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Graph limit theories



Graph limit theories

Limits of dense graph sequences∼2004
Borgs, Chayes, Lovász, Razborov, Sós, Szegedy, Vesztergombi
works for all graph sequences but trivial when e(Gn)/v(Gn)2 → 0.

note e(Gn) ≤
(v(Gn)2

2

)
≈ v(Gn)2

2 .

⇒ breakthroughs in graph theory (extremal GrTh, random graphs)
⇒ stimulated developements in Higher Order Fourier Analysis

(Szegedy, Green–Tao, . . . )

Limits of sparse graphs∼2001, Benjamini–Schramm
one needs to fix D ∈ N and work in the category of graphs of
maximum degree ≤ D.

note e(Gn) ≤ D
2 v(Gn)



Convergence

G1,G2,G3, . . . graphs with all the degrees are bounded by an
absolute constant D.
Goal: convergence notion.

ρr (G ) =distribution on rooted r -balls around a randomly selected
root of G . (example r = 2)
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Convergence

G1,G2,G3, . . . graphs with all the degrees are bounded by an
absolute constant D.
Goal: convergence notion.
ρr (G ) =distribution on rooted r -balls around a randomly selected
root of G . (example r = 2)
Definition: G1,G2,G3, . . . is convergent if for each r ∈ N,
ρr (G1), ρr (G2), ρr (G3), . . . converges (and converges to a
probability distribution) (Benjamini–Schramm’01)
...and then we can associate to it a probability measure on rooted
countable graphs by Kolmogorov’s extension theorem

Observation Every sequence of uniformly degree-bounded graphs
contains a convergent subsequence.
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Example: 3-regular trees



Example: 3-regular trees



Obtaining the 3-regular tree in the limit



The Aldous–Lyons conjecture

If µ is a limit distribution then sampling according to µ and
moving to a random neighbor must give the original law µ
(weighted by degrees) ⇒ unimodular distributions
Conjecture (Aldous–Lyons’07) Every unimodular distribution
can be obtained as a limit.
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Sofic groups (Gromov 1990)

A (finitely generated) group Γ = 〈S〉 is sofic if the Dirac measure
on the Cayley graph (Γ,S) can be approximated by finite graphs.
(in the actual definition, one has to move to the category of
edge-labelled directed graphs)

This definition does not depend on the choice of S .

Alternative definition: subgroup of a metric ultraproduct of Sn’s
Gromov 1990: It could perhaps be the case (?!) that every group
is sofic???
Elek–Szabó 2005: Every sofic group is hyperlinear.
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Applications of soficity: equations in groups

Γ. . . group, k1, k2, . . . , kn ∈ Z, γ1, γ2, . . . , γn ∈ Γ.
We want to find a solution x ∈ Γ,

γ1x
k1γ2x

k2 . . . γnx
kn = 1 .

Sometimes, the above equation does not have a solution, e.g.

αxβx−1 = 1 when ord(α) 6= ord(β)

An equation is regular if
∑

ki 6= 0.
Conjecture Any regular equation (in a group Γ) has a solution
over some extension Λ ⊇ Γ.
Theorem True for hyperlinear (and thus also sofic) groups Γ.
Baby version For each regular equation in a finite group Γ has a
solution over some Λ ⊇ Γ.
Proof Γ ≤ Sn ≤ O(n), and we have
Gerstenhaber–Rothaus’62: O(n) is algebraically close.
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Applications of soficity: group rings

Conjecture (Kaplansky 1969): For any group G and
commutative field K , the group algebra K (G ) is directly finite.
That is ab = 1K implies ba = 1K .

Theorem (Elek–Szabó’04): For any sofic group G and
commutative field K , the group algebra K (G ) is directly finite.
That is ab = 1K implies ba = 1K .
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An application in global analysis

Theorem (Lück 1994, Abért, Thom, Virág 201?):
Let X be a finite connected simplicial complex. Let
π1(X ) ≥ Γ1 ≥ Γ2 ≥ . . . be a chain of normal subgroups of finite
index in π1(X ) with ∩nΓn = 1, and let Xn = X̃/Γn. Then

lim
n

bk(Xn)

|Γ : Γn|
= β

(2)
k (X ) .

(β
(2)
k . . . k-th L2 Betti number)



Bounded degrees

Why did we have to have all degrees≤ D?

Random rooted 2-balls G1,G2,G3, . . . have a weak limit, but a
trivial one (total mass=0).

Maximum degree≤ D ⇒ finitely many r -balls
⇒ measure cannot “escape to infinity”

A sequence of probability measures µ1, µ2, . . . on X is tight if for
every ε > 0 there exists a finite K ⊂ X such that µn(K ) ≥ 1− ε
for all n.
Lyons’07: The concept of Benjamini–Schramm limit can be
extended to sequences G1,G2, . . . where for each r ∈ N, the
sequence ρr (G1), ρr (G2), . . . is tight. AND NOT FURTHER
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Ongoing work with Lukasz Grabowski & Oleg Pikhurko

Theorem (Elek’10)
The Aldous–Lyons conjecture holds for measures supported on
bounded-degree trees.

Theorem (Elek–Lippner’10) (Borel Oracles Method)
The matching ratio is Benjamini–Schramm continuous for
bounded-degree graphs.

Definition A graphing is a unimodular Borel graph whose each
degree is finite and bounded by an absolute constant D ∈ N.

Theorem (Hatami–Lovász–Szegedy’13)
For every Benjamini–Schramm convergent sequence of graphs of
degree≤ D there is a graphing that is its local-global limit.



Ongoing work with Lukasz Grabowski & Oleg Pikhurko

Theorem
The Aldous–Lyons conjecture holds for measures supported on
bounded-degree trees.

Theorem (Borel Oracles Method)
The matching ratio is Benjamini–Schramm continuous for
bounded-degree graphs. (Bordenave, Lelarge, Salez’13)

Definition A graphing is a unimodular Borel graph whose each
degree is finite and bounded by an absolute constant D ∈ N.

Theorem
For every Benjamini–Schramm convergent sequence of graphs of
degree≤ D there is a graphing that is its local-global limit.

. . . and perhaps almost all of the theory can be extended



Sparse graphs with unbounded maximum degree

Erdős–Rényi random graph G(n, p) (Erdős–Rényi, Gilbert, 1959):
Take V (G ) = {1, . . . , n}. To randomly generate the edges, we put
ij ∈ E (G ) with probability p.

Typically, interest in typical behaviour as n→∞.

Many interesting phenomena occur for C > 0 constant, and

G(n,C/n) (n→∞) .

In that regime, deg(v) ∼ Bin(n − 1,C/n) ≈ Poi(C ).

Claim Let C > 0 and let Gn ∼ G(n,C/n). Almost surely (Gn) is
Benjamini–Schramm convergent (and converges to a
Galton–Watson branching process with parameter C ).

Why important? Questions from dynamical systems. Previously,
more complicated model of random D-regular graphs.
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