(y) € E(G)
for every edgexy € E(H). As a synonym we say th& contains H(as a subgraphand write
H C G. Let.sZ be a family of graphs. The grafhis .7Z-universalif it contains every graph from
. This fact is denoted by? C G.

In this thesis we investigate embeddings of trees. Thistoas received considerable attention
during the last 40 years. The clagg consists of all trees of ordé&r One can ask which properties
force a graptH to be Zi-universal. Loebl, Komlés and Sés considered in [9] thaliwe degree
of H.

Conjecture 1.1(LKS Conjecture) Let G be a graph of order n. If at leasy2 of the vertices of G
have degree at least k, thef, 1 C G.

The main result of this thesis is to prove the LKS Conjectoré'k linear inn”. For the exact
statement see our main result, Theorem 1.4.

The bound ork of the minimal degree of high degree vertices cannot be dserk Indeed,
if G is a graph in which half of its vertices have degree exdctlyl, then it does not contain a
starKy x. On the other hand, it is suspected that the number of vertitdegree at leagtcan be
lowered a little bit. This was first raised by Zhao [22]. Dission on the lower bound is given in
Section 9.

There have been several partial results concerning the Lét§eCture. In [4], Bazgan Li and
Wozniak proved the conjecture for paths. Piguet and Stefhgroved that the LKS Conjecture is
true when restricted to the class of trees of diameter at Bastproving upon a result of Barr and
Johansson [3] and Sun [20]. There are several results gravenLKS Conjecture under additional
assumptions on the hosting graph.

Soffer [19] showed that the conjecture is true if the hostjrapph has girth at least 7, Dobson [7]
proved the conjecture when the complement of the hostinghgiiaes not contaili, 3.

A special case of the LKS Conjecture is wher- n/2. This is often referred to in the liter-
ature as ther(/2-n/2-n/2) Conjecture, or the Loebl Conjecture. Zhao [22] proved(th@-n/2-
n/2) Conjecture for large graphs.

Theorem 1.2. There exists a numbepsuch that if a graph G of order i+ ng has at least 2 of
the vertices of degrees at least) thenJ]n/241 C G.

An approximate version of the LKS Conjecture was proven lgyi€i and Stein [16].



Theorem 1.3.For any g> Othere exists a numbegmand a function £ N — R, f € o(1) such that
for any n> ng and k> gn the following holds. If G is a graph of order n with at leg$t2+ f (n))n
vertices of degree at leaét + f(n))k, then,1 C G.

In this thesis we strengthen Theorem 1.3 by removingtiié¢ term.

Theorem 1.4(Main Theorem) For any g> O there exists a numbein= np(q) such that for any
n > np and k> gn the following holds: if G is a graph of order n with at least2wertices of
degree at least k, thefig, 1 C G.

In fact, the proof of Theorem 1.4 will yield that the requiremt on the number of vertices of
large degree can be relaxed in the case wiydais far from being an integer.

Theorem 1.5.For any ¢ > g1 > O such that the intervdll/gz, 1/q;1] does not contain an integer,
there exist numbers = £(qi,02) > 0 and rp such that for any n> np and ke (qin,gzn) the
following holds: if G is a graph of order n with at leagt/2 — €)n vertices of degree at least Kk,
then %1 C G.

We explicitly prove only Theorem 1.4 in the thesis. In Settibwe sketch how the proof
method can be revised to give Theorem 1.5. However, detargithe correct value of(qgz, )
remains open. Note also that Theorem 1.4 has slightly weedszrmptions o than Theorem 1.2
when reduced to the cake= |[n/2|]—whenn is odd, the number of large vertices in Theorem 1.4
is smaller by one compared to Theorem 1.2.

Recently, we learned that Oliver Cooley announced an inudgr® proof of Theorem 1.4.

The parameter which is considered in the LKS conjecturegisitbdian degree. If we replace it
by the average degree, we obtain a famous conjecture osEmbSos, which dates back to 1963.

Conjecture 1.6 (ES Conjecture)Let G be a graph of order n with more thdk — 2)n/2 edges.
Then C G.

If true, the conjecture is sharp. After several partial lsson the problem, a breakthrough
was achieved by Ajtai, Komlos, Simonovits and Szemer&giwho announced a proof of the
Erd6s-Sos Conjecture for large

Theorem 1.7. There exists a numbep kuch that for any k> kg the following holds: if a graph G
of order n has more thatk—2)n/2 edges, theri C G.

The proof of Theorem 1.7 by Ajtai et al. has two parts. One patties the dense version of
the problem; the statement is analogous to Theorem 1.4. ffiee part deals with the case when
k/n < qo for some fixed valugp. We have indications that the same approach might work #r th
LKS Conjecture. Thus our Theorem 1.4 may be one of two esdengredients in a proof of the
LKS Conjecture.



The current work utilizes techniques of Zhao [22] and of Rigand Stein [16]. We postpone
a detailed discussion of similarities between our appr@achtheirs, and of our own contribution
until Section 2.

1.1 Ramsey number of a tree

We show in this section the connection between the LKS Ctunje@nd the Ramsey number of
trees. For two graphs andH we write R(F,H) for the Ramsey numbeaf the graphd$-, H. This

is the smallest numben such that in any red/blue edge-coloringk, there is a red copy df

or a blue copy oH. For two families of graphs? and.”Z” the Ramsey numbd®(.%, .77) is the
smallest numbem such that in any red/blue edge-coloringky, the graph induced by the red
edges isZ -universal, or the graph induced by the blue edge#isiniversal. We shall show how
Theorem 1.4 implies an almost tight upper bound (up to antiddérror of one) on the Ramsey
number of trees, partially answering a question of Erdéseé, Loebl and Sés [9].

For a fixed numbep € (0,1/2) consider two numberé and/, such that/1/¢> € (p,1/p)
and/y, ¢ > ng, whereng = ng(p/2) from Theorem 1.4. Consider any red/blue edge-coloring of
the graphK,, ,,,. We say that a vertex € V (K, ,,) is red if it incident to at least; red edges.
Similarly, v € V(Ky,1r,) is blue if it incident to at least, blue edges. Each vertex &, , is
either red or blue. Thus we have at least half of the verti€&s,a,, that are red, or at least half of
the vertices that are blue. Theorem 1.4 can be applied torighgnduced by the majority color.
We conclude thalR(:7, 11, Z,+1) < {1+ (2.

For the lower bound, first consider the case when at least bAeamd/;, is odd. It is a well-
known fact that there exists a red/blue edge-coloring0f,,_1 such that the red degree of every
vertex is/; — 1. Neither a red copy df; ,, nor a blue copy oK, ,, is contained irK;, ¢, _1 with
this coloring. ThusR(:%,+1, Z,+1) > ¢1+¢2— 1. A construction in a similar spirit shows that
R(T,41, Ti,41) > l1+ 42— 2, if {1 andl; are even. We have

R(T,+1, Ji,41) =1+ L2, if {1is odd or/z is odd, and (1.2)
U+l — 1< R(Tp 41, Ti,41) < U1+, otherwise. 1.2)

Let us note that an easy consequence of the ES Conjecturd Wweudhat the lower bound in (1.2)
is attained.

Ramsey numbers of several other classes of trees have lvestigated; the reader is referred
to a survey of Burr [5] and to newer results in [8, 10, 12].

2 Outline of the proof

Theorem 1.4 is proved by iterating the following procedursteps = 1,2,3,.... At each step,
we find a seQ C V(G) \ Uj<;V; such that at least about half of the verticeQrare large (i.e.,
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of degree at leat). Using the Regularity Lemma, we try to embed a given fee %, 1 in Q.
If we do not succeed, then we can extract fr@na subseV; . ; C Q of size approximatel¥, that
is nearly isolated from the rest of the of the graph, and foichvlat least half of the vertices are
large. If we cannot embel € i1 in any of the iterating steps (i. &/,(G) \ U; Vi = 0), we obtain
a particular configuration of the gra@) called theExtremal Configurationin this case, we prove
thatT C G, without the use of the Regularity Lemma.

In the remainder of the overview, we explain in more detad pnoof of the part using the
Regularity Lemma, as well as the part wh@ris in the Extremal configuration.

The Regularity Lemma Part. Before applying the Regularity Lemma itself, we first resolv
two simple cases. The first one is wh@ns close to a bipartite graph with one of its color-classes
being the large vertices (see Proposition 4.2). The secasé (see Proposition 4.3) is when the
treeT is locally unbalanced (see definition on page 10). In botesas easy argument shows that
TCG.

We apply the Regularity Lemma to the grapland obtain a cluster grafgh. We apply a Tutte-
type proposition (Proposition 6.4) to the subgraph indumedlusters inQ, which guarantees the
existence of one of two certain matching structure&irBoth expose a matchirg in the cluster
graph, and two cluster& andB that are adjacent i@ and that have high average degree to the
matchingM. These structures are called Case | and Case Il. The prnaffthe embedding is to
use the edges &l to embed parts of the tree in them, and use the clustarslB to connect these
parts.

The Extremal Case Configuration. In the Extremal case we are given disjoint 9éts ..,V C
V(G) such that each of them has size approximalelgontains at least nearky/2 large vertices,
and each sefj is almost isolated from the rest of the graph.

If the setsvy,...,Vi exhaust the whole grapb, we are able to show C G. We find a seV, so
that most ofT can be mapped t¢,. We may need to use the few edges that interconnect distinct
setsV; to distribute parts of the trek outsideV;,. The way of finding these “bridges” depends on
the structure of the treg€.

If Vi,...,V; do not exhausG, the method remains the same. However, it has two possible
outputs. Either we show that C G or we are able to exhibit a s& C V \ U;;V; allowing the
next step of the iteration.

Strengthening of Theorem 1.4—Theorem 1.5. The only place where we use the exact bound
on the number of large vertices is the last step of the Extreas®. That is, the whole vertex set
V(G) is decomposed into se¥§, each of them almost exactly of sikeBut such a decomposition
cannot exist wheR € (qin,gzn), [1/d2,1/01] NN = 0. This suffices to prove Theorem 1.5.



Relation to previous work. The proof of Theorem 1.4 is inspired by techniques used taero
Theorem 1.3 ([16]) and Theorem 1.2 ([22]). Both these pabeilsl on a seminal paper of Ajtai,
Komlos and Szemerédi [2] where an approximate versioh@fri/2 —n/2 —n/2)-Conjecture is
proven. In [2] the basic strategy is outlined.

In [22] the aproach of Ajtai, Komlos and Szemerédi is comeloi with the Stability method
of Simonovits [18]. One extremal case is identified, and sdwithout the use of the Regularity
Lemma.

The main contribution of [16] is a more general Tutte-typepgasition, which is applicable
even wherk/n < 1/2.

In this thesis we further strengthen the Tutte-type prdposirom [16]. The Extremal case is
an extensive generalization of the Extremal case from [22].

Algorithmic questions. Let us remark that our proof of Theorem 1.4 yields a polyndmmae
algorithm for finding an embedding of any trdec J; in G, given thatk and G satisfy the
conditions of Theorem 1.4. Indeed, it is easily checked #dfiagxistential results we use (Regu-
larity Lemma, and various matching theorems) are known te lpelynomial-time constructive
algorithmic counterparts. We omit details.

3 Notation and preliminaries

Forne N we write[n] = {1,2,...,n}. The symbok- means the symmetric difference of two sets.
The function ci R — Z is theclosest integer functiodefined by cix) = |x] if x— |x| < 0.5, and
ci(x) = [x] otherwise.

We use standard graph-theory terminology and notatioipvwiatg Diestel’s book [6]. We
define here only those symbols which are not used there. Te of a grapiH and the number
of its edges are denoted byH) ande(H ), respectively. We writé[X, Y] for the bipartite graph
induced by the disjoint vertex se¥sandY, andE(X,Y) for the set of the edges with one end-
vertex inX and the other ify. We writee(X,Y) = |E(X,Y)|. For a vertexx and a vertex seX we
define deg@x, X) = degy (x) = e({x},X). For two setsX,Y C V(H) we define theaverage degree
from X toY by degX,Y) =e(X,Y)/|X|. We write d e@X) as a short for d €4,V (H)). We define
two variants of the minimum degree Hf. In the following,X andY are arbitrary vertex sets.

o(X) = rvrél)?deg(v) , and
o0(X,Y) = rvrél)?deg(v,Y) :
N(x) is the set of neighbors of the vert&xNx (x) is the neighborhood of restricted to a seX,

i.e.,, Nx(X) = N(x) " X, and N X) is the set of all vertices iRl which are adjacent to at least one
vertex fromX, i.e., N(X) = Uyex N(V).



Let P =wviv»...v, be a path. For arbitrary sets of verticég Xo,..., X, we say that is a
Xy Xg > ... Xe-pathif v; € X; for everyi € [¢]. An edgexyis anX <Y edge ifx € X and
y €'Y and a matching/l is aX < Y matching if its every edge is a1~ Y edge.

Theweighted graphis a pair(H, w), whereH is a graph andv : E(H) — (0, +) is its weight
function. For two setX,Y C V(H) the weight of the edges crossing from X tasrdefined by
E(X,Y) = Yuyeex,y) @(Xy). Denote by d égthe weighted degree, d&g) = 3 ucv (H),vuce(H) W(VU).
For a vertex and a vertex seX we define d éYv, X) analogously to deg, X).

We omit rounding symbols when this does not effect the ctmess of calculations.

3.1 Trees

Let F be a rooted tree with a rootc V(F). We define a partial ordex onV(F) by saying that
a =< b if and only if the vertexb lies on the path connectirgwith r. If a < b we say that is
below b A vertexais achild of bif a < bandabe E(F). And, in the other way, the vertdxis a
parent of a Ch(b) denotes the set of children bf The parent of a vertexis denoted Pda) (note
that Pafa) is undefined ifa =r). We extend the definitions of Cf) and Paf-) to an arbitrary
setU CV(F) by PafU) = |J,ey Paru) and CHU ) = J,cy Ch(u). We say that a treB; C F is
inducedby a vertexx e V(F) if V(F1) = {ve V(F) : v=<x} and we writeF; = F(r, | X), or if
the root is obvious from the contek{ = F (| x). A subtreeR of F is afull-subtree with the root
y € V(F), if there exists a se€ C Ch(y), C # 0 such thatp = F[{y} UUpec{V : V= Db}]. We
never refer toy as to a leaf of the full subtrefg), and of the tred~; induced byy, even though it
may be a leaf ofy and ofF; in the usual sense. A trde C F is anend subtreef there exists a
vertexw € V(F) such that~ = F(] w). If a subtree~ C F is not an end subtree, then we call it
aninterior subtree

Fact 3.1. Let (F,r) be a rooted tree of order m withleaves.
1. For any integer i, 0 < mg < m, there exists a full-subtreg bf F of orderrm € [my/2, m.

2. For any integerg, 0 < ¢o < ¢, there exists a full-subtregyfof F with 7 leaves, wherd ¢
[60/27 60]

Proof. 1. We shall move sequentially the candidajefor the root ofFp downwards (in=),
starting withrg = r. In the first step we have(F (] ro)) = m> mp/2. If v(F (| ¢)) < mp/2
for everyc € Ch(rp) then we can find a s€& C Ch(rp) of vertices such that the full-subtree
Fo=F[{ro} UUcec{V : v =< c}| has order in the intervainyg /2, mg]. Otherwise, there exists
a vertexc € Ch(rg) such thaw(F (| c)) > mp/2. We resety = ¢ and continue.

2. Thisis analogous.



Fact 3.1 is sometimes used without the root of the tree bgiwegied. Then, any internal
vertex of the tree can serve as a root.

For any tree- we write Fe and F, for the vertices of its two color classes wika being the
larger one. We define thgapof the treeF as gagF) = |Fe| — |Fo|. For a treeF, a partition of its
vertices into sett); andU; is calledsemiindependeritt |U;| < |Uz| andU; is an independent set.
Furthermore, théiscrepancyof (Uy,U>) is disqU1,U,) = |U2| — |U41| and the discrepancy &f is

disqF) = max{disqU1,U>) : (U1,U,) is semiindependeht
Clearly, gapF) < disq(F).

Fact 3.2. Let (Uy,U,) be a semiindependent partition of a tree FFYy > 1. Then Y contains at
least|Uy| — |U1| + 1 leaves.

Proof. We rootF at an arbitrary vertex € U;. LetUé be the set of internal vertices p. Since
each vertex ifJ; has at least one child id; \ {x} and these children are (for distinct vertices in
U,) distinct, we obtaifUs \ {x}| > |U;|. Hence the number of leaveslih is at leastU,| — |Uq| +
1. O

Lemma 3.3. Letr be a vertex of a tree T, and |@f;,U,) be any semiindependent partition of T.
Let.#” be a subset of the components of the forest{F}. Then

1 V()N Te| — V(#)NTo|| < disqT) +1.
2. V(A#)NUg| — [V (#)NUy| < disqT) +1.

Proof. We prove only Part 1, Part 2 being analogue. The statemehviews whenV () N Tg| —
V()N To| = 0. Suppose thaV (£ )NTa| — V() NTy| = £ > 0, wherea,b € {e,0},a#Dbis

a choice of color-classes. It is enough to exhibit a sempeddent partitioriUs,U,) of the treeT
with [Uz| — |Uq| > ||V () NTe| — [V (£) N To|| — 1. Partition the components of the for@st- {r }
that are not included i7" into two families.” and % so thate/ contains those components
K ¢ ¢ for which |V (K)NTa| > [V(K)NTp|, andZ contains those componerksZ . for which
IV(K)NTa| < |V (K)NTy|. Obviously, the partition below satisfies the requirements

Ur={r}u V() NTp) UV () NTp) UV (B)NTa)
Up = (V(#) NTa) U V() NTa) U(V(Z)NTh) .

O

Fact 3.4. Let F be a tree witlf leaves. Then F has at madst 2 vertices of degree at least three.



Proof. We partitionV (F) into the set of leave¥;, the sel, of vertices of degree two, and the set
V3 of vertices of degree at least three. The handshaking lerppieed toF yields that

2v(F)—2= zdegv) > V1| +2|Vo| +3|V3| = 2v(F) — £+ |V3] .
\
The statement readily follows. O

3.2 Greedy embeddings

Given a treeF and a graptH there are several situations when one can enfibedH greedily.
For example, if6(H) > v(F) — 1, then we embed the root &f in an arbitrary vertex oH and
extend the embedding levelwise. An analogous procedurksabH is bipartite, H = (Vi1,Vo; E),
ando(Vi, Vo) > |Fel,0(V2,V1) > |R|. The fact stated below generalizes the greedy procedure.

Fact 3.5. Let (U1,Uz) be a semiindependent partition of a tree F. If there existdggint sets of
vertices ¥ and \4 of a graph H such thamin{d(V1,V>),d(V1,V1),8(V2,V1)} > |U1| andd(Vy) >
v(F)—1,then FC H.

Proof. The statement is trivial whem(F) = 1. In the rest, assume thefF) > 1. The setJ,
denotes the leaves &f,. By Fact 3.2,|U;\ Ub| < |U;| — 1. We embed greedilf —U) in H,
mapping the vertices frotd; to V1 and the vertices fror; \ Ué toV,. We argue that the greedy
procedure works. If we have just embedded a veutexJ; then we can extend the embedding to
all vertices Nu) NU; sinced(V4, V1) > |U1|. The embedding can be extended to all vertices from
N(u) N (Uz\ Ub) sinced(Vq,Vz) > |U, \U)|. If we have just embedded a vertexc Uy \ U} then

we can extend the embedding to all vertices frofwNsinced(V,V;) > |U;|. The leaved)) are
embedded last, using high degrees of the vertic®s.in O

3.3 Matchings
Let us state a simple corollary of Hall’s Matching Theorem.

Proposition 3.6. Let K= (W, Wb; J) be a bipartite graph such that(K) > |Wy|/2and|Wj | < [Wa|.
Then K contains a matching covering W

3.4 A number-theoretic proposition

Proposition 3.7. Let | be a finite nonempty set, and lebaA > 0. Fori €|, let aj, 5 € (0,A].

