# Limits of sparse graph sequences 

Jan Hladký<br>Mathematics Institute,<br>Academy of Sciences of the Czech Republic



JH's research is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

## Graph limit theories



## Graph limit theories

Limits of dense graph sequences~2004
Borgs, Chayes, Lovász, Razborov, Sós, Szegedy, Vesztergombi works for all graph sequences but trivial when $e\left(G_{n}\right) / v\left(G_{n}\right)^{2} \rightarrow 0$.

$$
\text { note } e\left(G_{n}\right) \leq\binom{ v\left(G_{n}\right)^{2}}{2} \approx \frac{v\left(G_{n}\right)^{2}}{2}
$$

$\Rightarrow$ breakthroughs in graph theory (extremal GrTh, random graphs)
$\Rightarrow$ stimulated developements in Higher Order Fourier Analysis (Szegedy, Green-Tao, ...)

Limits of sparse graphs~2001, Benjamini-Schramm one needs to fix $D \in \mathbb{N}$ and work in the category of graphs of maximum degree $\leq D$.

$$
\text { note } e\left(G_{n}\right) \leq \frac{D}{2} v\left(G_{n}\right)
$$

## Convergence

$G_{1}, G_{2}, G_{3}, \ldots$ graphs with all the degrees are bounded by an absolute constant $D$.
Goal: convergence notion.

## Convergence

$G_{1}, G_{2}, G_{3}, \ldots$ graphs with all the degrees are bounded by an absolute constant $D$.
Goal: convergence notion.
$\rho_{r}(G)=$ distribution on rooted $r$-balls around a randomly selected root of $G$. (example $r=2$ )


## Convergence

$G_{1}, G_{2}, G_{3}, \ldots$ graphs with all the degrees are bounded by an absolute constant $D$.
Goal: convergence notion.
$\rho_{r}(G)=$ distribution on rooted $r$-balls around a randomly selected root of $G$. (example $r=2$ )






4/36

## Convergence

$G_{1}, G_{2}, G_{3}, \ldots$ graphs with all the degrees are bounded by an absolute constant $D$.
Goal: convergence notion.
$\rho_{r}(G)=$ distribution on rooted $r$-balls around a randomly selected root of $G$. (example $r=2$ )


## Convergence

$G_{1}, G_{2}, G_{3}, \ldots$ graphs with all the degrees are bounded by an absolute constant $D$.
Goal: convergence notion.
$\rho_{r}(G)=$ distribution on rooted $r$-balls around a randomly selected root of $G$. (example $r=2$ )
Definition: $G_{1}, G_{2}, G_{3}, \ldots$ is convergent if for each $r \in \mathbb{N}$, $\rho_{r}\left(G_{1}\right), \rho_{r}\left(G_{2}\right), \rho_{r}\left(G_{3}\right), \ldots$ converges (and converges to a probability distribution) (Benjamini-Schramm'01)

## Convergence

$G_{1}, G_{2}, G_{3}, \ldots$ graphs with all the degrees are bounded by an absolute constant $D$.
Goal: convergence notion.
$\rho_{r}(G)=$ distribution on rooted $r$-balls around a randomly selected root of $G$. (example $r=2$ )
Definition: $G_{1}, G_{2}, G_{3}, \ldots$ is convergent if for each $r \in \mathbb{N}$, $\rho_{r}\left(G_{1}\right), \rho_{r}\left(G_{2}\right), \rho_{r}\left(G_{3}\right), \ldots$ converges (and converges to a probability distribution) (Benjamini-Schramm'01)
...and then we can associate to it a probability measure on rooted countable graphs by Kolmogorov's extension theorem

## Convergence

$G_{1}, G_{2}, G_{3}, \ldots$ graphs with all the degrees are bounded by an absolute constant $D$.
Goal: convergence notion.
$\rho_{r}(G)=$ distribution on rooted $r$-balls around a randomly selected root of $G$. (example $r=2$ )
Definition: $G_{1}, G_{2}, G_{3}, \ldots$ is convergent if for each $r \in \mathbb{N}$, $\rho_{r}\left(G_{1}\right), \rho_{r}\left(G_{2}\right), \rho_{r}\left(G_{3}\right), \ldots$ converges (and converges to a probability distribution) (Benjamini-Schramm'01)
...and then we can associate to it a probability measure on rooted countable graphs by Kolmogorov's extension theorem

Observation Every sequence of uniformly degree-bounded graphs contains a convergent subsequence.

