Limits of sparse graph sequences

Jan Hladký Mathematics Institute, Academy of Sciences of the Czech Republic

JH's research is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

・ロト・雪ト・雪ト・雪 シック

Graph limit theories

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Graph limit theories

Limits of dense graph sequences~2004

Borgs, Chayes, Lovász, Razborov, Sós, Szegedy, Vesztergombi works for all graph sequences but trivial when $e(G_n)/v(G_n)^2 \rightarrow 0$.

note
$$e(G_n) \leq {\binom{v(G_n)^2}{2}} \approx \frac{v(G_n)^2}{2}$$
.

 \Rightarrow breakthroughs in graph theory (extremal GrTh, random graphs) \Rightarrow stimulated developements in Higher Order Fourier Analysis (Szegedy, Green–Tao, ...)

Limits of sparse graphs~2001, Benjamini–Schramm one needs to fix $D \in \mathbb{N}$ and work in the category of graphs of maximum degree $\leq D$.

note
$$e(G_n) \leq \frac{D}{2}v(G_n)$$

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Goal: convergence notion.

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2)

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2)

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2)

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2)

Definition: $G_1, G_2, G_3, ...$ is **convergent** if for each $r \in \mathbb{N}$, $\rho_r(G_1), \rho_r(G_2), \rho_r(G_3), ...$ converges (and converges to a probability distribution) **(Benjamini–Schramm'01)**

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2)

Definition: G_1, G_2, G_3, \ldots is **convergent** if for each $r \in \mathbb{N}$,

 $\rho_r(G_1), \rho_r(G_2), \rho_r(G_3), \dots$ converges (and converges to a probability distribution) (Benjamini–Schramm'01)

...and then we can associate to it a probability measure on rooted countable graphs by Kolmogorov's extension theorem

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2)

Definition: G_1, G_2, G_3, \ldots is **convergent** if for each $r \in \mathbb{N}$, $\rho_r(G_1), \rho_r(G_2), \rho_r(G_3), \ldots$ converges (and converges to a

probability distribution) (Benjamini–Schramm'01)

...and then we can associate to it a probability measure on rooted countable graphs by Kolmogorov's extension theorem

Observation Every sequence of uniformly degree-bounded graphs contains a convergent subsequence.

Example: grids

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

. . .

Example: 3-regular trees

Example: 3-regular trees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Obtaining the 3-regular tree in the limit

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Aldous–Lyons conjecture

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

The Aldous-Lyons conjecture

If μ is a limit distribution then sampling according to μ and moving to a random neighbor must give the original law μ (weighted by degrees) \Rightarrow unimodular distributions **Conjecture (Aldous–Lyons'07)** Every unimodular distribution can be obtained as a limit.

Sofic groups (Gromov 1990)

A (finitely generated) group $\Gamma = \langle S \rangle$ is **sofic** if the Dirac measure on the Cayley graph (Γ , S) can be approximated by finite graphs. (in the actual definition, one has to move to the category of edge-labelled directed graphs)

This definition does not depend on the choice of S.

Sofic groups (Gromov 1990)

A (finitely generated) group $\Gamma = \langle S \rangle$ is **sofic** if the Dirac measure on the Cayley graph (Γ , S) can be approximated by finite graphs. (in the actual definition, one has to move to the category of edge-labelled directed graphs)

This definition does not depend on the choice of S.

Alternative definition: subgroup of a metric ultraproduct of S_n 's **Gromov 1990:** It could perhaps be the case (?!) that every group is sofic???

∋) ∋

Elek-Szabó 2005: Every sofic group is hyperlinear,

Applications of soficity: equations in groups

 Γ ...group, $k_1, k_2, \ldots, k_n \in \mathbb{Z}, \gamma_1, \gamma_2, \ldots, \gamma_n \in \Gamma$. We want to find a solution $x \in \Gamma$,

$$\gamma_1 x^{k_1} \gamma_2 x^{k_2} \dots \gamma_n x^{k_n} = 1 .$$

Applications of soficity: equations in groups

 Γ ...group, $k_1, k_2, \ldots, k_n \in \mathbb{Z}$, $\gamma_1, \gamma_2, \ldots, \gamma_n \in \Gamma$. We want to find a solution $x \in \Gamma$,

$$\gamma_1 x^{k_1} \gamma_2 x^{k_2} \dots \gamma_n x^{k_n} = 1 .$$

Sometimes, the above equation does not have a solution, e.g.

$$\alpha x \beta x^{-1} = 1$$
 when $ord(\alpha) \neq ord(\beta)$

An equation is regular if $\sum k_i \neq 0$. Conjecture Any regular equation (in a group Γ) has a solution over some extension $\Lambda \supseteq \Gamma$.