Suppose that
a b

+ <
Yiel 0 YialBi
Then | can be partitioned into two setsdnd k so thaty ., ai > a—A, andy ¢, B > b.

1.
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Proof. The reader may find a straightforward proof in [16]. O

3.5 Specific notation

A graphH is said to have theKS-property(with parametek) if at least half of its vertices have
degrees at least i. e., we haveL"| > v(H)/2, whereL" = {ve V(H) : deg,(v) > k}.

When we refer tay, ng,n,k or G in the rest of the thesis, we always refer to the objects from
the statement of Theorem 1.4. The vertex séb® denoted by. We partitionV = LU S, where
L={veV :degv)>k}andS={veV : deqgv) < k}. We call vertices fronk large and vertices
from S small The hypothesis of Theorem 1.4 implies thiat> n/2. Finally T denotes a tree of
orderk+ 1 which we want to embed iG.

Statements like “there exists a numlyer 0 such that a property?(y) holds for any grapie”
should read as “giveq > 0, there exists a numbgr> 0 such that a property?(y) holds for any
graphG of order at leashp(q)”.

4  Proof of the Main Theorem (Theorem 1.4)

We first need to state some auxiliary propositions. For tis¢ firoposition, we need to introduce
the notion of( 3, 0)-Extremality. For two numberg, o € (0,1), a decomposition of the vertex set
V =ViUVLU...UV, UV is (B, 0)-Extremalif

e A>1.

e (1-B)k< V| < (1+4B)kforeachi € [A].

e V=0or|V|>ok.

e eV,,V\Vj) < BK? for eachi € [A], ande(V,V \V) < Bk?.
e (1/2—B)k< |ViNL|foreachi € [A].

e VNL|<(1/2—0)V|.

Proposition 4.1. There exists a constant ¢- 0 such that the following holds. If G admit$8, o)-
Extremal partition,...,V,,V for 8,0 < cg, B < 0, thendy,1 C G, or there exists a set QV
such that

e |Q>k/2.
e [QNLI>1Ql/2.
e e(QV\Q) < ak?.



Proposition 4.1 will be proved in Section 8. The next proposiis referred to as the Special
Case.

Propo_sition 4.2. For all g,cg > 0, there exists a numbegc> 0, cs < ¢cg such that if there exists
a setV C V with the following properties

o |V|> yCsk,
e e(V,V\V) < cgk?,
e (1/2—cg)V| < VNL|,and
e e(G[VNL]) < cgk?,
then %1 C G.

Proof of Proposition 4.2 is given in Section 5. The followipigpposition is will allow us to
reduce trees which are locally unbalanced from furtherid@nations. Let us introduce the notion
(un)balanced forest now.

For a numbec € (0,1/2) we say that a familyg” of vertex disjoint subtrees of a trdec %1
is c-balancedf the forest formed by the tre¢s= ¢ with |t5| > c- v(t) is of order at leastk; i. e.,

v(t) > ck.

tee
|to| >CV(t)

The family % is c-unbalancedf it is not c-balanced.

Proposition 4.3. Let G5 be given by Proposition 4.2. Then there exists a consiant 0 such that
the following holds for any tree € 1. If there exists a set W. V(T), |W| < cyk such that the
family ¢ of all components of the forestTW is gj-unbalanced, then T G.

Proposition 4.3 will be proved in Section 6.2. The last aaryl proposition (Proposition 4.4)
will be proved in Section 7.

Proposition 4.4. Suppose that,gs, ce and g, are fixed positive numbers. For amy w > 0 with
0 < w < min{g,cs,Cg,Cy}, there exis3 > 0 and iy = np(0, W) such that for any graph G on
n > ng vertices satisfying the LKS-property (witbrkgn) with a subse¥ CV having the following
properties

o |V|> ytsk,
e eV,V\V) < Bk?, and

o [LNV|>(1-0)V|/2,
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there exists a subset\_ V such that
o (1-wk< V| <(1+w)k,
o [V'NL| > V'|/2, and
o eV V\V') < wk?,

or %41 CG.

Proof of Theorem 1.4Let cs,cy, andcg be given by Propositions 4.3, 4.2 and 4.1, respectively.
Set/ = (é}, oy, = min{qg, cs, Cy, Ce }, andoy < wy. We find a sequence of parameters

O<B<o<<km=L<kKn<<Ww=KB<K <K< 1=F<Ko < w, (4.1)

obtained by the following iterative procedure. In siep 1 start by setting3, as the number
given by Proposition 4.4 for input parametersandwy,. Setw,_1 =y ando;_; < ay_1. In
general, in step we definefB,,1_; as the number given by Proposition 4.4 for input parameters
Opi1-1 andwys1 ¢. Setay i = Bri1-i andoy_j < ay_j. Repeat the procedure férsteps. Set

No = i:nzax[{no(ai,oq)}, whereng(o;, w ) is also from Proposition 4.4.

yeen

Let G be a graph satisfying the conditions of Theorem 1.4 @& fixed,n is sufficiently large,
andk > gn). We can make the following assumptions.

Assumption 4.5.|L| < |§ +1.

Proof. Suppose thaL| > |§ + 2. If (L, S) = 0, then any tre& € %1 embeds irG[L] greedily,
and Theorem 1.4 is proven. Otherwise, there exists an edde(L,S). The graphG' = G—eis

of ordern and has the LKS-property. Indeed, at most one vertdx lvds decreased its degree in
G'. For a grapHH, denote byLH the vertices oH with degrees at leagtandS™ the vertices of
degree less thak i.e.,L = LC. Then|L®| > |L¢|—1>|S®|+2—-1>|S%]. If Z,1C G, then
ki1 € G. We can repeat this procedure un#fl, 1 C G or obtain a spanning subgra@i C G
satisfying the LKS-property and such thaf | < |S®'| +1. O

Assumption 4.6. The set S is independent.

Proof. If Assumption 4.6 is not fulfilled, we erase (& all the edges induced b§. Clearly, the
modified graphG’ still has the LKS-property and fulfills Assumption 4.6. Thises not disturb
Assumption 4.5. Any tree that is subgraphGifis also a subgraph . O

Let 3 = ci(n/k). We iterate the following process for at mdststeps. In step, i < 3, we
prove that%,1 C G or we define a se¥; C V \ Uj;V; such that the following conditions are
fulfilled for eachj € [i].

11



(P1) (1-B)k< |V < (L+B)k,
(P2) ILNV|| > (1/2— B)k and
(P3) e(Vi.V\Vj) < BK2

In the stef = 1, we apply Proposition 4.4 with paramet®ts-V, 0 = g1, w = w; and obtain
that %. 1 C G, or there exists a s#& satisfying (P1y, (P2), and (P3). Suppose that in stepve
have set¥,, ...,Vi_1 that satisfy the conditions (R1), (P2) -1, and (P3)-1. SetV* =V \ U, V;.

First assume thaV*| > ¥Cgk. If |LNV*| > (1-0i-1)|V*|/2, the graplG satisfies the condi-
tions of the Proposition 4.4 (with = V*). If |[LNV*| < (1— gi_1)|V*|/2, then the decomposition
Vi,...,Vi_1,V* is (Bi—1, 0i—1)-Extremal. We first apply Proposition 4.1 and show that; C G,
or there exists a s€ C V* satisfying

. [Q>k/2,
e |QNL|>1Q|/2, and
e e(QV\Q) < g1k,

It is enough to assume the latter case. Again, the g@gdttisfies the conditions of Proposition 4.4
(with V = Q). Proposition 4.4 yields thati, 1 C G, or that there exists a s¥f C Q satisfying
Properties (P13(P3).

It remains to deal with the cage*| < #Csk. Having found set¥/, ..., Vy satisfying (P1)—
(P3)s, we redistribute the small amount of (at mg@stsk) vertices ol equally betweeN, ..., Vs.
The thus defined partition is¥Cs, ce )-Extremal. Proposition 4.1 yields th& 1 C G (as no new
setQ can be found). O

5 Special case (proof of Proposition 4.2)

Proof of Proposition 4.2 Fix a setl’ C LNV of size|L’| = (1/2—cs)|V|. Definel = {ue L’ :
degu,V\L') > (1-2,/Cs)k}. It holds for any vertex € L'\ L that degx, L") +degx,V \V) >
2,/Csk, otherwise it would be included in. Sincee(G[L']) +e(L'\ L,V \V) < 2csk? we get that
IL\L| < 2,/Csk (each vertex of.”\ L is incident with at least ¢Csk such edges). Consequently,
L] > (1/2—3,/Cs)|V|. Next we verify that the se§, defined asS= {uc V \L’ : degu,L) >
(1-9,/cs)k}, covers almost the whole sét\ L'. Indeed, not more thacsk? edges oE|[L,V \ L]
are incident to some vertexe L, whereL is the set of vertices of € V \ L’ with degx, ) > k.
Observe thak C L. Hence the number of edges in the bipartite gréfih V \ (L’ UL)] is at least

» 1.- - 1 -
IL|(1—2,/Cs)k — csk® > E\vu<—4\/c—s\vu<—csk2> 5IVIk—6,/CsV k.
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Since no vertex fronv \ (L' UTL) receives more thakedges frondi, it holds that

iV|k—6,cgVIk 1 - -
- EXN=]

(VA (L'UD)NE =

Obviously,L € Sand thus,|V \ (L'US)| < 7,/Cs|V| (recall thatl’ andS are disjoint, andL’| =

(1/2—cs)|V|). By the choice of andSand the fact thav \ (L' U$)| < 7,/Cs|V|, the minimum
degree of vertices il in the bipartite grapi; = G[L, S is at leask — 9¢/Cs|V|, and of those irS
at least(1—-9,/Cs)k. By choosing sufficiently smadls (as a function ofy; recallq > k/n) we can
guarantee thad(G;) > k/2.

Let T € .1 be an arbitrary tree. We wrif&! for the set of internal vertices df which are
contained irfTe and T, for the set of leaves iffle. By Fact 3.2 it hold$TJ'| < | To| < k/2. We embed
the subtred — T, in G; using the greedy algorithm embedding the vertices fighn S The last
step is to embed the leav&& This can be done using the property of high degree of veriicke
(note thafT) may be mapped outside; at this step). O

6 Tools for the proof of Proposition 4.4

6.1 Szemeedi Regularity Lemma

In this section we recall briefly the Szemerédi Regularigyrima [21] and establish related nota-
tion. The reader may find more on the Regularity Method in 13},

LetH = (V(H);E(H)) be a graph of orden. For two nonempty disjoint seds,Y CV(H) we
definedensityof the pair(X,Y) by

e(X,Y)
XY

d(X,Y) =

For e > 0 we say that a pair of vertex sg#&, B) is e-regularif |d(A,B) —d(X,Y)| < € for every
choice ofX andY, whereX C A Y C B, |X| > g|A|, |Y| > g|B|. For ane-regular pair(A,B) a set
X C A and a seY C Bis called asignificant setf |X| > €|A|, and|Y| > &|B|, respectively. For an
g-regular pair(A, B) we say that a vertex < X is typical with respect to a significant S&t C Y if
deqv,B) > (d(A,B) — 2¢)|W|.

Fact6.1. 1. Let(X,Y) be ane-regular pair and WC Y be a significant set. Then all but at
moste|X| vertices of X are typical w.r.t. W.

2. Let XY1,Y,,...,Y; be disjoint sets of vertices, such that, Y1), (X,Y2),...,(X,Y,) are -
regular pairs. Suppose that we are given sefsW; which are significant for eachd [¢].
Then there are at mosfe|X| vertices of X which are not typical with respect to at legst’
sets W.
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Proof. 1. The proofis direct.

2. For a vertew € X, letl, C [¢] be the set of those indicédor which v is not typical with
respect t&\. For contradiction, suppose thdw € X : |lIy| > v/&l}| > +/€|X]|. Then

z HveX :iel}| = Z<“V| > g|X|L.
ve

ield]

By averaging, there exists an indigxc [¢] such that the s&l = {ve X : ig € I} is signifi-
cant. Then,

deqgv,W
d(U,W,) = ZVETUH\% | o) < dx, W) — 26 < d(X,¥,)
10

a contradiction to the regularity of the p&X,Y;,).

A partitionVp, V1, ..., Wy of the vertex se¥/ (H) of the grapHH is called(e, N)-regular if
o |\p| <em,

e |Vi| =|Vj| for everyi, j € [N], and

e all but at moseN? pairs(V;,V;) (for i, j € [N]) aree-regular.

The setd/1, ...,V are callecclusters
The Regularity Lemma we use deals with graphs with initiaipartitioning of the vertex set.
Its proof follows the same lines as the proof of Szemeréadiginal result [21].

Theorem 6.2 (Regularity Lemma, with initial partition)For everye > 0 and every mr € N,
there exist numbers §/INp € N such that every graph H of order ma Np whose vertex sets is
partitioned into r sets QUOU...UO, =V (H) admits an(g; N)-regular partition \b, Vs, ..., WN
for some g < N < Mg such that for every € [N] we have VC Oj for some je [r].

6.2 Cutting the trees, and the (un)balanced trees

Let T € .1 be a tree and € N,/ < k. The purpose of this section is to give constructive
definitions of ar¢/-fine partition of T, and a switched-fine partition of T. The treeT is rooted in
a vertexR. This gives us order onV (T).

For atreek C T such thaR ¢ V(F) we define theseed of Fas the unique vertexe V(T) \
V(F) such thaF C T(R, | v) andvis adjacent to a vertex frof. We write See(F) = v.

SetTo=T andi = 1. We repeatedly (in step choose a vertex; € V(T_1) such that
V(Ti—1(] X)) > ¢ and such thak; is <-minimal among all such possible choices. We Fet
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Tica— (V(Tica(I %))\ {x}). If no suchx exists we haver(Ti_1) < ¢. We then sek = R and
terminate. Since we deleted at leasertices in each step, we have [(k+1)//¢] at the moment
of terminating. Set

A = {x; : dist(xj,R) isever} and B’ ={x; : dist(xj,R) is odd} .

Let ¥a and g be those componentsof the forestT — (A’ UB') which have Seed) € A’ and
Seedt) € B/, respectively. For a componenive write

X(t)=V({t)NN(B) forte %a, and

X(t)=V({t)NN(A) fort e .
SetWa = A'UUeq, X(t) andWe = B' UUicq, X(t). Observe that mg{Wa|, We|} < |A'| 4 |B'[.
Let Za and Zg be those componentf the forestT — (Wa UWg) which have Seegd) € W and

Seedt) € Wg, respectively. Thé-fine partition of Tis the quaternar® = (Wa,Ws, Za, Z8). The
following properties of thé-fine partition of T are obvious from the construction.

e ReW.

e The distance from any vertex W to any vertex in\g is odd. The distance between any
pair of vertices inNx or between any pair of verticesWg is even.

e T is decomposed into vertic®¥,, Wg, and into tree¥/a and Zg.

e No tree fromZp is adjacent to any vertex Wg. No tree fromZg is adjacent to any vertex
in Wha.

o max{|Wal, e[} < .
e V(t) < /for any treet € ZnU Zp.

The partitionZ will be further refined to get a switche@fine partition. LetZ; and 73
denote the end-trees froz and Zg, respectively. In the following we assume that o« v(t) >
dteay v(t). If this was not the case, we exchange the $&{s\Ws, and Z5, Zs. For any tree
t € I\ Zg setY(t) = V(t) "N(Wg). Observe thafc g 7 [Y (1)| < 2[Wa|. DefineW, =Wa U
Utezg\ 7 Y (1). Theswitchedi-fine partition of Tis the quaternary = (Wy,Ws, 7, Zg), where
2, andZ are the sets of componentsf- (W, UWg) with the seed iW, andW, respectively.
The switched-fine partition of T satisfies the following properties.

° REWAU\NB.

e The distance from any vertex I, to any vertex if\g is odd. The distance between any
pair of vertices i\, or between any pair of vertices ik is even.
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T is decomposed into vertic®¥,, Wk, and into trees/, and Zg.

No tree fromZ, is adjacent to any vertex Mg. No tree fromZj is adjacent to any vertex
in Wj.

ma{ Wy . M|} < 12

e v(t) </ for any treet € 7, U Z.

P contains no internal tree.

We have

v(t) = S v(t).
teZp te g
t end tree

For an/-fine partition (or a switcheé-fine partition)? = (Wa,Ws, Za, ZB) the trees € ZaU
9 are calledshrublets

The /-fine partition and the switche@fine partition may not be unique, the construction de-
pended on the choice of the rdtHowever, this is not a problem in the later setting; we ordgch
that there exists at least osidine partitionZ and one switched-fine partitionZ’ of T satisfying
the above properties.

Proof of Proposition 4.3 Setcy = cs/4.

If the setL induces less thecsn? edges then we havie C G by Proposition 4.2. In the rest we
assume thaB|L] contains at leastsn® edges. A well-known fact asserts that there exists a graph
G’ C G[L] with minimum degree at least half of the average degre8|bf, i.e., 5(G') > csn >
4cy(k+1).

Let ¢’ C ¢ be those treesc ¢ for which |to| < cgv(t). It holds thaty e v(t) > (1 —4cy)k.

We apply Fact 3.2 on each trées ¥’. Summing the bound on the number of leaves, given by
Fact 3.2, we get that there are at le@st 2cy)(k+ 1) leaves in the trees &f”. A leaf of a tree

t € ¢’ is either a leaf ofl or it is adjacent to a vertex M. RootT at an arbitrary vertex. The
vertexr determines a partial ordet with r being the maximal element. L&t be those vertices
of T which are a leaf of some tredec ¢’ but not a leaf ofT. Each vertex inX is either a<-
minimal or a<-maximal vertex of some trdec €. Let Xnin € X be the<-minimal vertices and
Xmax = X\ Xmin- (Note thatXmax does not have to contain exactly themaximum “fake” leaves
of T; the vertices which come out from 1-vertex treesstfare not included.) As each trédas

a unigue=-maximal vertex we gefiXmax < h, whereh is the number of treessin ¢’ which have
order more than 1. Observe, that each suchtthees at least Acy vertices and thub < cy(k+1).
For eachv € Xnin we have|Ch(v) "W| > 1. Since for eaclu € W it holds |Parfu) N Xpmin| < 1
we have|Xnmin| < [W| < cyk. Summing the bounds we get| < 2cy(k+1). ThusT has at least
(1—4cy)(k+ 1) leaves. LefT’ C T be a subtree of formed by its internal vertices. We have
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V(T") <4cy(k+1). We embed’ in G’ greedily. Then we extend the embedding also to the leaves
of T, using the high degree of the images/fT’). O

6.3 A Tutte-type proposition

GraphH is calledfactor critical if for any its vertexv the graphiH — v has a perfect matching.
The following statement is a fundamental result in the Miagltheory. See [15], for example.

Theorem 6.3 (Gallai-Edmonds Matching Theoremlet H be a graph. Then there exist a set
Q CV(H) and a matching M of siz€)| in H such that every component of-HQ is factor critical
and the matching M matches every vertex in Q to a differenpoorent of H- Q.

The setQ in Theorem 6.3 is called separator

Proposition 6.4. Let (H, w) be a weighted graph of order N, with : E(H) — (0,5. Leto,K
be two positive numbers witty (2N) < 0 < min{K/(32Ns),1/10}. Let.# be an arbitrary set of
vertices, such that

e V(H)\.Zis an independent set,

e |.Z|>N/2—0N,

e ded(u) > K for every ue .&,

¢ the setZ induces at least one edge in H,
e def(u) < (1+0)K foreveryue V(H)\ .Z.