## Example: grids



## Example: 3-regular trees



## Example: 3-regular trees



## Obtaining the 3-regular tree in the limit

## 3-regular graphs

 with no short cycles

The Aldous-Lyons conjecture


## The Aldous-Lyons conjecture



If $\mu$ is a limit distribution then sampling according to $\mu$ and moving to a random neighbor must give the original law $\mu$ (weighted by degrees) $\Rightarrow$ unimodular distributions Conjecture (Aldous-Lyons'07) Every unimodular distribution can be obtained as a limit.

## Sofic groups (Gromov 1990)

A (finitely generated) group $\Gamma=\langle S\rangle$ is sofic if the Dirac measure on the Cayley graph ( $\Gamma, S$ ) can be approximated by finite graphs.
(in the actual definition, one has to move to the category of edge-labelled directed graphs)


This definition does not depend on the choice of $S$.

## Sofic groups (Gromov 1990)

A (finitely generated) group $\Gamma=\langle S\rangle$ is sofic if the Dirac measure on the Cayley graph ( $\Gamma, S$ ) can be approximated by finite graphs.
(in the actual definition, one has to move to the category of edge-labelled directed graphs)


This definition does not depend on the choice of $S$.
Alternative definition: subgroup of a metric ultraproduct of $\mathbb{S}_{n}$ 's
Gromov 1990: It could perhaps be the case (?!) that every group is sofic???
Elek-Szabó 2005: Every sofic group is hyperlinear

Applications of soficity: equations in groups
$\Gamma \ldots$ group, $k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{Z}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \Gamma$.
We want to find a solution $x \in \Gamma$,

$$
\gamma_{1} x^{k_{1}} \gamma_{2} x^{k_{2}} \ldots \gamma_{n} x^{k_{n}}=1
$$

## Applications of soficity: equations in groups

$\Gamma \ldots$ group, $k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{Z}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \Gamma$.
We want to find a solution $x \in \Gamma$,

$$
\gamma_{1} x^{k_{1}} \gamma_{2} x^{k_{2}} \ldots \gamma_{n} x^{k_{n}}=1
$$

Sometimes, the above equation does not have a solution, e.g.

$$
\alpha x \beta x^{-1}=1 \quad \text { when } \operatorname{ord}(\alpha) \neq \operatorname{ord}(\beta)
$$

An equation is regular if $\sum k_{i} \neq 0$.
Conjecture Any regular equation (in a group $\Gamma$ ) has a solution over some extension $\Lambda \supseteq \Gamma$.
Theorem True for hyperlinear (and thus also sofic) groups $\Gamma$.

## Applications of soficity: equations in groups

$\Gamma \ldots$ group, $k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{Z}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \Gamma$.
We want to find a solution $x \in \Gamma$,

$$
\gamma_{1} x^{k_{1}} \gamma_{2} x^{k_{2}} \ldots \gamma_{n} x^{k_{n}}=1
$$

Sometimes, the above equation does not have a solution, e.g.

$$
\alpha x \beta x^{-1}=1 \quad \text { when } \operatorname{ord}(\alpha) \neq \operatorname{ord}(\beta)
$$

An equation is regular if $\sum k_{i} \neq 0$.
Conjecture Any regular equation (in a group $\Gamma$ ) has a solution over some extension $\Lambda \supseteq \Gamma$.
Theorem True for hyperlinear (and thus also sofic) groups $\Gamma$. Baby version For each regular equation in a finite group $\Gamma$ has a solution over some $\Lambda \supseteq \Gamma$.
Proof $\Gamma \leq \mathbb{S}_{n} \leq O(n)$, and we have
Gerstenhaber-Rothaus'62: $O(n)$ is algebraically close.

## Applications of soficity: group rings

Conjecture (Kaplansky 1969): For any group $G$ and commutative field $K$, the group algebra $K(G)$ is directly finite. That is $a b=1_{K}$ implies $b a=1_{K}$.

## Applications of soficity: group rings

Conjecture (Kaplansky 1969): For any group $G$ and commutative field $K$, the group algebra $K(G)$ is directly finite.
That is $a b=1_{K}$ implies $b a=1_{K}$.
Theorem (Elek-Szabó'04): For any sofic group $G$ and commutative field $K$, the group algebra $K(G)$ is directly finite. That is $a b=1_{K}$ implies $b a=1_{K}$.