Theorem True for hyperlinear (and thus also sofic) groups Γ .

Applications of soficity: equations in groups

 Γ ...group, $k_1, k_2, \ldots, k_n \in \mathbb{Z}$, $\gamma_1, \gamma_2, \ldots, \gamma_n \in \Gamma$. We want to find a solution $x \in \Gamma$,

$$\gamma_1 x^{k_1} \gamma_2 x^{k_2} \dots \gamma_n x^{k_n} = 1 .$$

Sometimes, the above equation does not have a solution, e.g.

$$\alpha x \beta x^{-1} = 1$$
 when $ord(\alpha) \neq ord(\beta)$

An equation is **regular** if $\sum k_i \neq 0$.

Conjecture Any regular equation (in a group Γ) has a solution over some extension $\Lambda \supseteq \Gamma$.

Theorem True for hyperlinear (and thus also sofic) groups Γ . **Baby version** For each regular equation in a finite group Γ has a solution over some $\Lambda \supseteq \Gamma$.

Proof $\Gamma \leq \mathbb{S}_n \leq O(n)$, and we have Gerstenhaber–Rothaus'62: O(n) is algebraically close.

Applications of soficity: group rings

Conjecture (Kaplansky 1969): For any group G and commutative field K, the group algebra K(G) is directly finite. That is $ab = 1_K$ implies $ba = 1_K$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Applications of soficity: group rings

Conjecture (Kaplansky 1969): For any group G and commutative field K, the group algebra K(G) is directly finite. That is $ab = 1_K$ implies $ba = 1_K$. **Theorem (Elek–Szabó'04):** For any sofic group G and commutative field K, the group algebra K(G) is directly finite. That is $ab = 1_K$ implies $ba = 1_K$.

An application in global analysis

Theorem (Lück 1994, Abért, Thom, Virág 201?): Let X be a finite connected simplicial complex. Let $\pi_1(X) \ge \Gamma_1 \ge \Gamma_2 \ge \ldots$ be a chain of normal subgroups of finite index in $\pi_1(X)$ with $\bigcap_n \Gamma_n = 1$, and let $X_n = \tilde{X}/\Gamma_n$. Then

$$\lim_{n} \frac{b_k(X_n)}{|\Gamma:\Gamma_n|} = \beta_k^{(2)}(X) .$$

(日) (同) (三) (三) (三) (○) (○)

 $(\beta_k^{(2)} \dots k$ -th L^2 Betti number)

Bounded degrees

Why did we have to have all degrees $\leq D$?

(ロ)、(型)、(E)、(E)、 E) の(の)

Bounded degrees

Why did we have to have all degrees $\leq D$?

Random rooted 2-balls G_1, G_2, G_3, \ldots have a weak limit, but a trivial one (total mass=0).

Maximum degree $\leq D \Rightarrow$ finitely many *r*-balls \Rightarrow measure cannot "escape to infinity"

Bounded degrees

Why did we have to have all degrees $\leq D$?

Random rooted 2-balls G_1, G_2, G_3, \ldots have a weak limit, but a trivial one (total mass=0).

Maximum degree $\leq D \Rightarrow$ finitely many *r*-balls

 \Rightarrow measure cannot "escape to infinity"

A sequence of probability measures μ_1, μ_2, \ldots on \mathcal{X} is **tight** if for every $\epsilon > 0$ there exists a **finite** $\mathcal{K} \subset \mathcal{X}$ such that $\mu_n(\mathcal{K}) \ge 1 - \epsilon$ for all *n*.