SetZ*={ueV(H):def(u) > (1+0)K/2}.
Then there exist a matching M and two adjacent verticdAV (H) such that at least one of
the following holds.

Case | Forthe vertex Ait holdsed(A,V(M)) > K and for each edgee M we havgN(A)Ne| < 1.
For the vertex B it holdd e (B,V (M) U Z*) > (1+ 0)K/2.

Case Il There exists a set”” CV(H), withd e§(x,V(M)) > d e§(x) — 20Ns for all vertices »x
Z'. Furthermore, ABc 2" N.%¢, and|V(M')\ 27| <1, where M={xye M : xye
N(Z")}.

Moreover observe that each edge &1 intersects the sef’.
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Case I ) Case II

¥ M ]
A M .
ﬂ
=1 6 |—— : X
Bé™
:': :H‘I‘l‘lkz :‘._M
—= © V(HN\V(M) G

S
‘rnnnEnnEnnnnnEnnnaet

Figure 1: Two resulting matching structures from Proposit.4. Dashed lines represent no
connections (in Case I), or sparse connections (in Case II).

Proof. Among all matchings satisfying the conclusion of the Galldmonds Matching Theorem,
choose a matchindylp that covers a maximum number of vertices frdf(H) \ .£*. Let Q be

the corresponding separator. Recall thigtis aQ < (V(H) \ Q)-matching. Seto =2\ Q and
< =V(H)\.Z.
We distinguish three cases.

e There exists ahg < Lo edge.
SetZ” =LoUN(Lp) \ Q and letA andB be vertices of anyy < Lo edge. TherA andB lie in the
same componer@ of H — Q. If V(M) NV (C) # 0, then take[x} =V (Mp) NV (C), and choose&
arbitrarily inC, otherwise. Sinc€ is factor critical, there exists a perfect matchMgin C —x. It
is straightforward to check that the matchidg= Mo U M; satisfies conditions of Case II.

e Lo=0.
Set2” =V(H) andM = My. Let A andB be end-vertices of an arbitrarty’ — .# edge. Itis
clear thatv(M’)\ 27 = 0. SinceQ 2 .%, |.Z| > N/2— 0N, and|V(M)| = 2|Q| it holds that
all but at most &N vertices ofH are covered by, thus for any vertex € 2"/, we have that
ded(x,V(M)) > de§(x) —20Ns

e Lpis anindependent set ahg # 0.
First we observe that each componénof H — Q is a singleton. Indeed, sinc& andL, are
independent all the edges in any matchin@iare in the form¥ < Lg. SinceC is factor critical,
we havelV(C—u)NLp| = |V(C—u)n.¥| for any vertexu € V(C). Thusv(C) = 1. (Note thaMg
is thus maximum.) Se¥l = Mo.

Definel = {ue N(Lo) : d @4 (u) > K}. Observe thak C Q. We shall prove that

L0 (6.1)
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by contradiction. Assume that for every veriex N(Lo) it holds d efj(u) < K. We get|Lg|K <
®(Lo,N(Lo)) < K|N(Lg)| implying |Lo| < |N(Lg)|. FromL = 0 it follows that NLg) N.Z = 0
and thus every vertex in (o) is matched by to a distinct vertex irLg, a contradiction.

We show that the grapii(H ) fulfills conditions of Case I. It suffices to find a vertBx N(Lo)
such that d &B,V (M) U Z*) > (1+ 0)K/2. The pair(A,B), whereA € N(B) N Lo, satisfies
conditions of Case I.

DefineX =V (H)\ (V(M)U.Z*). For contradiction, assume that for ev&y [ we have

def(BV(M)Uu.L") < (1+0)K/2, (6.2)
which yields
ded(B,X)> (1-0)K/2. (6.3)

This implies thatM does not contain any edge with both end-verticesAn Indeed, suppose
that such an edgey € M exists. Therx € Lo andy € L. By (6.3), d e§(y,X) > (1—0)K/2. In
particular, there exists a vert@x Nx (y). The matchindvi; = {yp} UMo\ {xy} is a matching as in
Gallai-Edmonds Matching Theorem (with separa@mvhich covers more vertices ¥f(H) \ £~
thanMg does. This contradicts the choice . Observe that for any vertexe X, we have
ded(uV(M)) =def(u) < (1+0)K/2 and thus d &fu,L) < (14 0)K /2. We bound& (L, X)
from both sides. K K

(1—a)|E|§ <®LX) < (1+0)X| 5,

which yields
~ 1+0
=i, (6.4)
We use (6.2) to obtain bounds a¥(Q, Lo).
[LolK < &(Q.Lo) = &(LU(Q\ D), Lo)
K, -
< (1+0)5 (T +1Q\ 2))
<1+ )bl +KIQ\ Z].
which gives
2|Lo| < (1+0)||+2/Q\ 2] (6.5)

Every vertex inQ\ . is matched to a vertex ibg, and conversary, if a vertex i is matched,
then it is matched to a vertex @\ .Z. Therefore|Q\ .Z| = |LoNV(M)|. Combined with (6.5)
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we have that 2o\ V(M)| < (14 0)|L|. Plugging (6.4) we obtain

(1+0)?
1-0

2[Lo\V(M)| < X[ (6.6)

From|Z| > [V(H)\.Z| — 20N we get|Lo\V(M)| > |X| — 20N (Recall that any edge dfl has
one end-vertex i and the other one M (H) \ .¥). Together with (6.6) we obtain

1 2
(14 9)7 % > 2x| — 40N,
1-0
yielding
40N
> |X].
1-30 X
A contradiction with (6.3), (6.1), and the bound an O

6.4 Embedding lemmas

In this section, we introduce some tools for embedding astareone regular pair. Similar results
are folklore, however we prove them tailed to our needs. Larérh describes sufficient conditions
for embedding a rooted tree in a regular pair.

Lemma 6.5. Let(t,r) be arooted tree, and & 2¢ > 0. Let(X,Y) be ane-regular pair with |X| =
Y| =s and densitg(X,Y) >d. LetPC PC X and @ C QCY be such thamin{|P|,|Q|} > A
andmax{|P'|,|Q/|} > A, whereA = Ej*_—‘é(st). Then there exists an embeddip®ft in PUQ such
that the root r is mapped to’P/ Q. The following two further requirements can be also fulfille

1. If [P\ P/| > A, we can ensure thap(V(t) \ {r}) NP =0, and similarly, if Q\ Q| > A, we
can ensure thap(V (t) \ {r})NQ = 0.

2. If [P| > A we can can prescribe the vertex r to be mapped’tolP|Q/| > A we can can
prescribe the vertex r to be mapped ta Q

Proof. Without loss of generality assume th&'| > A. Choose an auxiliary s& C P with
|Se| = A subject to|S> N P’| being minimal. In particular, we hav& C P\ P, if |P\P/| > A.
Similarly, choose a sef, C Q with |S| = A with respect tdSy N Q| being minimal. The sets
S and &, are significant. Choose a vertexc P’ which is typical w.r.t.Sy. There are at least
|P'| —es> 1 such vertices. Sei(r) = v.

We inductively extend the embedding so that every vertex dfwhich was mapped t®& is
typical w.r.t.&, and that every vertex which was mappedas typical w.r.t.S. We illustrate
the inductive step by describing how to embed the neighlmattod a vertexu which was already
embedded irP. The case whewp(u) € Q is analogous. LeN C N(u) be the yet unembedded
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neighbors oli. The vertexp(u) has at leastd — 2¢)A > es+ v(t) neighbors inSg. At least|N| of
them are typical w. r. tSo and not yet used bg. We then mapN to these vertices.

Clearly, Part 1. was satisfied. In addition, Part 2. can a¢stullilled. Indeed, we only need to
observe that ifP’| > A, there is at least one vertexiwhich is typical w. r. tSy. This vertex will
be used for embedding the raotThe second condition of Part 2 is analogous. O

For the proof of Proposition 4.4 (which is the key tool for yirgg Theorem 1.4), we need to
embed the shrublets of the tr&an an efficient way. To this end, we try to fill the clusters oéth
regular pair with the same speed. The following definitionpéckness formalizes this.

Leti € {1,2} andX,Y,Z C V(G) be three disjoint subsets. We say tblaC X UY is i-packed
(with parameterd , 7) with respect to thévead set Zand with respect to thembedding sets And
Y, if

min{|XNU|,[YNU|} > min{iy,v}—A,

or
IXNU|—[YnU|| <,

where
¢ =min{degZ,X),de¢z,Y)}, and v=max{degZ X),dedZ,Y)}.

If U represents the vertices used by an embedding, then tolkeepacked means that we
have roughly the same amount of used vertices on both sidé¢snflY until we have embedded
roughly 2u vertices. If we manage to keép2-packed, we have this “balance” for even longer.

The following embedding lemma allows us to “fill-up” a regulaair with a rooted forest.
The lemma is divided into three parts to satisfy differenbending requirements of the proof of
Proposition 4.4. The most important one is the “saving” Bartaving a clusteZ and a regular
pair (X,Y), Part 1 ensures the embedding of a rooted fofledR) mappingRto Z andF — R to
X UY, provided that the order d¥ is slightly less than d ég,X UY). Part 3 allows us to embed
even a larger forest, under certain additional conditions.

Lemma 6.6. Let(F,R) be a rooted tree with root R such that each component-eRFhas order at
mostt. Let XY, Z be three disjoint vertex sets, witk| = |Y| = s, forming threes-regular pairs.
Assume thaf%Y) > d > 2¢ and d(Z,X),d(Z,Y) € {0} U[d,1]. SetA = E4L. LetU C XUY.

In the following we write Fand F, for the vertices of F R with odd and even distance from R,
respectively.

1. Ifv(F)+|U|<dedZ XUY)—A; —A—2¢es, whered; = A+ T+ 3¢es, U isl-packed w.r.t.
Z (with parameter3d; andrt), and R is mapped to a vertexcrZ that is typical w.r.t. X and
w.r.t. Y, then the mapping of R can be extended to an embeddné such that

(c1) ¢(V(F —R)) € (XUY)\U,
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(c2) each vertex of;Hs mapped to a vertex which has at leédt- 2¢)|Z| neighbors in Z,
and

(c3) the setW ¢ (V(F —R)) is 1-packed (with parameters; and 1) w. r.t. the head set Z
and the embedding sets X and Y.

2. Ifmax{|F1|, ||} + |XNU| <dedZ,X)— A1 —A—es, U isl-packed (with parametery =
A+ 1+ 3¢s andrt) w. r.t. the head set Z and the embedding sets X and Y, and Rpjsemha
to a vertex re Z that is typical w.r.t. X and w.r.t. Y, then the mapping of R ba extended
to an embedding of F such that (cl), (c2), and (c3) hold.

3. IfdegzZ,X) € [ns,(1—n)g, wherens > 12A;, andA, = 2A+ 7es+ 41, U is 2-packed w. . t.
Z (with parametei, andt), each component of £ R has at least two vertices, R is mapped
to a vertex re Z that is typical w.r.t. X U and w.r.t. Y\U, and
ns

V(F)+|U| < d&gZ, X UY) + (6.7)

then the mapping of R can be extended to an embeddofd- such that (cl1), (c2), and
(d) UU¢(V(F —R)) is 2-packed w.r. t. Z (with parameteds and 1)
hold.

Proof. Setu = min{d egZ,X),d egZ,Y)} andv = max{d egZ,X),d egZ,Y)}. We split the em-
bedding of the foredt — R into ¢ steps, wheré is the number of components Bf— R. In each
stepi, we embed a componefitof F —Rin (XUY)\ (U UU;), whereU; = ¢ (U;; V(t;)) is the
image of trees embedded in previous steps. The companisra tree, we write; for its root,
{ri} =V () "N(R). Moreover, we assume that the tréeare ordered so that,...,t,, are trees
of order at most twat,, ,1,...,t,, are stars of order at least three with their centers in thes oo
the components artgd, . 4, ...,t, are trees which are not stars centered in the ngotEhis ordering
is unnecessarily in the proof of Parts 1, 2, we only use it eeémbedding described in Part 3.
Observe that the assumptions of Part 3 assert that altjtree [¢1] have order exactly two. For
stepi, seth = X\ (UUU;UB), andQ; =Y \ (UUU;UB), whereB is the set of vertices iX UY
which are not typical w.r.t. the s@ We have magX NB|,|YNB|} < es. DefineP’ = R NN(r)
andQ) = Qi NN(r).

Part 1. In each step, the embedding will satisfy conditions (¢lJc2), and (c3). These
conditions are modified versions of (c1), (c2), and (c3), mtvee consided UU; instead otJ and
¢ () instead ofg (V (F —R)). Conditions (cly, (c2), and (c3p are clearly met. We shall verify
(c1), (c2), and (c3) inductively at the end of each stepFirst we claim that ma(P'|, |Q{|} > A.
This is implied by the following chain of inequalities.

IPUQ| =degr,RUQ) >d&gZ, XUY)—|UUU;| — |B| —4es>A;+A—3es>2A. (6.8)
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Second, we claim that m{fR|,|Q;|} > A. If this is not the case,
max{| XN (U uU;)|,lYNUUU))|} >s—A—es>v—-A—es.
Now asU UUj; is 1-packed,
min{ | XN U UU))[,[YN(UUU)| > u—Aq,

or
min{|XN (U UUj)[,[YN(UUUj)| >v—-A—es—T.

In both cases, we obtain thid UU;| > dedZ, X UY) — A1 — A — €s, a contradiction. Thus by
Lemma 6.5, we can embed the trge If min{|P/|,|Q/|} > A, we embed; in B UQ; using
Lemma 6.5, Part 2, so that

XN (U UUi1)[ = YN (U UUi)|] <max{|[Xn U uU)| - [YnUuU)]],t}. (6.9)
Inequality (6.9) ensures that Property (d3)lds. There is nothing to prove if
min{|X N (U UUi;+1)],[YN (U UUit1)|} > min{d egZ,X),d edZ,Y)} — A1 . (6.10)

So, suppose that (6.10) does not hold. We show thaf|ip|Qi|} > A. Then by (6.9) and by the
fact thatU UU; is 1-packed, we obtain thgX N (U UUj;1)| — Y N (U UUi41)]| < 1. Assume for
contradiction and without loss of generality thBt| < A. Then

XN (U UU;)| >dedr,X)—A—|BNX|>u—A1+T.

As U UU; is 1-packed, we obtain (6.10), a contradiction to our assiomp Properties (c1)and
(c2) follow from the fact tha®, is disjoint fromU U U; andB.

Part 2. The proof goes in a similar spirit as in Part 1. We embed seealgrthe components
ti of F — Rusing Lemma 6.5. In each step, verticed/¢f) N Fy are mapped td(A) N (XUY)\
(U UU;) so thatU UU; remains 1-balanced.

Part 3. In each step of the embedding we require the following four invariantitd.

(P1) UUUj,1is 2-packed (with parameteis andr).

(P2) If |[R\P/| > A, then the treg is embedded so thait(V (ti) \ {ri}) "N(r) N X = 0. Similarly,
if |QiI\Q{| > A, theng(V(t)\{ri}) "N(r)nY =0.

(P3) If min{|P|,|Q{|} > A, then||(U UUi+1) N X|—|(UUUi+1) NY|| <max{t,||(UUU;)NX]| -
[(UuU)NY||}.

(P4) 1f min{|(UUUi11) NX|,|(UUUi11) NY|} < min{2u, v} — Az, then mir{ [P, |, |Q 4|} > A.
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PropertiegP1), (P2), (P3), and(P4) are clearly met at step= 0. Assume tha(P1), (P2), (P3),
and(P4) hold in the step — 1. We first prove the following auxiliary claims

(a) max{|R],|Q][} > A, and

(B) min{|R[,|Qi[} > A.
We prove () by contradiction. Suppose that m{@®'|, |Q/|} < A. We claim that

min{|X \ (UUU UN())|,[Y\ (UUU UN(1))|} > A+ es. (6.11)

Suppose that (6.11) does not hold. Assume without loss adrgdity that|X \ (U UU; UN(r))| <
A+ es. Recall that/P/| < A. Thus we haveX N (U UU;)| > s—2A —2¢s. The fact thaty U
U; is 2-packed implies that) UU;| > s+ min{2u,v} — A —2A —2es > d egZ, X UY) + 12, a
contradiction. Inequality (6.11) implies biP2) that only the roots of the treds (j < i) were
embedded in i) and thugUi NN(r)| < |Ui|/2 < v(F)/2 (recall thatv(t;) > 2 for all j <i). We
have thus

P+ Q| = d(Z,X)[X\U|+d(Z,Y)[Y\U| = [UinN(r)| — 6es

> de_:gZ,XUY)—@—d(Z,X)\XﬁU\ —d(Z,Y)|YNU|—6es

2
(6.7) S ns
> (d(Z,X) +d(Z,Y))é +(1/2—-d(Z,X))[XNU[+(1/2-d(Z,Y))[YNU| - 5

(6.12)

We write RHSto denote the right-hand side of (6.12). We bolRIdSin two cases separately,
based on the value of4,Y).

o d(ZY)>1/2.

RHS> (d(Z,X) +d(Z,Y))s/2+ (1/2—d(Z,X))|X U | + (1/2— d(Z,Y))s— %S
— (d(Z,X) —d(Z,Y))s/2+ (1/2— d(Z,X))| XU | +8/2 %S
_ %d(Z,X)\X\U\+%(1—d(Z,X))\XﬂU\+(1—d(Z,Y))s/2—%S
S NS
i 127

a contradiction.
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o d(Z,Y) < 1/2.

RHSZ d(Z,X)s/2+ (1/2 - d(Z, X)) X U] — 2
- %(1—d(Z,X))|XﬂU\+%d(Z,X)|X\U|—n—;’
> s
=12

a contradiction.

We now turn to provingf). If (8) does not hold, then m&X N (U uU;)|,[YN (U UU;)|} >
s—A—¢s. AsU UU; is 2-packed mifil XN (U UU;)|, [YN(UUU;)|} >s—A—es—T1, ormin{|XN
(UUU) YN (U UU)|} > min{2u,v} — A2. In both cases, we obtain

lUUUi| >s+min{2u,v} —A—es— A,
>de@Z,XUY)+ns—A—es—Az,

a contradiction with the bound (6.7), gs— A — €s— A2 > ’775.

Having proved thatd) and (8) hold, we may use Lemma 6.5 in order to emhed R U Q;.
If min{|(UUuU;)NX|,|(UuUi)NY|} > min{2u,v} — A2 we use only Part 1. If mifj(U UU;) N
X[, |(UUUi)NY|} < min{2u,v} — A2, we use Parts 1 and 2. Prope(B4) for i — 1 implies that
we have the choice or mappimgto P/ or to Q{. We choose the side so th&tU UU;.1) N X| —
[(UuUiz1) Y| <maxX{T,|[(UuU)nX|—|(UuUi)NY||}, and ifv(t)) = 2, we mapr; to the
opposite cluster to the one where lig&;_1).

The embedding of; clearly satisfiegP1), (P2) and(P3). To prove that the embedding tf
satisfies alsgP4), we need the following auxiliary claim.

Claim. If min{|(U UU;j) N X|,[(UUU;)NY|} < min{2u,v} — Az, then|p({rq,....ri})NX| <
UiranX|/2+1+1and|¢({r1,....ri}H) NY| < |UipinNY|/24+ 1+ 1.

The proof of the claim is postponed to the end of the inducttep.

We prove PropertyP4) by contradiction, so assume that rfijiftd UU;_1) N X|,|(UUU;_1) N
Y|} <min{2u,v} — Az and thatP/, ;| < A (the case whefQ ;| < A is proved analogously). We
claim that

P41\ P 4| > A+s—min{2u,v} +6es+ 31 > A. (6.13)

Indeed, otherwiseXN (U UUj,1)| >s— R 1\P 1| -A—&s>min{2u, v} —Az+1. Property(P1)
implies that mid|(U UUj1) N X],[(UUUi;1) NY |} > min{2u, v} — A2, a contradiction with our
assumption. This settles (6.13). The propdRy), together with Inequality (6.13) and Part 1
of Lemma 6.5, implies that only the roots of the tregsj < i were mapped t&X N N(r), i.e.,
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Uir1NXNN(r) = ¢(N(R)) N X. By the auxiliary claim, we obtain
Uit NXNAN()|[ = [¢({rg,...,ri}) NX] < UipanX[/2+ 1+ 1. (6.14)
On the other hand, using (6.13), we obtain

Uira X[ < [XA\U|—=[R1\ P4
<min{2u,v} — |XNU| —A—6es— 3t
<2d(Z,X)|X\U| —A—6es—3r1.

Together with the assumptigR’, ;| < A, this yields the following inequality.

Uirs NXNAN(r)| > IN(r)N(X\U)| —A—¢€s
> d(Z,X)|X\U|—A—3es
> UipaNX|/2+T1+1,

a contradiction to (6.14). Let us now prove the auxiliaryrola

Proof of the auxiliary claim.We alternated the embedding of the rogtsj < min{i,/1} between
X andY. This ensures that for< min{i, ¢} we have

‘¢({I’1,...,I’j}) ﬂX| < |Umin{i’gl}+1ﬂx‘/2—|—1 and
[0 ({re, -, 1) NY| < Unmingi,ey+2NY1/2+1, (6.15)

proving the claim foi < /1. Thus we assume that> /1. Denote byl the roots of the the trees
tjfor j € {£1+1,...,min{i,l>2}}. Then seXy =XN@(i), Xo=XNP(N7(F))NV(T( T)),

and similarlyYy =Y N ¢ (i) andY2 =Y N ¢ (NT(F))V(T (] Ti)). Thus the setX, Xz, Y1, Y2 form

a partition of the seUpngi r,341 \Ur 1. As all trees under consideration have order at least 3,
observe that X;| < [Yz| and 2Y1| < [Xz[. AsU andUpin(i s,}41 are 2-packed anfU, N X| =

Uz, Y], we know that |X; UXp| — [Y1UYz|| < 21. Then

[ Xa| +[Xo| +21 > [Y1[ + [Y2| > [Y2| > 2|Xq|.

This implies thatXy| 421 > |X;|. The same holds fof; andY,. Together with (6.15), this leads to
the desired inequalities, if< /,. To see that the claim also holds fas /5, it is enough to realize

that for j > ¢, when embedding the roof of the treetj in a setC € {X,Y}, at least one vertex of
tj —rj is also mapped tG. O

It remains to check whether the embeddipgpf F — R satisfies (c1), (c2), and (d). Each
component was mapped BU Q;, which is disjoint with the setU and contains only vertices
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typical w.r.t.Z. This ensures Properties (c1) and (c2). Property (d) falévom the way we
utilized property (P4) during embedding via Lemma 6.5 Part 2.
O

7 Proof of Proposition 4.4

Proof. Setn so thato < n < w, andp,y, o so that

O<BKyxoaoxo.

Let ng (the minimal order of the graph) amt (the upper bound for the number of clusters) be
the numbers given by the Regularity Lemma 6.2 for input patansg3 (for precision)lo =2/
(for minimum number of clusters) and 4 (for the number of pagtition classes).

Let G be a graph of orden > ng and the seV C V satisfying the assumptions of Proposi-
tion 4.4.

Prepartition the vertex-s&tintoV NL,VNSL\V, andS\V. By the Regularity Lemma 6.2,
there exists a partitiod = CoUCy1 U --- UCy satisfying the following.

e Mo <N <TIy,

e |G| =|Cj| =s, foranyi, j € [N],

* [Col < Bn,

e all but at mos{3N? pairs(C;,C;) areB-regular,
e if GNL #0, thenC; C L, for anyi € [N], and
e if GNV #0, thenC; CV, for anyi € [N].

Let G, denote the subgraph & obtained fromG by deleting the edges incident @, con-
tained in some&C;, lying betweenv \\7 andV, or between pairs that are irregular or of density
smaller thany?/2. Let(G,d eg,(-,-)) denote the weighted cluster graph induceddyyi.e.,G
has ordeN, with vertex-seV (G) = {Cy,...,Cy} and edge-set

E(G) = {CD: (C,D) is anB-regular pair with density at leagt/2} ,

with the weight function d edE(G) — R, defined by d €gD) = d eg, (C,D). Denote by the
set of clusters contained L\MV which have large average degred&/in

Z={CeV(G):CCLnV,dég (CV)>k—yn}.
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We write N to denote the number of clustersVh Observe that.Z| > (1— 0)N/2— yN >
N/2—oN. Most of the cluster¥ (G) formed by vertices of NV are in.Z. From Assumption 4.6,
there are at most

2yN (7.1)

clusterC eV(G)\ Z withCC \Zsuch thatd @g(C,V(G)\.£) > yn. LetH be the subgraph @
induced by clusters containedviisuch that all edges induced by the 8t G : CCV \Upc D}
are removed. The weights of the edgesliare inherited fronG.

7.1 Matching structure in the cluster graph

If G satisfies the Special Case with parameterconsidering the se¥), then %.1 C G by
Proposition 4.2. In the rest of the proof, we thus assume ¢f@fV N L]) > csn?, and thus
e(Gy[\7ﬂ L]) > °—25n2, implying that.# induces at least one edge® This edge is an edge in
H also. The weighted grapH,d €gy) satisfies all the conditions of Proposition 6.4 (with pa-
rameterso andK = k — yn). This ensures that one of the two specific matching strasturH
exists. Together with (7.1), this yields the existence @& ohthe following two configurations in
the cluster graple.

Case |:There are two adjacent clusteksB and a matching/ in G such that
o deg (AV(M))=k—yn,
e each edge € M intersects the neighbourhoodAin at most one cluster, and
e dég (B,V(M)U.Z") > (1+0/2)5, wherez* = {CeV(G) : deg (C) > (1+0/2)5}.

Case Il: There exist a set of cluster®” C V(G), two adjacent cluster&, B, and a matching/l in
G such that

e ABc 2'NnY,

e V(M)\ 27| <1, whereM'={CDeM :C,DeN(Z")},

e all but at most $N clustersC € 27" satisfy d eg,(C,V(M)) > d eg, (C) —3on,
e and each edgec M intersects?’.

In the rest of the thesis the average degree d eg will alvegsdociated with the underlying graph
Gy, i.e., d eg is an abbraviation for @y€g

Let M C M be the maximal submatching bf not coveringA norB. LetT € ., 1 be any tree
with k edges. Trivially)M| > |M| — 2. Choose arodR € V(T) and cut the tre& as in Section 6.2
in order to obtain a switched-ine partition(Wa,Ws, Za, ZB), with T = Bk/M1.
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7.2 Casel

Denote by.Zr the components a¥a consisting of interior subtrees and B the ones consisting
of end subtrees a¥a. Denote bylg the forest induced by the componentsip, by Ta the forest
induced by the components #, and byTg the forest induced by the components4g. Recall
that Zg consists only of end subtrees. #a U &g is cy-unbalanced, theit C G, as shown by
Proposition 4.3. Thus we may assume thatJ .75 U Zg is cy-balanced.

We partition each cluste € V(M) U.Z* so that the partition defines two disjoint sét§ and
MB of vertices ofG, such thaM™,MB C | J{C € V(M)}. The embedding : V(T) — V of the tree
T is defined in three phases. In the first phase, we embed theeslibt= T Wy UWg UV (Tg U
2], whereTM C Tg will be defined later. The foredk is embedded iM™ and the foresTy! in
MB. In the second phase, we embRd= Tg —V(T) in J{C € (£*\V(M))UN(Z*)}. In the
last phase we embéef in J{C € V(M)}. Thus we complete the embeddingTaf

The difference between the presented proof of Theorem H4tsapproximate version Theo-
rem 1.3 is that in the proof of Theorem 1.4 we have to fight to ggaick small loses caused by the
use of the Regularity Lemma. However, this is not necessagmwe have the matching structure
of Case |. Then, we are able to reduce the situation to therbeppate version”, i.e., to the setting
of similar nature as in Theorem 1.3.

We partition each cluste € V(M) U_.Z* into CF andCB in an arbitrary way so thdCF| =
(1—vy)|C| and|CB| =y|C|, where

B V(TA U TB) 1 2V(TB) 1

kK  1to0/4 "7k Ito/a ¢ (7.2)

Set

ME= |J c®, MF= [J CF,and #B= |J C°B.
CeV(M) CeV(M) CeZ*\V(M)

Observe thay € (a,1—a). Thus, for eactC € V(M) U.Z*, the set€B andCF are significant.
Observe also that the paif€™, D) and (CB, DB) are 3/a-regular for everyC,D € V(M) U .Z*.
Now,

degB,MBuU.ZB) > y(1+ a/2)§—/3n—4s

(7>-2) 1+0/2
~ 1+0/4

k
V(TB) —|—C¥§ —Bn—4S

>v(TB)+alZ(f. (7.3)
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A similar calculation shows that for any clustere .#*, we have

degD,V \ (MFUAUB)) ZV(TB)+01§. (7.4)
For clusterA, we obtain
degA MF) > (1-y)(k—yn)—pBn—4s
(7.2)
> k—Vv(TaUTg)/(14+0/4) —ak—yn—pBn—4s
> V(TF) —i—V(TAUTB)O'/S—ZGH
> max{|V(Te) N Tol, IV (Te) N Te|} + 0cdk/32— 2an, (7.5)

where the last inequality follows from the fact thét is cy/2-balanced, ot7a U 25 is. Let
T C 95 be a maximal subset @fg such that
_ B, Ok
v(t) <degB,M") — 5" (7.6)
te 71
Let TM be the forest formed by the trees 88", let 75- = Zg\ Za" and T} be the forest formed
by the trees inZg-. Recall thafT’ = T[WaUWs UV (Tg) UV (T)].

Phase 1. In this phase, we embed the subtiée The embedding of’ is devided intow = [Wa U

Wg| steps. We label the vertices Wiy UWs asxy, ..., %, indexing from the rooR downwards,
i.e., in such way thaj; < j> wheneverxj, =r Xj,. In stepi > 1, we shall take the vertex and
define the embedding fog and the shrublets hanging frax i. e., we embed the trek,

T=T[{x}u J v(P)],

1€[ci]

whereP, ..., P, denotes the componerfof Tr UTE';V' such that Clx;) "V (P) # 0. The tre€T; is
aunion of treeg = T[{x} UV(R)] (1 € [c]). SetVi = U;;V(T;j) andU; = ¢ (V).

If i > 1, let pj = Par(x). During the embedding process we will keep the followingeéhr
invariants in every step

(I1) TheU;n (CFuUDF)is 1-packed with parameters

AF = %jtwws’/a andt , wheres = (1—vy)s,

with respect to the embedding s&fs andDF and the head sét for each edg€D € M,
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(I12) TheU; N (CBUDB) is 1-packed with parameters

_M ! r
Ag = V22— 2B/a +1+3Bs'/a andt, wheres’ =ys,

with respect to the embedding s€&andD® and the head s&for each edg€D € M, and

(13) if i > 1, then the vertey; was already embedded in some previous step sgittigt(p;)) N
A| > y?s/4 (if x; € Wa), or IN(¢(pi)) NB| > y?s/4 (if x; € Wg).

Say that a vertex i#-typical if it is typical w.r.t. all but at most/BN setsCF, C € V(M),
w.r.t. all but at most/BN clustersC € V(M), and w.r.t. the clusteB. All but at most 3/B|A|
vertices of clusteA are A-typical. Say that a vertex iB-typical if is is typical w.r.t. all but at
most /BN setsCB, C € V(M), w.r.t. B, and w.r.t. the clusteA. All but at most 3/8|B|
vertices of clusteB areB-typical. The embedding will be defined in such a way that(Wa) C A
and ¢ (Ws) C B. From the property of the switcherfine partition (Wa,Ws, Za, Z8) We have
max{|Wa|, Ws|} < 12k/T < y?s/4. Thus if the predecessor of a vertgxc Wy has at leasy?s/4
neighbours imA, then we have have enough candidates to choose an uAttgpdtal vertex from
as(x).

To define the embedding of the tr&ewe first choose (). If i = 1 thenx; = R, and we may;
to an arbitraryA-typical vertex inA (if R W,), or on an arbitranB-typical vertex inB (if R € Wkg).
If i > 1 choose forp (x;) anyA-typical vertex inANN(¢ (pi)) (if xi € Wa), or anyB-typical vertex
inBNN(¢(pi)) (if X € Wg). This is possible byl3).

Assume thax; € Wa. ThenV (T;) CV(Tg). Seté, = {C eV (M)NN(A) : ¢(x) is typical w. r. t.CF}.
We deduce that

S degA.Ch)—|UinM"| > degA M) — \/Bn— MNV(Tk)|

Ceé

(7.5) 0 (Cy\?2

> max{ |V (Te) NV (To)|L |V (Te) NV (Te) [} = ViV (Te)| + 5 (5 ) - k—2an—+/Bn

> max{|V(T) "V (To)|, V(T) NV (Te)|} + ak. (7.7)
We consider an auxiliary mappirdg: ;] — M which has the property that for ad§¥ € M, X € &
it holds

Z v(P) +Uin(XFuYF)| <degA X" uYF) —Ag . (7.8)
1€27T(XY)

From (7.7) such mapping exists.

We embedthe treg§ 1 =1,...,¢ using Lemma 6.6 Part 2. The setting for applying Lemma 6.6
is the following. The root ot is the vertexx,. The head set is the clusté& and the em-
bedding sets are the sex$ . YF, whereXY = {(1). The set of “forbidden vertices” i5; , =
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(UiUU<, 0t N (XFUYF). The sety;, is 1-packed with parametess and 1, by induction.
Now, Lemma 6.6 Part 1 allows us to embed the tfeso that

o H(tf) S (XTUYT)\ Ui,
e each vertex itV (t') with odd distance fronx; has at leasy?s/4 neighbors im,
e the setlUi UU,<, ¢(t))) N (XF UYF) is 1-packed with parametedsand.

Observe that the last property is sufficient for our indueagsumption on the sedi,, and also to
prove invarian{l1). The second property ensures invari(iﬁ) to hold. Propertyl2) is preserved.

In the case that; € Wg, setM; = {CBDB : CD € M, ¢(x) is typical w.r.t. bothCB andDB}.
Similar calculations as above give

Z d egB, (CBUD®B)\Uj) > v(T) + ak/16.
CBDBe;

We embed the tred$, 1 = 1,...,¢ using Lemma 6.6 Part 1 in the s@8UDB (CD € M) so that
invariants(11), (11), and(I3) hold.

Phase 2. In this phase, we embed the yet unembedded shrublets atljadah (i. e. Té-). We
label the shrublets of4- asty, . .. ,tWBL‘. In stepi > 1, we define the embedding for shrulileh a
suitable edg€D € E(G). SetU; = ¢ (V(TF UTM) UUj<iV(tj)). Letx € Wg be the parent of the
root of the shrublet;. The vertexp(x;) is typical w.r.t..#® and hence by (7.3) and (7.6),

ded ¢ (x),-£°) > d egB,.£®) — 2Bn
—degB,MBuU ) —d egB,MB) —2pn
> v(Tg) + ak/4—v(TM) — ak/8—2p8n
> V(Tg) +ak/16.

Thus there is a clust@® € .Z*\ V(M) containing a large unused neighbourhoo@¢f;). That is

_ _ ak Bs+T
IN(¢(xi)) "D\ Uj| > 16N > V2/2—ZB )

From (7.4) we obtain that
degD,V \U;) >degD,V\ (MFUAUB)) —|¢(V(Ts)) NUi| > v(t;) + ak/4.

Thus there is a clust€ € N(D) with |C\ U;| > 2/2 2[3 Use Lemma 6.5 to embédn (CUD) \ U;
so that the root; of the shrublet; is mapped to K¢ (x;)) "D\ U;.
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Phase 3. In this phase, we finish the embedding of the tree by embedti@gnd shrublets
adjacent toNx (i. e. Ta). We label the shrublets ofa asty, .. .,t .

Firstassume thatr U Zg is ¢y /2-balanced. The embedding will be defined for siep§.7a||.
In stepi for a clusterX € V(I\7I) denote byXy, the set of vertices iiX used by the embedding of
T UTg and oij<i t;. We find a suitable edgeD € M in which we embed the trae Letx; € Wi
be the parent of the root ¢f By Lemma 6.5, the shrublgtcan be embedded in unused vertices
of an edgeCD e M, C € N(A) in such a way that the root ¢fis mapped to a neighbor @f(x;),
whenevelCD satisfies

Yep = min{|N($ (%)) NC\ Gy, [D\ Dy} > v(t) +as. (7.9)

Thus we are able to finish the embeddingToff we can find an every stepan edgeCD € M
satisfying (7.9). Suppose that at some stefl there are no edges M with this property. Denote
by M; C M the submatching dfi induced by the clustefsX € V(M) : ¢ (x) is typical w.r. t.X}.
ThenY"CD < V(tj) + asfor anyCD € M;. The non-existence of a suitable matching edge implies
that 1
S Yeo< Y (1+as< SN(T+as) <an.
CDeM CDeM

On the other hand,

S Yeo2 ; (IN(¢ (%)) NC| — max{|Cy], [Dy;|})
CDeM M
CeN(A) CeN(A)

>k—yn—+/Bn— (W(Tr UTg) — c3k/4) — v(Ta)
>an,

a contradiction.
If 9 UZgiscy/2-unbalanced, thefrp is cy/2-balanced implying that mgR/ (TaNTe)|, [V (TaN
To)|} < V(Ta) — (cuy/2)%. Similarly as above, we find a suitable edg® € M, C € N(A) with

Yeo = min{|N(¢ (%)) NC\Cu|,[D\ Dy} = max{|V () N To|, IV (t) N Tel} + as.

The calculations that such an edge exists are left to theere¥de use Proposition 6.5 to embigd
in (C\ Cy,) U(D\ Dy;) with the root oft; mapped ta&C NN (¢ (x1)).

7.3 Casell

This case follows the lines of part of the proof from [22]. Fmmpleteness, and to adjust the
setting, we prove this part in all detail.

Denote byTp the forest induced by the componentsir and byTg the forest induced by the
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components inZg. Observe that(Tg) < v(Ta). If 24U Zg is cy-unbalanced, theit C G, as
shown by Proposition 4.3. Thus we may assume $hat g is cy-balanced. In the first part of
this section, after auxiliary Lemmas 7.1 and 7.2, we showemma 7.3 thal C G or the clusters
A andB are very densely connected to their respective neighbodrhtn the second part, we
prove in Lemma 7.7 that ¥/, the neighbourhood of the clust&yis well connected t¥ \ V', then
T C G. If V' is poorly connected t¥ \ V’, then we show that’ satisfies the properties required
by the statements of Proposition 4.4.

Let M be the maximum submatching bf not containing the clusters andB. With a slight
abuse of notation, we can wrid = M\ {ea, ez}, Wheree, andeg are the matching edges con-
taining A, andB respectively (the edge=, eg may be not defined, though). Observe that

min{d &¢A,V (M)),d gB,V(M))} > k—4on. (7.10)
PART I: Defining V'.
Lemma 7.1. Suppose that(fg) > v/ok. Theny o |d €dA, €) —d e@B,e)| < 9ok, or T C G.