Lyons'07: The concept of Benjamini–Schramm limit can be extended to sequences G_1, G_2, \ldots where for each $r \in \mathbb{N}$, the sequence $\rho_r(G_1), \rho_r(G_2), \ldots$ is tight. AND NOT FURTHER

Ongoing work with Lukasz Grabowski & Oleg Pikhurko

Theorem (Elek'10)

The Aldous–Lyons conjecture holds for measures supported on bounded-degree trees.

Theorem (Elek–Lippner'10) (Borel Oracles Method) The matching ratio is Benjamini–Schramm continuous for bounded-degree graphs.

Definition A **graphing** is a unimodular Borel graph whose each degree is finite and bounded by an absolute constant $D \in \mathbb{N}$.

Theorem (Hatami–Lovász–Szegedy'13)

For every Benjamini–Schramm convergent sequence of graphs of degree $\leq D$ there is a graphing that is its local-global limit.

Ongoing work with Lukasz Grabowski & Oleg Pikhurko

Theorem

The Aldous–Lyons conjecture holds for measures supported on bounded-degree trees.

Theorem(Borel Oracles Method)The matching ratio is Benjamini–Schramm continuous for
bounded-degree graphs.(Bordenave, Lelarge, Salez'13)

Definition A **graphing** is a unimodular Borel graph whose each degree is finite and bounded by an absolute constant $D \in \mathbb{N}$.

Theorem

For every Benjamini–Schramm convergent sequence of graphs of $\frac{1}{\text{degree} \leq D}$ there is a graphing that is its local-global limit.

... and perhaps almost all of the theory can be extended

Erdős–Rényi random graph $\mathbb{G}(n, p)$ (Erdős–Rényi, Gilbert, 1959): Take $V(G) = \{1, ..., n\}$. To randomly generate the edges, we put $ij \in E(G)$ with probability p.

Erdős–Rényi random graph $\mathbb{G}(n, p)$ (Erdős–Rényi, Gilbert, 1959): Take $V(G) = \{1, ..., n\}$. To randomly generate the edges, we put $ij \in E(G)$ with probability p.

Typically, interest in typical behaviour as $n \to \infty$.

Many interesting phenomena occur for C > 0 constant, and

 $\mathbb{G}(n, C/n)$ $(n \to \infty)$.

Erdős–Rényi random graph $\mathbb{G}(n, p)$ (Erdős–Rényi, Gilbert, 1959): Take $V(G) = \{1, ..., n\}$. To randomly generate the edges, we put $ij \in E(G)$ with probability p.

Typically, interest in typical behaviour as $n \to \infty$.

Many interesting phenomena occur for C > 0 constant, and

$$\mathbb{G}(n, C/n)$$
 $(n \to \infty)$.

In that regime, $\deg(v) \sim Bin(n-1, C/n) \approx Poi(C)$.

Erdős–Rényi random graph $\mathbb{G}(n, p)$ (Erdős–Rényi, Gilbert, 1959): Take $V(G) = \{1, ..., n\}$. To randomly generate the edges, we put $ij \in E(G)$ with probability p.

Typically, interest in typical behaviour as $n \to \infty$.

Many interesting phenomena occur for C > 0 constant, and

$$\mathbb{G}(n,C/n)$$
 $(n \to \infty)$.

In that regime, $\deg(v) \sim Bin(n-1, C/n) \approx Poi(C)$.

Claim Let C > 0 and let $G_n \sim \mathbb{G}(n, C/n)$. Almost surely (G_n) is Benjamini–Schramm convergent (and converges to a Galton–Watson branching process with parameter C).

Erdős–Rényi random graph $\mathbb{G}(n, p)$ (Erdős–Rényi, Gilbert, 1959): Take $V(G) = \{1, ..., n\}$. To randomly generate the edges, we put $ij \in E(G)$ with probability p.

Typically, interest in typical behaviour as $n \to \infty$.

Many interesting phenomena occur for C > 0 constant, and

$$\mathbb{G}(n,C/n)$$
 $(n \to \infty)$.

In that regime, $\deg(v) \sim Bin(n-1, C/n) \approx Poi(C)$.

Claim Let C > 0 and let $G_n \sim \mathbb{G}(n, C/n)$. Almost surely (G_n) is Benjamini–Schramm convergent (and converges to a Galton–Watson branching process with parameter C).

Why important? Questions from dynamical systems. Previously, more complicated model of random *D*-regular graphs.