Proof. Assume that(Tg) > v/okandy ey |d edA, e) —d egB, e)| > 9v/ok. Theny oy |d egA, e) —
d egB,e)| > 8¥/ak. We show that the C G. SetM! = {ec M : d eégA,e) > d egB,e)} and
M2 = M\ M™. Without loss of generality, we may assume that

d 8gA,V(MY)) —d egB,V(MY)) > 4¢/ok . (7.11)
Label the edges d¥l as{ey, ..., ey } so that for any < |, it holds that

deg(A)
deg(B)

deg (A)
> =
deg (B)

with the convention tha§ = +oo, for anyx > 0. Asv(Tg) > v/0k, there exists an indeksuch that

W(Ta)+ak < 5 d&g(A) < V(Ta) + ak+2s' < d EGAV (M) . (7.12)

1</

SetMa = {ey,...,&} andMg = M\ Ma. We claim that

d &gB,V(Mg)) > V(Tg) + ak. (7.13)
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We prove (7.13) by case analysis. If &Y (Ma)) < k/4, then
d &¢B,V (Mg)) degB,V(M)) —d egB,V (Ma))

7.10)
> k—4on—k/4>k/2+ak
>

V(TB) +ak.

(

If d 8gA,V(Ma)) —d €¢B,V (Ma)) > Y then

degB,V(Mg)) = degB,V(M))—degB,V(Mp))
U2 K aon—degAV (Ma)) + /Tk/4
(22 k—Vv(Ta) ++/0ok/4—4on—ak—4s
V(TB)—i—CYk.

~

~

>
>

Hence, we may assume in the rest of the proof of (7.13), that
degB,V(Ma)) >k/4, and (7.14)

degA vV (Mp)) —degB,V(Mp)) < @(. (7.15)
First, we consider the case whene M?. We deduce from (7.11) and (7.15) that
degB,V (Ma\M1)) —d egA vV (Ma\MY)) > (4¢/a — /T /4)k > 2¢/aqn.
Hence there is at least one matching edge Ma \ M* for which
d egB, e,) — d egA, 1) > 2¢/aqn/|Ma\ M| > 4¢aqn/N .
Therefore, for the numbegy, = d edB, e/)/d egA, &) it holds,

degB,e,) - 4y/aqn

> 1> 29 1 7.16
pg_degA,ea)_ 2sN +122V0q+1, ( )
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and thus

degB,V(Mg))

> ecMg,d 8gA.e)—00 €4B, €) + ¥ ecMy d 86A.€)£0 g 25\2 degA,e)
= pe-(degAV(M)) —degA,V(Mp)))

(7.10)&(7.12)

v

> p¢- (V(Te) —50n)
(7'216) 2/oq(v/ok—50n) +v(Tg) — 50n
> v(Tg) + ak.

Now, assume that, € M. From

d egA,V(Mp)) (7.15) ok (7.14)
degB.V(Ma) ~ 4-degBNV(Ma) - = Vo1,

we deduce that there exists an edge Ma such that d €d\ e,) < (v/o + 1) -d egB, e,). For any
j > £itholds
degA.e;) _ degA )
1. 7.17
degBeJ)_degB )<\/_+ (7.17)

If d edB,V(M)) < 3k, then

4 ak (7511) Secmi(d €gA e) —d egB,e)))
= Yi«(degAe)—-degB.e))+y j-r (degA ej)—degB,ej))

e,—eMl
2" dEgA V(M) — dEEB,V(Ma) + /G- d &GB,V(ML\ My))
N
< 40k,

a contradiction. It remains to consider the case wheriBl%gM)) > 3k. As e, € M1, we obtain

d egB,V(Mg)) = d egB,V(M)) —d egB,V (Mp))
> 3k—d egA,V (Mp))
>k—Vv(Ta) +2k—ak—2s
>V(Tg) +ak.

We have thus proved that Inequality (7.13) holds in all cases

We say that a vertex i&-typical if it is typical w.r. t. clusteB and typical w.r. t. all but at most
\/EN clusters o/ (Ma). We say that a vertex B-typical if it is typical w. r. t. clusteA and typical
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w.r.t. all but at most/BN clusters oV (Mg).

Label the vertices ofVa asay,...,aw, so thati < j whenever =g a;. Similarly, label the
vertices ofWg asby, ..., by in @ non=g-increasing way. We embed the tréen the graphG
using the standard embedding procedure. We start the ennigegdibcess with the rodR and
proceed downwards in theér order. We embed the vertices 0 in A-typical vertices of the
clusterA and the vertices oB in B-typical vertices of the clustdB. The shrublets ofZp are
embedded in edges &M and the shrublets ag are embedded in edges Wliz. Adjacencies
between the vertices &y andWg, and between the shrubletg, U 25 and the seedd/y UWs
are preserved during the embedding. We use Lemma 6.6 Paxrtlén to embed the shrublets.
It remains to set up enviroment for Lemma 6.6. In the first stepembed the rodR in an A-
typical vertex inA (if R € W) or in aB-typical vertex inB (if R € Wg). Suppose that vertex
a; € Wa was embedded in A-typical vertex inA and we want to extend the embedding to the
unembedded neighbors af. Let 9(3") C 94 be the set of shrublets belaay which neighbor;.

SetW®) =WenN(a)NT(| &) andW( %) = N(V(U2Z3))NT(| a). The shrublets o7® and
the vertlceSNA( &) UWBE %) will be embedded in this step. LM,&a‘) contain those edgesof Ma such

that the image od; is typical with respect to both end-clusterseofDefine an auxiliary mapping
7@ : 7 M@ in such a way that

degA e) > z v(t) +|U @ mUe\+2A+T+5Bs for eache e M&a‘),
te(¢@) (o)

whereU (@) is the set of vertices o6 used by the embedding in the previous steps, And
(Bs+1)/(y?/2—2B). It follows from(7.12) and from thé-typicality of the image of the vertex

a that such an mapping(@) exists. Lemma 6.6 Part 1 ensures that we can embed each each
shrublett € 2 in the edge(@)(t). Moreover, the embedding a#\® is such, that all the
vertices oi\NA(a‘) can be mapped tA-typical vertices inA. It is easy to embed the vertices\méa‘)

in B-typical vertices oB. This finishes the inductive step fay € Wa. The case of extending the
neighborhood of the vertdy € W is analogous. O

Lemma 7.2. Let M* C M be a matching such thagN < [M*| <gN/8, let {U; };cw, be a system
of sets of vertices of G such that for everg YW, it holds U C (JV (M), and let¢ : Wa — A be a

mapping that maps every vertex W to a vertex which is typical w. r. t. all but at mo§tﬁN sets

of {C\U; : CeV(M*)}. LetZ* C Za be such that

V(T*) = dBGAV (M")) + 1M

where T is the forest induced by the treesdr.
If the mapping can be extended to an embedding of the subfopég UV (T*)] so that
¢ (V(T*)) CUV(M*), then TC G.
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Moreover, the same holds if we interchange the roles oWWth Wi, and Za with Z.
Proof. Label the edges d¥l \ M* as{ey, ..., en}, wherem= |M\ M*|, so that, ifi < j, then

degs,e) _ degB.e))

degA.e) — degAg)

Fix £ € [m] so that the matchinlylg = {ey,...,&} C M\ M* satisfies

v(Tg) +ak < degB,V(Mg)) < Vv(Tg) + ak+2s. (7.18)
The choice of is possible from the bound*| < gN/8. SetMa = M\ (Mg UM*). We claim that
degA,V(Ma)) > [V(Ta—TH)|+ak. (7.19)

To prove (7.19), first assume thaflg) > /ok. From Lemma 7.1, we may assume that

d8gAV (Mg)) —d 868,V (Mg))| < |d &6A,€) —d &¢B, e)| < 9/,

ec
since otherwisd C G. This implies that
dedA,V(Ma)) > degA V(M) —d egB,V(Mg)) — 9ok —d egA,V (M*))

(7.10)&(7.18) s
> k—40n—v(Tg) — ak— 25— 9y/0k —v(T*) 4 J5|M*|
> V(TaA—T%)+ak.

Now, we consider the case whefllg) < v/ok. If 2 > d egA,e,)/d egB, &), then

d egA,vV(Ma)) degA,V(M)) —d egA,V(M*)) —d egA,V (Mg))

k—4an—v(T*)+ L1 —d &8,V (Mg)) - d 8¢A,V (Mg))/d €GB,V (Mg))
K+ "2—2(;‘ —4on—v(T*) — (v(Tg) + ak+2s)-d egA,e/)/d edB, &)

K+ "2—2(;‘ —4on—Vv(T*) —v(Tg) — v/ok—2ak —4s

V(TaA—T*)+ak.

—
~
=
(=]

=

(AVARAVARN AVARR VA

On the other hand, if d &4, e/)/d e¢B,e,) > 2, then

degAV(Ma)) > 2-degB,V(Ma))
> 2.(degB,V(M))—2sM*| —degB,V(Mg)))
(7'210) 2(k—4on—sgN/4— /ok— ak—2s)
> V(Ta—T7)+ak.
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For a seU C Ucey(m+)C, say that a vertex i8A,U)-typical if it is typical w.r.t. the cluster
B, typical w.r.t. all but at most/BN clusters oV (Ma), and typical to all but at mosy/BN sets
C\U,CeV(M*). Say that a vertex iB-typical, if it is typical w.r. t. clusteA and typical w.r.t.
all but at most,/BN cluster otV (Mg).

We embed the tre€, starting with the rooR and progressing downwards in thg-order. We
embed the verticase Wy in (A, U, )-typical vertices of the clustek, and embed the vertices g
in B-typical vertices of the clustd8. According to the hypothesis of lemma, the shrublets/of
are embedded in the edged\wf. Then the shrublets dPa\ 2* are embedded iNa, and the ones
of Zg\ 2* in Mg. The embeddings a¥x \ Z* and of Zg are ensured by Lemma 6.6 Part 1, in
a standard way. It remains to check whether the conditiotiseoEemma 6.6 Part 1 are matched.
If we denote byM' the submatching dfla such that; € ¢ (Wa) is typical to all its clusters, then
degA V(M) > d 8¢A,V(Ma)) — 24/Bn > v(Ta— T*) + ak — 2,/Bn. We can thus partition the
setZp\ 7" = Unepwn) Ueemi Zi'e in @ suitable way so that each partition cla&g embeds in the
edges of M' using Lemma 6.6 Part 1. Similar calculations hold .

We briefly sketch the “moreover” part of the statement, wité toles oMy with W, and Zx
with g interchanged. Consider the subforéstof Ts composed by components @ with

V(T*) > d 8¢A,V (M*)) + g—g’\M*\ .

Observe that we need to check only the case wii@g) > /ok. Similarly as before, we can find
a submatchingylg C M\ M* so that

V(Ts—T*)+ak<dedgAV(Mg)) <v(Tg—T")+ak+2s.
SetMa = M\ (MgUM?*). From Lemma 7.1, we obtain th&tC G, or we deduce that
degB,V(Ma)) > v(Ta) + ak.

We use Lemma 6.6 to map the verticesWg to vertices inAthat are typical w. r. tB, typical w.r. t.
all but al most,/BN clusters oV (Mg), and typical w.r.t. all but al mos{/BN setsC \ U;,C €
V(M*); we mapWj to vertices inB that are typical w. r. tA, and typical w. r. t. all but at moan?N
clusters oV (Mpa). EmbedT* in M*, Tg — T* in Mg, andTa in Ma. O

We consider the following submatchingsMf For a clusteX € V(G), set

My ={CDeM : degX,C) < nsand d gX,D) > (1—n)s},

MX ={CDeM : degX,C) e [ns,(1—n)s ordegx,D) € [ns,(1—n)s},
MS = {CDeM : degX,CuD) < 2ns}, and

M~ (X) =M UM UMS .
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Lemma 7.3. It holdsmax{|M%},|MB|, M2, IMB|} < 20N, or TC G.

Proof. We prove only that if mag M2, [M%|} > 2nN, thenT C G. The case when mgkviZ|, [MB|} >
2nN is analogous. Assume thad£| > 2nN (resp.M%| > 2nN). Choose a submatchimg C M2
(resp.M* C MQ) of size 7N. We know thatZa U Zg is cy-balanced. Hencé&j is ¢y /2-balanced
or g is cy/2-balanced. Suppose first thad is cy/2-balanced. Consider a minimal subset
9* C 9a such that it induces a forest of order at least(@&8g(M*)) + n?n/10, and such that if
te 7%, thenmid |V (t)NTol|, [V (t)NTe|} > cy/2-v(t). Let T* be the forest induced by the compo-
nents of7*. We use Lemma 7.2 to show thatC G. To this end, it is enough to extend a mapping
¢ :Wa — A satisfying the conditions of Lemma 7.2 to an embeddin§ofWe label the vertices of
Wa asra, r, ..., M, SO that ifri <grj theni > j. Set7;" = {te 2" : V(t)NCh(ri) # 0}. Ateach
stepi > 1 setUj = ¢(UjV(Z])) C V(M¥) for the set of used vertices used for the embedding
in previous steps. Observe thag N (CuD) = 0 for all CD € M* and thus it is 1-packed (resp.
2-packed) with any parameter and with respect to the emhbgaditsC, D, and the head sét Set

M*(r;) = {CD € M* : r; is typical w.r. t. bothC\ U, andD \ Uy, } ,

whereUy, = 0 if M* C M3, andUy, = U; if M* C M2 (we defineJy, inductively, as the embedding
of T is always defined step by step in thg order). The embedding is extended separately for
* 1 * 2 _ Bstr
M* C Mz andM* C Mz. SetA = /228"
First consider the case whéf* C Mf. We shall use Lemma 6.6 Part 2. Rar 1, the set);
is 1-packed (with paramet@r andT) by induction for any pair of embedding s€t, D), where

CD € M*. SetA; = A+ 1+ 3Bs. By the choice oZ7*, we know that

max{|V(Z7) N To|,[V(Z7) N Te|} + > DU

_ CDem*
d &gAD)>(1-n)s

UV(Z))

i<i
n°n
(1—7)((1 8GA.V (M*)) + 1O+r)

< > d 8¢A, D) +2y/Bn+7n%n—cynn
CDEM* (1)
d8GAD)>(1-n)s
< Y dEAD) - M(n)|(T+ A +A+pS).
CDEM* (1)
degAD)>(1-n)s

1__

Thus we can partition the sét” in setsZ}’, for each edge € M*(r;) satisfying the conditions of
Lemma 6.6 Part 2 (fa = A, U =U; and fore=CD, we haveX =D, where d egA\,D) > (1—n)s
andY = C). We thus embed the forest’, in the edges € M*(rj).
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Now consider the case whé* C M2. We shall use Lemma 6.6 Part 3. Theldgtn (CUD),
is 2-packed (with parametefs and 1) by induction, for allCD € M*. SetA, = 2A+ 7[3s+ 4T.
Observe that each tree 6f* has at least two vertices.

_ n2n
Uv(z)| < (d egA,V(M*))+1—O+r)
j<i
_ n2n
<y degA,CUD)+\/En+E+T
CDeM*(ry)
_ ns
< z degA,CuD)JrN(4 T).

CDEM*(r;)

Thus we can partition the s&" in setsZ}’,, € € M*(rj) satisfying the conditions of the Lemma 6.6
Part 3, forZ = A, U =U,, and fore=CD we haveX = C andY = D. We thus embed each forest
e Inthe edgee.

If Zg is cy/2-balanced, we interchange the rolex¥ and Zg, and ofW andWg in the above.
O

The pair of cluster$A, B) was characterized by the following properties:
e ABEE(G),
e ABc 2'NnZ.

Thus, any pair of clusterX,Y), such thaKY € E(G), andX,Y € 2" N_.Z can play the same role
as the clustersé andB, in particular Lemmas 7.1, 7.2, and 7.3 can be applied to aoly pair of
clusters(X,Y) to obtainT C G, or max|MJ|,|MY|,|MX|,|M¥|} < 2nN. Thus in the following it
is enough to consider the latter case. Then, for@ry2”" N2 NN(Z"N.¥L) we have

degC,v(M~(C))) < 10nn. (7.20)

ChooseM*(A) € M\ M~ (A) maximal such that fok’ = Ucpem:(a)CUD we have|V'| <
k+2s. We claim that

ILNV/| > |V'|/2,and (7.21)
V'| > d egA,V') > k—10.5nn. (7.22)

For property (7.21) it is enough to observe that at leastdfdtie vertices in any eddeD € M*(A)
are large. Property (7.22) is proved by analysing two cdédd:(A) = M\ M~ (A), then

_ _ ~ _ (7.10)&(7.20)
degA V') >degA V(M) —-degA V(M (A))) > k—4on—10nn>k—105nn.
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If M*(A) #M\ M~ (A), then d eA,V') > (1—n)k >k—105nn.
Observe that for an € 2" NZNN(2Z"N.ZL), similarly as above, we obtain

_ ~ (7.10)&(7.20)
de¢C.v(M\M~(C))) >  k—-105nn. (7.23)

If eg, (V/,V\V') < wn?/2, theneg(V',V\V’) < wn?, as by cleaning the cluster graghwe
deleted at mosty? edges, andg(V,V \ V) < Bn? (recall thatB < y < w). The seV’ satisfies
the requirements of the Proposition 4.4.

PART II: Escaping from V’. In the rest of the proof, we assume that
e, (V,V\V') > wn?/2. (7.24)

Under this assumption, we show tiatC G. We use the edges betweghandV \ V' in order to
“escape” fromV’. More precisely, we save space in the neighbourhoddinf embedding part of
the foresfTa in V \ V'.

Set7=3={tc In: |V(t)\NWa)| >2} and.7=>3 = {t € Za\ 722 : v(t) > 3}. Fori = 1,2
set.7' = {tc Za : v(t) =i}, and byT' the forest induced by’' . Observe that7 =3, 7,23, 72,
and .71 partition Za. Since the distance between any two vertice®Vinis even, for each tree
t e 71U.72, only the root ot is adjacent ta\j.

Lemma 7.4. |V (U{t € 723})| < 36nn,orTCG.

Proof. Suppose tha¥ (J{t € 7=23})| > 36nn. We show thal C G. Choose a maximal foresg
of order at most 36 (1 — 2n)n formed by components of =3. Thenv(T;) > 36n(1—2n)n—1.
This forest contains relatively few vertices adjacentg more precisely

IN(Wa) NV (TZ)] < 12(1—2)nn -+ [Wa| . (7.25)

As eg, (V/,V\V') > wn?/2, for at leastoN/4 cluster<C € V(G),C C V/, it holds d e,V \
V) > wn/4. All but at most 3N of these clusters have the property that(@©&g(M)) > d egC) —
3on—4s> d e¢C) — 4on (from the assumptions of Case Il). Thus

d &¢C,V (M \ M*(A))) > %—4an. (7.26)

Let ¥ be a set of 18N such clusters. We shall use the clusterssiras bridges to embed part
of T5 outside ofV’. In &, we shall embed the vertices ©f that are adjacent td/5, and the rest
V (T;) will be mapped t&/ \ V'. We cannot then use the clusters that are matched&vithymore,
however this loss is overcompensated by the amount of esrG€T, that we are able to embed in
VAV
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SetM* = {CDe M*(A) : {C,D}N% # 0}. Then,
max{d egA,V(M*)),d e¢B,V(M*))} < 24nn (7.27)

and thus

d egA,V(M*(A)\M*)) > d egA,V') — 24nn (7'222)k— 35nn
>V(T)—Vv(Tx)+nn/2. (7.28)

We claim that there are disjoint submatchindgs andMg of M \ M* such that

(Ta) =V(Tx)+nn/8, and (7.29)

dedA,V(Ma))
B (Tg) +nn/8. (7.30)

> Vi
d &¢B,V(Mg)) > v

To prove the existence &l andMg satisfying (7.29) and (7.30), we consider two cases based on
the order ofTg.

(1) Firstassume that(Tg) > v/ok. Lemma 7.1 implies that that

_ B (7.22)
degB,V’) > degA V') -9/ok > k-—11nn.

Similarly as in (7.28), we obtain d@yV (M*(A) \M*)) >v(T) —v(T5)+nn/2. Requirements (7.29)
and (7.30) follow by application of Proposition 3.7. IndeedttingA = 2s,a= v(Ta) — V(T5) +
nn/8,b =v(Tg) + nn/8,1 = M*(A)\ (A)\ M* and fore € | settingae. = degA,e) and e =
d egB,e), we infer that the matchinyyl \ M* can be partitioned into two submatchinis, and
Mg satisfying (7.29) and (7.30).

(&%2) Now assume that(Tg) < v/ok. Then

(7.23)&(7.27)
>

degB,vV(M\ (M~ (B)UM k—10.5nn—24nn

> v(Tg)+nn/8.

Let Mg C M\ (M~ (B) UM*) be such tha¥(Tg) + nn/8 < d é¢B,V (Mg)) < v(Tg) + nn/8+ 2s.
Equation (7.30) holds. Recall thBtis densely connected td \ M~ (B), thus

2s-|Mg| < (v(Tg)+nn/8+2s)/(1—n)
< 2y/ak+ (nn/8+n°n/4) +4s
<nn/4. (7.31)
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SetMa = M*(A) \ (M*UMg). Then,

degA,vV(Ma)) > degA vV (M*(A)\M*)) —2s- [Mg|
(7.28)&(7.31)
> V(T) —Vv(Tx)+nn/2—nn/4
> V(Ta) —V(Tx) +nn/8,

implying (7.29).
In both cases, observe that for each clu€teré we obtain

_ ~ (7.26) 7.31
dedC,V(M\ (MgUM*(A)) > wn/4—10nn—4s—23\MB\M*(A)|(>)a)n/8. (7.32)

Say that a vertex ig-typical if it is typical w.r.t. clusteB, typical w.r.t.%, typical w.r.t. all
but at most,/BN clusters oV (Ma). Say that a vertex iB-typical if it is typical w. r. t. cluster,
and typical w. r. t. all but at mosy/BN clusters oV (Mg).

We embed the tre& in the graphG starting with the rooR and progressing downwards in
the <r-order. We embed the vertices W in A-typical vertices of the clustek, and embed the
vertices ofWg in B-typical vertices of the clusteB. The forestTa — T, is embedded iM and
the forestTg in Mg. The set NWa) NV (T;) is mapped to vertices i# that are typical w.r.t. all
but at most,/BN clusters oV (M \ (M*(A) UMg)), and the foresT; — N(W,) is embedded in
M\ (M*(A) UMg). Adjacencies are preserved. To emigd- T, Ts and T — N(Wa), we shall
use Lemma 6.6 Part 1.

Let v be any vertex inp(Wa), and let the seM consist of the edgeXY € M such that is
typical to bothX andY. Similarly defineMy for a vertexv € ¢(Wg) and(M \ (M*(A) UMg))" for
avertexve ¢(N(Wa) NV (Ty)). Then,

deg A,V (MY)) = |V (Ta) \V(TR)| +nk/4—2y/BNs> |V (Ta) \V(Ta)| + ak.
Forv e ¢ (Wa) by (7.25) it holds

degv,¥) > d egA, ) — Bs|¢|

>d
> (1-n-p)12nn
> [N(Wa) NV (Ta)| +ak.

Similarly, we obtain d €8,V (Mg)) > v(Tg) + ak for ve ¢ (Wg), and
degC, (M\ (M*(A)UMg))") > wn/8—2,/Bn > v(TZ) +ak,

for ve ¢(N(Wa) NV (TR)). For eachr € Wa, we extend its mapping to an embedding of the
components offa — T4, with root in CHr). This is done by filling up the cluste(s andD, for
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everyCD € Mﬁ(r). Lemma 6.6 Part 1 ensures that we can embedDne Mf(r) components of
total order of at leastd 8 CUD) — ak/2 (the set) denotes the set of used vertices; it is 1-packed
by induction). The embedding @k and of T, — N(Wa) are treated similarly. O

Now we have the tools to prove Lemma 7.5. It considers thasdn when a substantial portion
of the edges betweaff andV \ V' does not emanate froif. Set¥ = {C:CDe M*(A),C¢ £}
andS= . ~C.

Lemma 7.5. It holds &, (SV \V’) < 32nn, or TC G.

Proof. Assume thaeGy(éV \V/) > 32nn?. We show thafl C G. For this, we consider three
cases. The first cag€1) deals with the case when there are many leavd@sajacent to vertices
of Wa. As such leaves can be embedded at the end in a greedy wagnivugh to embed a sig-
nificantly smaller tree. The second possibili§2) deals with the case when the $gt contains
many ‘large’ components. This case was treated in the Lem#drvthe last part of the proof we
consider the remaining caé€3), when most of the trees i##p are paths of length 2.

(CL) If |Uie 71V (t)| > 2nn, then consider the subgrah=T —V(T?) obtained froni after
deleting all leaves adjacent¥d,. Observe thal’ is a tree.

V(T')+nn<k—nn<min{d egA V(M)),d egB,V(M))} .

By Proposition 3.7, there exists a partitih = Ma U Mg such that d 4,V (Ma)) > [V (Ta) \
V(TH|+nn/4 and d &B,V(Mg)) > v(Tg) + nn/4. We then define the embedding Bf in a
standard way. The trees of ! are leaves whose parent vertices are mapped &nd can be
embedded greedily. This implies thRtC G.

(C2) By Lemma 7.4, if] ;c #>3V (t)| > 36nn, thenT C G.

(C3) If |Ure >3V (t)| < 36nnand| Use 71V (1) < 2nn, then the trees fron@a \ (723U 71U
72) consist only of trees of order at least 3 that contain only\a@réex not adjacent td/.

U v

te.72

=v(Ta) - J V@O -wThH—-| |J V)

teg23 te%zg‘
> k/2— [WaUWB| — 36nn—2nn— 3\Wh|
> 26nn.

Let T, be a maximal forest of order at mostrpéformed by trees fron” 2. Observe that 26n —
T <V(Tx) < 26nn.
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There are at least 1N clustersC € . for which d 8¢C,M \ M*(A)) > 16nn. Let% be a set
of size MmN formed by such clusters contained in different edgdsl o5et

M* = {CD e M*(A) : {C,D}N% # 0} .
From d e@A,V(M*)) < 14nnwe deduce that

degA V(M*(A)\M*)) > k—11nn—14nn > k—251n
>V(T)—=v(Tx)+nn.

We claim that there exist disjoint submatchinds andMg of M\ M* such that d €4,V (Mp)) >
V(Ta) —V(Tx)+nn/8 and d @,V (Mg)) > v(Tg) +nn/8. We consider two cases, depending on
V(TB).
(#1) First assume that(Tg) > v/ok. Then, similarly as above and by Lemma 7.1, we have
thatT C G, or
degB,Vv(M*(A)\M")) = V(T) - (Ta) +nn.

Using Proposition 3.7, we partitidf’*(A) \ M* in two submatching®la andMg so that d €&\, (Ma)) >
V(TA)\V(T2)[+nn/8 and d &@,V (Ms)) > v(Tg) +nn/8.
(#2) If v(Tg) < v/0k, then choose a submatchiig C M\ (M~ (B) UM*) so that

v(Tg)+nn/8 < degB,V(Mg)) <Vv(Tg)+nn/8+2s.

It follows that X- |Mg| < (v(Tg) +nNn/8+2s)/(1—n) < nn/4. SetMa = M*(A)\ (M*UMp).
Then,
dedA V(Ma)) > V(T) —Vv(Txy) +nn—2s- M| > v(Tao—Tx)+nn/8.

Say that a vertex i&-typical if it is typical w.r.t. clusterB, typical w.r.t. %, typical w.r.t.
V(M*)\ &, typical w.r.t. all but at most/BN clusters ofV (Ma). A vertex isB-typical if it is
typical w.r. t. clusterA, typical w.r.t. all but at mos{/BN clusters oM.

We embedr progressing downwards in théz-order. We embed the verticesWj in A-typical
vertices of the clusteh, and embed the vertices B in B-typical vertices of the clustés. The
forestTa — T, is embedded iMpa, and the foresTg in Mg. The roots of half of the foresiy are
mapped to vertices i’ that are typical w.r.tv (M \ (M*(A) UMg)), and the neighbours of such
roots are mapped to the 3&t V. The left-over roots of; are mapped to vertices ¥f{M*)\ ¢,
and their respective neighbours are embedded greedilg.ig possible, as vertices\AM*) \ ¢
are large vertices. We use Lemma 6.6 Part 1 in a standard wagan to embed the components
of the forest in the respective matching edges. Adjaceranepreserved. Details are left to the
reader. O

SetM_. = {CD e M*(A) : {C,D} C.Z}. In the same spirit as above, we prove the following
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auxiliary lemma.

Lemma 7.6. It holds|M_| < 7nN,orTC G.

Proof. The proof is analogue to the one of Lemma 7.5 and thus we p@ntly a short sketch of
it. Assume thatM_ | > 7nN. We chooséV* C M of order N. We partitionM \M* =MaUMg
as before. The s&f/y is mapped to vertices that are typical w.r.t. clu®etypical w.r.t.V(M*)
and typical w.r.t. all but at most/BN clusters oV (Ma). The set\g, the forestTa \ T, and
the forestTg are embedded as above; the rootdpfare mapped to vertices [V (M*) C L; the
left-over leaves are embedded greedily. O

Lemma 7.7. Under the above assumptions, it hold<TG .

Proof. Assume thagg, (V'\ SV \V’) > wn?/4 and thatM_ | < 7nN. We show that thesg, (S V \
V') > 32nn? and by Lemma 7.5, this implies thatC G.

For at leastwoN/4 clustersC of V(M*(A)) \ . it holds that d &6,V \ V') > wn/4. As such
clusters are in NA) N.Z, atleastwN/4—1 > wN/8 of them are inZ” N.Z (see Proposition 6.4).
Denote this set b¥’. By (7.20), we obtain fo€ € ¢ that d e(C,V(Mc)) > wn/4 — 11nn, where
Mc =M\ (M~ (C)UM*(A)). At least nearly half of the weight fro to Mc goes to clusters that
are in.Z, as all matching edges are incidenitband the degrees to both end-clusters cannot differ
too much. Also all but at most one cluster\6fMc) N are in.2”. Therefore d €€,V (Mc) N
2'NZ) > wn/10.

Set? = UcegV(Mc)N 2" N.ZL. Then|2| > wN/10. We deduce thats, (U%,U2Z) >
(s-wN/8) - wn/10= w?n?/80. From (7.20), we infer that ea€hc 2’ sends at most Iinsedges
inM~—(D). Sod e, % \V(M~(D))) > w?n/80— 11nn > w?n/100. The clusteD has also large
degree to the clusters which are matche@toV (M~ (D)) by M*(A). As |M_| < 7nN, nearly all
those clusters are i¥’. We deduce that d @,S) > (1— n)w?n/100— 7nn > w?n/200 and thus

' 9 wNs w”n
eg, (V\V',S) > eg, (U{De.@} S) o 200 > 32nn?,

what we wanted to show. O

This finishes the proof of the Proposition 4.4.

8 Extremal case (proof of Proposition 4.1)

Let ybe suchthaB <« y <« 0 <« 1. Throughout this section we write = ci(n/k). It holdsA < 3.
The setd/, i € [A] are callecclusters.

1The notion of “cluster” in Section 8 is very different fromettone used in other sections of the thesis. There, a
cluster is a vertex set obtained by the Regularity Lemma.
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Suppose thaB admits a(3, o)-Extremal partitiorVy, ..., V, V. In any clustel; most of the
vertices ofV; NL are adjacent to almost all vertices of the cluster. Likenasmost every vertex in
Vi N Sis adjacent to almost all large vertices of the cluster. Wketnihese statements precise in the
following claim, however throughout the rest of the sectiemjust refer to3, o)-Extremality to
use similar properties.

Claim (Properties of a cluster in @, 0)-Extremal partition) For any i€ [A] and any c> O the
following holds.

1. For all but at most,/Bk/c vertices \c Vi NL it holds thatdegv,V;) > k — c,/Bk.

2. For all but at mos®./Bk/c vertices v« Vi NS it holds thatleg'v,ViNL) > |Vi NL| —c/Bk.

Proof. 1. LetU ={veVinL : degv,Vi) < k—c,/Bk}. Since every vertex € U sends at
leastc,/Bk edges outsid¥;, we deduce frone(Vi,V \ Vi) < Bk? that|U| < /Bk/c.

2. LetW = {veVinS: degv,ViNL) < ViNL| —cy/Bk}. From

e(ViNL,ViNS) > [VinL|k—|Vi NL?— Bk? > Vi NL||V; NS —2Bk?, and
e(ViNL,ViNS) = e(ViNL,W) +e(V,NL,V; NS\ W)

< (ML —ey/BR)IW|+ M NL|(ViN S — W)

= [ViNL|M NS —cy/BKW]|

we infer thatW| < 2./Bk/c.
0]

(Using the above claim with = 1 will be sufficient for our purposes.)

For eachi € [\]we setl' = {u€ L : degu,Vi) > (1—y/2)k}. Observe thaL'| > (1—y/2),
and thatd(G[L', A]) > |A| — yk for everyA C V.

The (B, 0)-Extremal partition has two subcases. Italsundantif there existsi € [A] with
IL'| > (k+1)/2, and it isdeficientif |L'| < (k+1)/2 for alli € [A].

For eachi € [A] we setS, = {ve SNV, : degv,L') > |L'| — yk/2}. Observe that the se§ are
pairwise disjoint, and thgt' US| > (1— y/2)k.

The goal of this section is to prove Proposition 4.1. Thagigen a(3, o)-Extremal decompo-
sitionVy, ..., Vy,V of V (with B < &) we have to show thafy,1 C G, or there exists a s C V
such that

e |Q|>Kk/2.
e [QNL[>|Ql/2.
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e &(Q,V\Q) < ak?.

The proof of Proposition 4.1 is decomposed into two sepasttements, Proposition 8.1 and
Proposition 8.2, according the number of leaves of theTreeZ  ; considered.

Proposition 8.1. Let T € %1 be a tree that has at mo60yk leaves. Furthermore, suppose that
G admits a(3, 0)-Extremal partition Y, ...,V, V. Then TC G, or there exists a set Q V such
that

e |Q|>k/2.
e [QNL|>|Q[/2
e e(Q,V\Q) < ok?.

Proposition 8.2. Let T € % ; be a tree that has more th&0yk leaves. Furthermore, suppose
that G admits g8, o)-Extremal partition\(,...,V,,V. Then TC G.

The proofs of Propositions 8.1, 8.2 occupy Sections 8.1 82gdespectively.
Let us first rule out some easy configuration from further aerations.

Lemma 8.3. Suppose that G admits(@, o)-Extremal partition V..., V, V. Any tree Te Ji,1
with discrepancy at leagtyk is a subgraph of G.

Proof. ChooseL* C L' with |L*| = (1— y/2)%, and setS" = (L'US,) \ L*. Observe thafS‘| >
(1-y/2)%, and thus

min{4(G[L",S7),8(G[S',L7]), 6(G[L",L*])} = (1—y/2)k/2—yk/2 > (1-3y/2)k/2.

Take the semiindependent partitity,U,) of T witnessing that digd ) > 2yk. Denote by the
set of leaves of . Since by Fact 3.2

U2 \W| < [Uy] < (k+1—(2yk))/2 < (1-3y/2)k/2,
we may apply Fact 3.5 to embd&din G using the sets* andS'. O
Lemma8.4. 1. The sets{Li}iew are mutually disjoint, or%.1 C G.

2. Suppose thal = 0. If there exists a vertex@ L\ (J;L'), then.%. 1 C G.

Proof. For eachi € [A] fix A; C L' a set of sizd1/2— y/4)k, and seB; = (L'US,) \ A,
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1. Suppose that there exist distinctindicgss [A] and a vertexic L'NLI. LetT € %, 1 be ar-
bitrary. By Lemma 8.3 we can assume in the following that@gc< 2yk. Sincee(V;,V;j) <
BK2, it holds that|L' NLI| < yk. By Fact 3.1 there exists a full-subtréeC T rooted at a
vertexr such thatv(T) € [k/6,k/3]. We mapr to u, and the tre€l to G[A;, Bi] greedily
(this is possible since m&kTe NV (T)|,[ToNV(T)|} < V(T)/2+ 2yk, by Lemma 3.3). By
Lemma 3.3 it holds mif| TeNV(T —T)|,| TonV/(T = T)}| > W(T —T)/2—2yk, and we infer
that max{|TeNV(T —T)|, |TonV (T —T)|} < Bk/12+ 2yk, we can embed — T in G[A;, B}
greedily (avoiding the previously used verticed bf1 L).

2. Suppose that there exists a vemiex L \ |J; L'. By Part 1 of the lemma, we may assume that
the setd ' are pairwise disjoint.

We saw in the proof of Part 1 of the lemma that the gra@p4, Bi] are suitable for em-
bedding a tree whose both color-classes have sizes at(fy@&st 2y)k, and of a tree with
substantial discrepancy. We shall consider 3gts A; andY; C B; which have even better
embedding properties. Define

Xi={ueA :deqvV,) > (1-y/(139))k}, and
Y, = {ueB; : degv,L') > X — yk/(139)} .

It holds that
Vi\ (6 UY)| < vk/(392) . (8.1)

As X; C L' andY; C S;, all the sets; andy; are pairwise disjoint. LeT € .1 be arbitrary.
Analogously as in the proof of Lemma 8.3 it hol@isC G if disc(T) > yk/(63). Therefore
we assume that di§€) < yk/(69). By Fact 3.1 there exists a full-subtréeC T rooted in
a vertexr such thaw(T) € [0.3k,0.6k]. We will embed the whole tre€ in G, mappingr to
u. Let D be the set of leaves df in Nt (u). We first embed the treE — D. The embedding
is then extended to an embeddinglofising the property of high degree wf

A 2*-componenis a component of the fore$t—r of order at least two. Let” be the family
of all 2F-components. For any subfamit§’ it holds by Lemma 3.3 and the assumption
disqT) < yk/(63) that

max{V (") NTo,V(€") N Te} < [V(€")]/2+ yk/(129) +1. (8.2)

By (8.1) at mostyk/(39) vertices of the grapl® are not contained ifJ;(X UY;). Thus,
dequ,|J;(XiUY;)) > (1—y/(39))k. We shall assign each"2component € ¢ an index
ic € [3]. The idea is that eacht2component will be mapped to the clusigr. Thus the
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following requirement on the assignment for egch [3] is natural:

dequ, XjUYj)>\{C€‘€|ic:j}| , and (8.3)
Y V(C) < (1-2y/3)k. (8.4)
Ce¥

ic=]

We argue that such an assignment exists. We order'tieehponents in an arbitrary way as
C1,...,C¢- Without loss of generality, we assume that@eg; UY;) < ... < degu,Xs U
Yg). Forj=12,...,9 we sequentially assign the yet unassignédc@mponent< the
index j (i.e., we setic = |) as long as (8.3) and (8.4) hold. If one of the conditions is
to be violated (for steg) we proceed with assigning the components the inpextL. It
remains to check that there are no unassigneddmnponents left when we finish the step
] = 9. Indeed, if all steps were terminated because of condi®o8) (then we are done.
Otherwise, suppose that we assignédc®dmponent<y,...,Cx_1 the indices 1...,j —1

in such a way that the terminating rule performed was (8.3), then the 2-components
C«,Ck+1,--.,Ckrw_1 Were assigned the indgxand we were not able to assign component
Ck+w the indexj even though de@, X; UY;) <w. Theny;*¥v(Cy) > (1—2y/3)k. Since
degu, XjUYj) < (1—2y/3)k we have that

7|
deg(u,U XgUYg) vag + > v

l#£] {=K+Ww

Thus the remaining 2-components can be assigned an index, not violating (8.3p0b,
that (8.4) is not be violated in any future step, since th&e@mponents of total order at least
k/6— 2yk/3 were embedded X UY; (no 2"-component is larger thark6 by the way the
rootr was found).

We embed the tre& as follows. The vertex is mapped ta. For each componed € ¢
we embed its roatc € V(C) "N+(r) in one vertex from(Xi. UYi.) "Ng(u) (so that distinct
roots are mapped to distinct vertices). We denote the iméipe oootrc by ¢ (rc). Then the
embedding of the roots is extended to an embedding of-aidnponents. This can be done
greedily since each of the grapB§X;, Y| has minimum degree at leddt/2—y/ (129 ))k+1,
and by (8.2) it holds by a double application of (8.2) that

S NONT+ ¥ IVC)NTo < (1-2y/3)k/2+2(yk/(129) +1) < 5(G[X;,¥]) , and
Ce% Ce%
o(rc)ex d(rc)ey,

VCONTol+ 5 [V(IC)NTel < (1-2y/3)k/2+2(yk/(129) +1) < 3(G[X;, ¥i]) .

Ce% Ce?¢
o(rc)ex P (rc)ey;

51



O

The next three statements (Lemma 8.5, Lemma 8.6, and Ptgpd3i7) deal with the Deficient
case. In this case, it may happen that none of the clustesuéieble for embedding of the tree
T € 1. For this reason, we must find connecting structures thaivalls to distribute parts of
the tree to different clusters. Each of the following thresteaments is used for a different type of
trees.

If the configuration of the graph is Deficient, we show tffat 0. First we bound the sizes of
the setd_ andS: |L| < A (14 y)k/2+ (1—0) V|, |S > A(1—y)k/2+ (1+ 0)|V|. SincelL| > |3,
we infer, thatV| < ak/2. This in turn implies tha? = 0. Thus A = &. Observe also that

3(k+1)>n. (8.5)

Lemma 8.5. Suppose that G admits(@, o)-Extremal Deficient partition M...,Vy,V, (V = 0),
such that{L'} ; is a partition of L. Foric [9] define $= {ue S: degu,L') > (1/2—y)k}.

~ Then there exist distinct indiceg i; € [3] such that there exists anil«— L'2-edge, or a I «
Suz-edge, or there exists a vertex& S such thatleg xo, L) > (1/2— y)k, min{dedxo,L'1),degxo,L'2)} >
1.

Figure 2: Three possible connecting structures guararftgéemma 8.5.

Proof. We may assume that the S(Sﬁsare mutually disjoint, otherwise there exist'a « Sf-

edge {1 #i»). Also, we are done if there exists Bh < L'2-edge, or there exists &t « S'dz-edge
(i1 # i2). We suppose that this is not the case in the following.
We writeY = S\ |, Sd For anyi € [8] and any vertexs € L' there are at least m@k+ 1 —
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L'| - S|,0} edges emanating fromto Y. Thus,
e(L,Y) > 5 [L|maxtk+1—|L'| - |S,0}
> |2(1/2— Vkik+1— L' ~|S])
= (|1/2— VK (k+1) = [L] =[S+ |Y])
(8.5)

> (1/2=y)kY|

By averaging, there is a vertey € Y such that de@o,L) > (1/2— y)k. From the definition o¥,
degxo,L') < (1/2—y)k, for anyi € [§]. HenceXg is adjacent to at least two sets fraia! }j, as
required. O

Lemma 8.6. Suppose that G admits (#, 0)-Extremal Deficient partition V. .. Vs,V (V =0),
such that{L'}? | is a partition of L. There exispic [9] and a vertex & Lo such thadegqv, L'°) +
degV,Uj4, (L) US))) > k/2, where $= {ve S: degv, L)) > k/(39)}.

L" L’

N
Figure 3. Connecting structure guaranteed by Lemma 8.6.

Proof. Partition|J; Slinto setsSl, j e [9] such thaSl C Si. As|L| > |S, there exists an indexe
[9] such thatS| < |L| < k/2. Without loss of generality, assume tha® — |S!| is the maximum
value among all valuds/2— |S| (i € [9]). Thenk/2— |S| is non-negative.

Suppose that Lemma 8.6 is not true. Then for all verticed ! it holds

degv,S\ | J§) >degv,S\ | ) > k/2
i#1 j#1

Thus degv,S™) > k/2—|S'|, whereS™ = {ue S: dequ,L') < k/(39),vi=1,...,3}. Adouble
counting argument on the edges betwkéandS™ gives

k 1 1 k cl
135 > oLt ) > L (5-181).
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implying that

LY [k x
S| > K (é—\S\ ) (8.6)
On the other hand, as

SILI=L IS =S8 +Is
J J

there exists an € [9] such that/L!| > |S| + |S |/&. From the maximality ok/2 — |S!| and
from (8.6) we deduce that

k cl k d i d ‘S ‘ 3“-1‘ k al

implying k > 3|L?|, a contradiction. O

Proposition 8.7. Suppose that G admits(@, o)-Extremal Deficient partition¥/...,Vs,V (V =
0). Furthermore, suppose that the sété}iqg] partition the set L. Then there exists an index
ig € [8] and matchingg™, and _# o such that the following hold.

e S'oisallo — (L\Lo)-matching, #'ois a L'o « S-matching.
e Eachedge xg 7, xc Lo,y € S has the property thateqy, L)) > k/(58) for some # io.
o V(&0)NV( _glo) = 0.

o |Lio| 4 |&0| 4| io| > KL,

Figure 4. Connecting structure guaranteed by Proposition 8

Proof. For eachi € [8] letS, = {ue S: degu,L") > k/(58)}. It holds by(B,o)-Extremality
that|S,| > (1/2— y)k. We first find for eacth € [9] two vertex-disjoint matching&' andD', such
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thatE' is aL' « (L\ L")-matching,D' is aL' < (S\ §,)-matching, and such that the matchings
{D'}ic[9) are pairwise vertex-disjoint. _ _ | |

For eachi takeE' to be a maximun.' < (L\ L') matching, and ifL'| +[S,| + |E'| > k+1,
truncateE' so that|L'| + |S,| + |[E'| = max{k+ 1, |L'| +|S,|}. In the following we assume that

LY+ ISo1+ [EY = L2+ S5+ [E? = ... 2 L] + || +|E7) . (8.7)

Start withi = 1, and increase the indéxgradually. TakeD' to be a maximum(L' \V (E')) <
(S\ ( %UUN DJ))) matching and truncate it so tHat|+\%|+\E |+\D | = max{k+1, L'+
1S,|+|E'|}. We show that such a matchily exists. If|L'| +|S‘@|+\E | > k+1, then seD' = 0.
Otherwise, we want to fin®' of sized; = k+1—[L'| —|9,| — |E|. By (8.7) it holds for the
setB; = SN U1<| (D!) that |Bj| < 9d;. Each vertexu € L' has at leasth neighbors outside
L US@ UV (E"). Color arbitraryd; edges emanating from each vertex L' outsidel' U% UV (E

by black, and the remaining edges incidentifoy grey. Easy calculation gives

k  dk

eniack(L \V (E), S\ (S UBH)) > dh(1/2 -3k — Sdigg > & . (88)

Since the maximum degree in the gra@flaci[L' \V (E'), S\ (S, UB)] is upperbounded by mgk/(59),d;} =
k/(59), we see that there is no vertex coveGfaci(L' \V (E'), S\ (S, UB)] of size less than

dik/5 _
k/(59) =9

Hence, by Konig’'s Matching Theorem, there exists a matgih of size d; with the desired
properties. We seX; =V (D') \ L.
Let us summarize the properties of the obtained structureafyi € [9] it holds

LI+ 181+ E'| + X > k+1, and (8.9)
XN JXj=0 and S,n%=0. (8.10)
j#i

The aim of the following several lines is to prove that thenastrbe an index < [&] such that
sufficiently many vertices fron‘;ﬁ‘gQ U X' are contained L S{Q thus providing with the desired
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bridges from the clustéy;. It holds

=1Lz U 0% (Béo)lz%+lzmlz<%u>@)mpﬂ%
z9(k+1)le’(S‘@uxi)ij#Sé9 —IZ\EW.
which yields
z (L'+E'+ (S,UX) QU%) >|L|+8(k+1)—n>(k+1)—
” (82-5)19(k2+1).

By averaging, there exists an indigxc [9] such that

1
ILio] 4 |Eo + *

(S3U%)N U S| =

J#io

(8.11)

Set&'o = Elo. The matching #'0 consists of two vertex disjoint matchingg; and _#,. The
matching _#; is defined by #; = {ec D' : en UH&,O% # 0}. We take_#, any matching in

G[S9NUj 4, Sh L0\ V(&0U_#g7)] that cover®d = S3NUj 4, 5. SincelQ| < yk, such a matching
can be found greedily. O

8.1 Proof of Proposition 8.1

Suppose the trek and the grapls satisfying the hypothesis of Proposition 8.1 are given.otigh-
out the proof we writex = 60y.
For eachi € [A] we defineX' = {veV; : degv,L') > k/(58)}. Vertices in

Uruyx

€A i€[A]

aresubstantial vertices in

i€[A] i€[A]

0=V\ (\7u JLruvy Xi)
arenegligible Observe that there are at mosyR negligible vertices. The substantial vertices
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are suitable for embedding: suppose we have a fdtest order at mosk/(53) consisting of
rooted components1,Cy),...,(rp,Cp). Letvy €Vi,...,vp € Vi, be arbitrary distinct substantial
vertices. TherF can be embedded i@ so that every componeg) is embedded i¥;,, with its
rootry mapped to the vertex,. If G is Abundant, we seh C [A] to be the set of indiceig such
that|Lio| > (k+1)/2, and set’o = #'o = 0. If G is Deficient, we apply Proposition 8.7 to obtain
an indexip and two matchingg™® and_#'o such thafL'o| +|&'| 4-|_#'0| > (k+1)/2. We then
setA\ = {io}.

For eachp € A\, we shall try to embed the trdeso that most of the vertices dfare embedded
in Vi,. We shall show that if all the attempts fail, then there exasseQ satisfying the hypothesis
of Proposition 8.1. The embedding plan is as follows. Wedrgrmbed most of, in (a subset of)
L'o and the internal vertices d% into vertices which are well-connected lt® (the leaves offe
being treated in the last stage). Thelsemay be not large enough to absorb all the vertices from
To, since we only know thgto| > (1/2— y)k+ 1 andT, may be as large dg/2. We use the edges
of the matchingg’' and/io in order to distribute the excess partslobutsideV;,. We want then
to show that the set of vertices well-connectedl'tds large enough to absorb the internal vertices
of Te. However, this need not to be the case; but then we are abkhioitethe desired sed.

The following statement provides an embedding of the treenga suitable embedding struc-
ture. We defer its proof to the end of the section.

Proposition 8.8. For any tree Te 1 with ¢ < ak leaves the following holds. Let H and(H
kK € | (the index set | is arbitrary) be vertex disjoint subgrapfsG. The graph H is bipartite,
H = (A B; E). Suppose that the graphs H, and kk < I) have the following properties.

e O(Hk) > 250k for eachk € I.
e 5(A) > k.

e There exists A~ (U (V(Hk)))-matchingé, and a family.# of vertex disjoint A— (V \
V(H)) < (UcV (Hk)) paths. Moreover, V&) NV (.4 ) = 0.

o |&|+ || < ak.

o |Al+|&] = [Tol.

o [Bl+[&]+[A| > [Te| - 1.
e 5(AB) > |B|—ak.

e The set B has a decomposition=BB; U By, |By| < ak, &(Ba,A) > |A] — ak, and there
exists a family2 = {Py,...,R} of r = |By| vertex-disjoint A— By < A paths. Moreover,
V(2)NV(E)UV (L)) =0.

Then there exists an embedding of T in G.
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For eachip € A we try to find a structure suitable for applying PropositioB.8We do the
following for eachig € A.

We write e = |&'0| andb = |_#'°|. Fix a setL. C L of size |To| — b— e which contains
F = V(&) UV (_g'0))nL. Setw, = (L'o\ L,)USP. Note thatWs| > |Te| — yk. Take a maximum
family &2 = {Py,...,Pa} of vertex-disjoint(L, \ F) < (V \ (L. UW,)) < (L. \ F)-paths, and let
Wy be their middle vertices.

Assume thafWa| + [Wy| + |£'0] > |Te| — 1. Consider a family of paths?’ C & by truncating
Z sothat 2’| = min{|#|,ak}, and denot&V the set of middle vertices a¥’. We apply Propo-
sition 8.8, setting the parameters of the proposition dsvia: A= L,,Ba=W,,By =W}, 2 =
P E=E0U glo g =0,1 =[]\ {io}, andH, = G[L¥ U] (for eachk € I). Proposition 8.8
will be used several other times. When using it later, welshailicitly mention only those pa-
rameters of the proposition which differ from the ones above

Now, assume thaliNy| + [Wy| + |£'0| < |Te| — 1. Then| 2| < yk. From each vertex € L, \
(FUV(2)) at least two edges = ux, ande)| = uyy, are emanating intd \ (L, UWaUWyU &'0).
SetR, = UueL,\(Fuv(2)) {Xu,Yu}- By the maximality of2” all the vertices, yu, (U € L.\ (FU
V(£))) are distinct. At most 2 yk of these are negligible vertices. Denote the set of subatant
vertices ofRyj, by M;,, and call the seY;, = R;, NV theshadowof L,. If IMj,| > 2yk then one can
find a matching /1 C UueL*\(FU\,@)){eﬁ, €5} of sizeyk, and Proposition 8.8 can be applied (with
& =E&"U.M, By =Wy, and2 = &) to show thall C G. Otherwise|Y;,| > 2|L.| — || —|M;,| >
2|L,| — dyk. The choice ofL, C L'> was arbitrary, with the only restrictioR C L,. Thus the
above procedure can be applied for another choice,ofDenote by\?io the union of shadows
corresponding to all possible choiceslof(for a fixed vertexu € Lo\ (F UV (£?)), the choice of
xy andy, does not depend on the choicelaf). Thus we get thal C G by Proposition 8.8, or
[¥io| > 2/Li0| — 39 vk

Suppose that we were not able to use Proposition 8.8 so fanfprg € A. If there exists
ip € A\ such thatY;, N Uie,\\{io}Yi\ > 4yk, thenT C G. Indeed, one can find a family> of at least
yk vertex disjointL'® < (%, NUicn i) i) < <Ui€,\\{i0} Li)-paths and apply Proposition 8.8 with
M = N, We assume in the rest that sughdoes not exist. SincgJicpYi| > Siea([Yil = Yin
Ujenfio} Yil), we have that

U

ieN

> 2_Z\|Li| —49%yk. (8.12)

SetY = Uicp V..
We distinguish three cases:

(%1) Itholds|LNY| <k/8and €Y,V \Y) < ok?.
Solution of(&1): The idea is to show that the sBt=V \ Y satisfies the requirements of
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Proposition 8.1. To this end, it is enough to show that
1
QNLI>3IQl. (8.13)

By the hypothesis ofd1), not many vertices ifY are large. Thus the ratio of the large
vertices in the graplB|[UJica Vi UY] is substantially smaller than one half. Then there must
be substantially more than half of the large vertices in trgementary se®, and (8.13)
follows. We make the idea rigorous by the following calcigdas. For any € A setl; = [L'].

1 - .
n< L < (A = |ADk/2+ Z\Ii+|LmY\+|LmQ\+|L\(VU U L]
2 & .

jelA]
< (A=IADK/2+ S li+k/8+[LNQ[+yn.
ieN

Thus,

1
LAQ| > =n— (A —|ADk/2— S i —k/8—yn
ILOQI> Sn— (A = [ADk/ ig\ /

1/ ~
>N =25 I | +|Alk/2—k/8—2yn

(8.12) 1 1
>75IQI+IAK/2—k/7> 51Q)

which was to be shown.

(%2) Itholds|LNY|>k/8and €Y,V \Y) < ok?.
Solution of(&2): We show thall C G. Since the average degree in the gr&pYi is at least
gk/20, there exists a subgraph C G[Y] with d(H.) > gk/40. By averaging, there exists
io € A\ such that
Yi, "V (H.)| > gk/(4089) . (8.14)

Fix such an indexo. By (8.14) there exists B'© « V(H,)-matching& of sizeak/2. By
Proposition 8.8 (with = {x}) it holdsT C G.

(%3) It holds €Y,V \Y) > ok?.
Solution of(&3): We show thall C G. The average degree of the bipartite gr&i,V \ Y]
is at leastqok. Thus there exists a graph, C G[Y,V \ Y] with 5(H,) > qok/2. There
must be an indely € A such thatY;, "V (H.)| > ogk/(28). Fix such an index, and find
matchingé’ as in(&2). By Proposition 8.8 (with = {x}) it holdsT C G.

Proof of Proposition 8.8 RootT at an arbitrary vertex € To. An c-induced patha...ac,1 CTis
a path whose internal vertices have degree twb.ifake a maximum family# of vertex disjoint
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6-induced paths if. We show thatV (.%#)| > k— 19/.
Let D3 = {ue V(T) : degr(u) >3} andD; = {ueV(T) : degr(u) =i} fori =1,2. By
Fact 3.4, we haviD3| < ¢ (and|D;| > k— 2¢). From

k=Y degu)=|Di+2Dg+ ¥ degu)>2k—3(+ ¥ degu),

ueV(T) ucbDs3 uebs

we deduce that there are at mogt431 maximal (w.r.t. inclusion) paths formed by vertices of
degree 2 or 1 not containing the root On each such maximal path, at most 5 vertices are not
covered by#. Thus the total number of vertices uncovered®yis at most %3¢+ 1) + |D3| +
[{v}] < 19. The order=y naturally extends to an order of the paths%®f For a family.#’' C .%
we writeT (| .%") to denote all the vertices ®(.%"), and all vertices which are below some vertex
of V(7'), i.e.,

TLZ)= | V(T(w).

uev (')

One can find a family? C .7 satisfying the three properties below.

(P1) |Z| <|&|+ |-#]|.

(P2) [T(1 #)| < 25ak, and J|&| + |.|) < min{[TeNT (| 2)|,[ToN T (| 2)|}.
(P3) Z is a=<y-antichain.

We describe a procedure how to obtain such a family\By an inductive construction, we first find
an auxiliary family%’, starting withz’ = 0. While|%Z’| < |&|+ |.# | we take a<y-minimal path
in % which is not included iZ’ and add it taZ’. By the boundV (T)\V(.%)| < 1%, in each step
itholds that T (| #')| < 6|Z'| +19ak, and obviously 8%7'| < min{|TeNT (| Z')|,|ToNT (| #')|}.

Let Z be the=<,-maximal elements of?’. The propertie$P1), (P2), and(P3) are satisfied.

Setd = 5ak. Take a family2™ = {Xy,...,Xq} of d 5-induced vertex-disjoink; <> To <> Te <
To < Te paths, such that no path interse¢tg UT (| #’). For any patlR € #Z we write ar to
denote its<,-maximum vertex inf,, and sebr = Ch(ar), cr = Ch(bg), anddg = Ch(cgr). We set
U=ANNV(&)UV(Z))andQ=ANV(2).

We now describe the embeddiggof T. First note that we do not have to embed those leaves,
whose parents are embeddediinndeed, having such a partial embedding, it easily extémds
embedding ofl using high degrees of verticesAn Hence we shall not embed them until the very
last step. We embed the rooin an arbitrary vertex ilA\ (U UQ). We continue embedding
greedily, mapping vertices frof to A\ (U UQ) and internal vertices ofe to B,. However, there
are two exceptions in the greedy procedure.

(S1) If we are about to embed a vertby (for someR € %), then we do not embed it, neither the
part of the tredl (| bg).
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(S2) If we are about to embed a vertexwhich was part of some pattixoxXsxaxs € 2" we skip
its embedding, as well as the embedding of the vertigesdx,. We continue with mapping
Xs t0 Ba.

Observe that we are able to finish the greedy part of the enntgedhce the two “skipping rules”
guarantee that both ihand inB at leasid > ak vertices ofT remain unembedded.
In the next step, we build missing connections in the gtdptaused by the skipping rules.
We construct an auxiliary bipartite graph = (Og, Op; E1). We arbitrarily pair up 2d —r) ver-
tices ofA\ (U UQ) unused by into pairspy = {a3,a3}, ..., ta—r = {a5_,.a5_,}. The remaining
r pairs are formed by endvertices of the path€in

Hird—r =ANV(R).

Vertices of the color clas®, are formed by the pairg; (i € [d]). Vertices of the color clas®,
are formed by the paths if". A pathxyxoXsxsxs € 2" is adjacent irk; to a pairy; if and only if
there exists a perfect matching in the grapH @ (x1), Y (xs) }, ti]. Since|O4| = |Op| andd(Ky) >
|04 —2ak > |O4|/2, there exists, by Proposition 3.6, a perfect matchilagn K;. The matching
M3 gives us instructions where to embed the verticeandx, of any pathxixoxsxaxs € 2°. We
extendy accordingly on the vertices, y y.x,xsc 2 {X2,X4}. If a pathx;xoXsXaXs € 2~ was matched
with . 4 (for somei € [r]) in K1 then we embeds in the middle vertex of the path. We write
2 for those pathg;xox3xaxs € 2° whose vertexs was not yet embedded. It holflg™| > 4ak.
Let x : Z — U be an arbitrary injective mapping. We construct anotheaiige graphK, =
(Ja, Jp; E2). Vertices of the color clas, are elements of? U 2”7 (Ja= % U 2”') and vertices of
the color classl, are vertices 0B, unused by (J, C By). A pathR € # is adjacent irK; with
anb e Jy if and only if by(ar) € E(H) andbx(R) € E(H). A pathx;xoXsxaxs € 2 is adjacent
to a vertexb € Jy if and only if by (y2) € E(H) andby(ya) € E(H). There exists a matching,
in K> coveringJa. The existence of the matchifdp in Ko coveringJ, is a direct consequence of
Proposition 3.6. Indeed® (K1) > |Ja] — 2yk > |Ja|/2, and|Ja| < |Jp|. Such a matching gives us
instructions where to embed unembedded vertigen the case of a patkyXox3xsxs € 2" and
verticeshg (in the case of a patR € #). For a pathR € # we finish embedding the part of the
treeT (| cr), extending the mapping. If ¢(cr) € V(&) we just use the corresponding connecting
edge ofé&’ to embeddr in Hy (for somek € I) and continue embeddiniy( | dr) greedily inH. If
Y(cr) € V(#) we embedir in the middle vertex of the corresponding connecting pathand
embed the rest of (| dr) greedily inH, (for somek € I). O

8.2 Proof of Proposition 8.2

In order to prove Proposition 8.2 we need the following twaikary lemmas.

61



Lemma 8.9. Let G be in a3, 0)-Extremal, Deficient configuration. Letd . 1 be a tree with a
vertex re V(T) such that the forest ¥ r contains a component C of ordef@) € [k/(33),k—4yk].
Then TC G.

Proof. By Lemmas 8.3 and 3.3 we can assume that {jTlax V(C)|,|To\V(C)|} < (k+1—
v(C))/2+ (2yk+1)/2 < k/2 — 2yk, otherwiseT C G.

Fori € [9] defineS‘d = {ueS: dequ,L') > (1/2— y)k}. By (B,0)-Extremality it holds that
S| > (1/2—y)k. By Lemma 8.5 there is at least one of the following three eating structures
in G. We show thall C G in each of the cases separately.

(A1) There exists an edgey, x € L',y € L'2, i1 #i».
(A2) There exists an edgey, x e L',y € Sﬁ% i1 #io.

(A3) There exists a vertexy € Ssuch that de@xo,L) > (1/2— y)k, andxg is adjacent to vertices
of at least two different clustetst,L'2 (i.e., min{dedXo, L'?),degxp,L'2} > 1).

To solve the casg®\1) and(A2) itis enough to map to x, and use the edgey to greedily embed
Cin G[L2, Sf]. The partT — (V(C)U{r}) can be greedily embedded@fL', Sdl].

It remains to solve the cagé3). Let: be such an index for which the value deg,L')
is minimal positive. We embedin X, C in G]L',S]. The forestc =T — (V(C)U{r}) can be
greedily embedded in the clustgig }; (preserving adjacencies pfo the components df). This
is standard. O

Lemma 8.10.Let F be a rooted forest with partition(\¥ ) = O; UOy, such that Q is independent.
Let W be the set of leaves of F and seERu € O, : [WNCh(u)| = 1}. Let H be a graph
and let AB C V(H) be two disjoint sets such thgk| > |O4|, min{d(A,A),5(B,A)} > |Oq| — T,
o0(A,B) > |B|—f, |B| > |O2\W]|, andd(A) > v(F) —1. If |P| > 2f, then there exists an embedding
¢ of F in H such thatp (O;) C A.

Proof. Choose a subs& C P of size|P’| = 2f. Consider the subtrde’ = F — W', whereW’ =
WnN (O2UN(P)). We embed greedily the tré€’ in AUB, so thatV(F’) N O; maps toA and
V(F’)nO2 maps toB. Denote this embedding b . Next we want to embed the lead8 N O,

in A. Denote byA’ the set of vertices i\ that are not used by’, i. e., A" = A\ ¢(V(F')). We
want to find a matchinil in H[A', ¢’(P’)] that coversp’(P’). By Proposition 3.6, such a matching
exists sinceA'| > 2f = |¢'(P')|, and

O(p(P),A)>f=|P|/2, O(A,p(P))>f=]|P|/2. (8.15)

We extendp’ to an embedding of F, by embeddingV’ N O, according to the matchinlg, and by
embeddingV N O, greedily (this is guaranteed by the minimal degree condibiothe setd). [
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A semiindependent partitioftJ;,U,) of a treeF is /-ideal if each of the vertex setd; andU»

contains at leagtleaves ofF.

If disc(T) > 2yk, then Lemma 8.3 ensures thHaiC G. We shall further assume only the case
disdT) < 2yk.

We prove Proposition 8.2 in two steps. In the first step we sttt T has an §k-ideal
semiindependent partition, @ C G. In the second step, we prove thatTifhas an §k-ideal
semiindependent partition, th@nC G.

First step. Denote by, andW\;, the leaves ifTe and inT,, respectively. LeWW =W, UW; be the
set of all leaves of. Setwe = |Ws| andw, = [Wp|. Remark thatve +w, > 60yk. We distinguish
three cases based on the valuew@andwe.

1. If we > 8yk andw, > 8yk, then(Ty, Te) is an 8/k-ideal semiindependent partition.
2. If we < 8ykthen it holdsw, > 52yk. We distinguish two subcases.

o If |ParWp)| < 16yk we consider setd; = Tp =+ (Wo UParWg)) andUz = Te+ (W U
PaiW,)). The partition(U1,U>) is semiindependent witlJ,| — |U1| > 72yk, a contra-
diction with the assumption di§€) < 2yk.

e If |Par(W,)| > 16yk then we choose an arbitrary subBeC Parf\W,) with |P'| = 8yk
and set\;, = N(P’) "\W,. The partition(Uy,U) defined by, = To+ (WyUP’), Uy =
Te+ (WJUP) is an 8/k-ideal semiindependent partition.

3. If wy < 8yk we use Fact 3.1 (Part 2) to find a full-subtiBe T rooted in a vertex with ¢
leaves, wheré € [20yk,40yk]. The choice ofl has the property that

min{[WeNV (T)], [WenV(T)\V(T)[} > 12yk (8.16)

Setd = [V(T)NTe| — |V(T) N To|. We distinguish six subcases.

(C1)r e Teandd < gapT)/2, (C2)r e Toandd > gapT)/2,
(C3)reTeandd > gapT)/24+1, (C4)reTyandd <gapT)/2—1,
(C5)reTeandd = (gapT)+1)/2, (C6)r e Tpoandd=(gapT)—1)/2.

In casegC1)-(C4) we obtain an gk-ideal semiindependent partition by flipping eithgiT )

(in caseqC1) and(C2)) orV(T) \ {r} (in caseqC3) and(C4)) from the original partition
(To, Te). Details are omitted.

In the rest, we consider only the cageb), case(C6) being analogous. We find an/ig
ideal semiindependent partition, or embEdn G. First observe thak is even. Consider
the partitionV (T) = O; U Oy, whereOy = T, +V(T) andO, = Te = V(T). It holds|Oy| =
(k+2)/2,|02| = k/2, and mi{|O1 W[, |02NW|} > 12yk.
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(%1) Suppose first thaie NV (T —T) NN(r) # 0. Then take an arbitrary vertaxe
Wo V(T —T)NN(r) and consider the partitiof;,Us), Uy = O < {u}, Uz = Op <+ {u}.
By (8.16), this is an $k-ideal semiindependent partition. Therefore we resturselves to
the case wheW, NV (T —T)NN(r) = 0.

(#d2) We claim that if there exist two distinct leaveg z> € O1 with a common neighbor
{x} =Par{z1,2}), then there exists arn/R-ideal semiindependent partiti¢d,,U,). By the
assumption above we know that O,. SetU; = O1 +{X,21,2} andU; = Oz + {X, 21,2, }.
Then|U;| =|O1| —1=k/2 and|Uy| = |O2| + 1=k/2+1, andU;NW| = |O.NW| -2, and
U2 NW/| =|02NW|+ 2. From (8.16), the partitioflU1,U>) is 8yk-ideal semiindependent.
Therefore, we may assume that leave®irhave pairwise distinct parents.

(#3) We claim that there exists a vertge PafO;) "W such that defy) = 2. Suppose
for contradiction that every vertex in R&1) "W has degree at least three. We have already
observed that every vertex in P&;) "W has exactly one leaf-child i®;. SetW, =01 N
V(T)NW andT, = T[V(T)\W,]. Observe that the leaves flying in O, coincide with the
leaves ofT lying in O». We show thafl, contains at leasty& leaves fromil,, contradicting

the assumption, < 8yk. By Fact 3.2 it is enough to show th&t(T.) NTo| > [V(T,) NTe| +

8yk.

V(T)NTo| = V(T.) N0 = [V(T) N Tyl

—

> V(T)NTe| —2yk—2
= |V(T,) NTe| + Wi | — 2yk — 2
> |V(T,) NTe| +8yk,

N

where(x) follows from Lemma 3.3. Let € O;NW be a leaf ofT with parenty, deqy) = 2.
We show thafl C G in two caseq<>1) and({>2) separately, based on wheth@tis in the
Abundant or Deficient configuration.

(¢1) If G admits an Abundant partition, then there exists an irideA] such thaflL'| >
(k+1)/2. Askis even|L'| > (k+2)/2. Choosé., C L' such thaiL,| = (k+2)/2. Define
W*={ueWnO; : Pafu) € Oz}, and letW’ C W* be the set of leaves W* with no
brother/sister iW*. We claim that

(WNO1) \W*| < yk, andW*\W/| < yk (8.17)

Assuming (8.17), we can use Lemma 8.10 witk-= L,, B=S U(L"\ L.), f = yk, and the
partition (O1,05) of the treeT to getT C G.

It remains to prove (8.17). {WNO1) \W*| > yk, then consider the partitiaftu1,U,) with
U1 =01\ (WNO1) \W*) andUz = O U (WNOq) \W*. If W*\W| > yk, then consider
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the partition(U1,U;) obtained from(O4, O2) by flipping (W* \ W') UParW*\ W’). In both
casesUy| — |U1| > 2yk, a contradiction to our assumption that diBg < 2yk.

(¢2) If Gis in a Deficient configuration, then by Lemma 8.6 there exasténdexi € [J]
and a vertew € L' such that dey,L') + deqv,U;, (L) US))) > k/2, whereS/ = {u€ S :
degu,L)) > k/(39)}. Setyn = degv,L') andyr = deqv, ;. (L' UF)). All components
of T —{r} have size at mo#t/(69 ), or by Lemma 8.9 the tre€ embeds irnG (the compo-
nents cannot be larger th&ar- 18yk by the choice of). Denote by’ the set of components
of T —{r} of order at least 2. Sino®; is an independent set, any component frgdhhas
non-empty intersection wit),. Choose’#> C J# with a maximum number of vertices in
O satisfying the following.

o |2 < 2.
® Ske V(K) <K/(39).

Set.#1 = ¢ \ 5. Mapr tov and embed the components.ab greedily inUJ; (L' US)
in such a way that the roots of the components are mappeddhlais ofv.

If V(1) < k—6yk—1, then from Lemma 3.3 we deduce that i@y NV (#1)],|TeN
V(#1)|} < k/2—2yk and thus the components.af; can be embedded id US, greedily.

Hence, we suppose thit(#71)| > k— 6yk — 1. The maximality of’#2 implies that| 75| =
Y. SetU; = 01NV (#1) andU = O,NV (#7). Observe that, is independent. We show
that|Uq| < gn. If r € Oy, then

K+2
Ul <101~ |42l — [{r}] =5~ 92— 1< .

It remains to analyze the case O,. LetK € ¥ be the component containing the vertex
z Then, by the choice of#3, there exists a componelit € 7z such thatO; NV (K’)| > 2.
Again we concludeéUs| < |Oq| — (|#2] + 1) < yn.

Observe that miffU; NW|, U2 NW|} > 9yk— 6yk— 1 > 2yk, and by previous assumptions,
any two leaves iU, have distinct parents that arelib (the only leaves if©; with parents
in Oq are children of and thus are not contained.i).

We embed the trees fromy in L' US,. We distinguish two cases.
ercTeorreToand|N(r)NUz| < (1/2-2y)k.
We apply Lemma 8.10 with = L' "N(v), B= S, N N(v), the partition of the forest

V(#1) being(U1,U>), andP = Par(U) (recall that leaves i1 have pairwise distinct
parents irlJ,).

o rc Toand|N(r)NUz| > (1/2—2y)k.
Setrs ={K e : v(K)=2,N(r)NnV(K) CUz}. Thenv( \ #1) < 2yk. Con-
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sider the partitionUs,Us) obtained from(Uy,U,) by flipping .71. Then|U;| < yn.
Construct an embeddingof the forest induced byz: \ 71 such thatp(V (1 \ 1) N
Up) C L, @(V(1\ A1) NUz) C S ande(V (1 \ 42) NN(r)) € N(v).

The embedding ofr} UV (J¥") can be extended to the whole trEeasr is mapped td..

Second step. We assume thak has an §k-ideal semi-independent partitig;,U,). The proof
goes very similarly as ifk>1), for the Abundant case, and agip2) for the Deficient case. Details
are omitted.

9 Lower bound

The condition on the hosting gragghof ordern in the LKS Conjecture is parameterized by two
numbers: first parameter defines when a a vertex is countddrgg™, the second parameter is a
requirement on the number of large vertices. As was obsentbe Section Introduction, the first
parameter cannot be lower thiansince otherwise it might happen thet Z G. In this section
lower bound on the second parameter is given. We recall ttet@Theorem 1.5 the lower bound
cannot in principle meet the valug2, at least in some cases. There are also examples oflespall
where exact threshold on the number of large vertices redwan be determined. The threshold
in these examples is substantially smalsann/2.

The constructions given here generalize those of Zhao @2 Piguet and Stein [17].

Fora > b, acomplete split-graph Lk, is a graph constructed frol, by removing all edges
which are subset of a fixg@é — b)-element set of vertices. Equivalentli , is a graph constructed
from Ka—pp by adding all possible edges into the color-class of otdleThe vertex set ob,
decomposes naturally into tleéque partand theindependent partA double-star with m rays,s
is a graph of order®+- 1 which is constructed by attaching a distinct vertex to daahof Ky m.

Suppose thak is even and forj = 0,1,..., VK| write n = ¢;(k+1— j) + aj, where/¢; and
a; are the quotient and the remaindemodifter division by(k+ 1 — j), respectively. LeGg be a
graph formed by, disjoint copies oty 1 k/»—1 andag isolated vertices. Foy > 0 define

k . [1-j+j%2+2j(2k-1)+1
7 2

We construct; starting with?; disjoint copies o1 j n; andaj isolated vertices. We label the

2Fork = 1 andk = 2, one large vertex guarantegg, 1 C G. Fork = 3 the tight requirement on the number of
large vertices to guarante& 1 C Gis |[n/3]| +1,fork=4itis |[n/4] + 1.
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copies otUkH,j,hj by Uy, .. Uy In eachU; we fix a vertex seh; of size

1-j+j2+2j(k—1)+1
2

in its independent part. Connect each vertex of the cliqueghdJ; with exactlyj vertices inA;j_1
(Ao = Ay, for convention) in such a way that no vertexAn 1 receives more thay+ j — 1 edges
fromU;.

The vertices inGj’'s which have degree at ledstare exactly those which are contained in a
clique part of some complete split-graph. The number oamytices irG; is

w ,forj =0, and

o (ki 1—j++4/j%2+2j(2k-1)+1 o
271~ 2 - (9.1)
n_3a _ 4 (1+ j+2 [1_1'“ j2+22j(2k_1)+1—‘) , otherwise.

2 2 2

Itis easy to observe that the path of lengtis not a subgraph dbo and that the double-st&; ,
is not a subgraph d&;j for j > 0. ThereforeZ 1 € G;j for any j. There is not an easy formula to
determine which of the numbers in (9.1) is the largest. Nad¢ tinaximum of the numbers in (9.1)
may be fairly “discontinuous” as a function kfandn. This is not surprising, even if the bounds
given here would turn out to be tight, as it has been knowndivéibility plays an important role
in similar problem3.

Whenk is odd we construct the gragiy as/o disjoint copies oty 1 (_1)/2. For the graphs
G;j (with j > 0) the best construction we are aware of is to construct grapty similar to those
as wherk was even and then to show t&¢_,)» Z G;j.

We believe that the lower bounds presented here might be tddke truth. We put the question
of determining the exact value of the number of large vestiogeded as an open problem.

Problem 9.1. Given nk € N determine the numbérsuch that any graph of order n which has at
least/ vertices of degree at least k contains all trees of orderk

More generally, one can ask which degree sequences of thiadigsaph ensure that all trees
of orderk+ 1 will be contained. Fon € N let o, be a family ofn-tuplesD = (dy,...,dn) such
that there exists a gragh of ordern with D as a degree sequence.

Problem 9.2. Given nk € N determine all n-tuples B- (dy, ..., dn), D € 7, such that any graph
G with degree sequence D contains all trees of orderlk

Problem 9.2 seems beyond our reach, and even a partial tiragation would definitely re-
quire techniques most different from those presented mtthesis. Interestingly, the following

3A random example of this phenomenon is [11].
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example shows that the family of all degree sequenc&sc o, is not increasing in the coordi-
natewise orderingg on.«;, C N". Define two degree sequend®g, D; € <716 by

Do=(0,0,...,0,3,3,3,3),
D;=(1,1,...,1,3,3,3,3),

where there are 12 zeros and one®gandD1, respectively. We havBg < D1. The only graph
Go with the degree sequeng® is K4 with 12 isolated vertices added. Obvioust C Gg. Let
G, be a disjoint union of four copies d¢h 3. G; has degree sequenbg andG; does not contain
a path of length 3.
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