## An application in global analysis

Theorem (Lück 1994, Abért, Thom, Virág 201?):
Let $X$ be a finite connected simplicial complex. Let $\pi_{1}(X) \geq \Gamma_{1} \geq \Gamma_{2} \geq \ldots$ be a chain of normal subgroups of finite index in $\pi_{1}(X)$ with $\cap_{n} \Gamma_{n}=1$, and let $X_{n}=\tilde{X} / \Gamma_{n}$. Then

$$
\lim _{n} \frac{b_{k}\left(X_{n}\right)}{\left|\Gamma: \Gamma_{n}\right|}=\beta_{k}^{(2)}(X) .
$$

( $\beta_{k}^{(2)} \ldots k$-th $L^{2}$ Betti number)

## Bounded degrees

Why did we have to have all degrees $\leq D$ ?

## Bounded degrees

Why did we have to have all degrees $\leq D$ ?


Random rooted 2-balls $G_{1}, G_{2}, G_{3}, \ldots$ have a weak limit, but a trivial one (total mass $=0$ ).

Maximum degree $\leq D \Rightarrow$ finitely many $r$-balls
$\Rightarrow$ measure cannot "escape to infinity"

## Bounded degrees

Why did we have to have all degrees $\leq D$ ?


Random rooted 2-balls $G_{1}, G_{2}, G_{3}, \ldots$ have a weak limit, but a trivial one (total mass $=0$ ).

Maximum degree $\leq D \Rightarrow$ finitely many $r$-balls
$\Rightarrow$ measure cannot "escape to infinity"
A sequence of probability measures $\mu_{1}, \mu_{2}, \ldots$ on $\mathcal{X}$ is tight if for every $\epsilon>0$ there exists a finite $K \subset \mathcal{X}$ such that $\mu_{n}(K) \geq 1-\epsilon$ for all $n$.
Lyons'07: The concept of Benjamini-Schramm limit can be extended to sequences $G_{1}, G_{2}, \ldots$ where for each $r \in \mathbb{N}$, the sequence $\rho_{r}\left(G_{1}\right), \rho_{r}\left(G_{2}\right), \ldots$ is tight. AND NOT FURTHER

## Ongoing work with Lukasz Grabowski \& Oleg Pikhurko

Theorem (Elek'10)
The Aldous-Lyons conjecture holds for measures supported on bounded-degree trees.

Theorem (Elek-Lippner'10) (Borel Oracles Method)
The matching ratio is Benjamini-Schramm continuous for bounded-degree graphs.

Definition A graphing is a unimodular Borel graph whose each degree is finite and bounded by an absolute constant $D \in \mathbb{N}$.

## Theorem (Hatami-Lovász-Szegedy'13)

For every Benjamini-Schramm convergent sequence of graphs of degree $\leq D$ there is a graphing that is its local-global limit.

## Ongoing work with Lukasz Grabowski \& Oleg Pikhurko

## Theorem

The Aldous-Lyons conjecture holds for measures supported on bounded-degree trees.

## Theorem

(Borel Oracles Method)
The matching ratio is Benjamini-Schramm continuous for bounded-degree graphs. (Bordenave, Lelarge, Salez'13)

Definition A graphing is a unimodular Borel graph whose each degree is finite and bounded by an absolute constant $D \subset \mathbb{N}$.

## Theorem

For every Benjamini-Schramm convergent sequence of graphs of degree $\leq D$ there is a graphing that is its local-global limit.
... and perhaps almost all of the theory can be extended

## Sparse graphs with unbounded maximum degree

Erdős-Rényi random graph $\mathbb{G}(n, p)$ (Erdős-Rényi, Gilbert, 1959): Take $V(G)=\{1, \ldots, n\}$. To randomly generate the edges, we put $i j \in E(G)$ with probability $p$.

## Sparse graphs with unbounded maximum degree

Erdős-Rényi random graph $\mathbb{G}(n, p)$ (Erdős-Rényi, Gilbert, 1959): Take $V(G)=\{1, \ldots, n\}$. To randomly generate the edges, we put $i j \in E(G)$ with probability $p$.
Typically, interest in typical behaviour as $n \rightarrow \infty$.
Many interesting phenomena occur for $C>0$ constant, and

$$
\mathbb{G}(n, C / n) \quad(n \rightarrow \infty)
$$

## Sparse graphs with unbounded maximum degree

Erdős-Rényi random graph $\mathbb{G}(n, p)$ (Erdős-Rényi, Gilbert, 1959):
Take $V(G)=\{1, \ldots, n\}$. To randomly generate the edges, we put $i j \in E(G)$ with probability $p$.
Typically, interest in typical behaviour as $n \rightarrow \infty$.
Many interesting phenomena occur for $C>0$ constant, and

$$
\mathbb{G}(n, C / n) \quad(n \rightarrow \infty)
$$

In that regime, $\operatorname{deg}(v) \sim \operatorname{Bin}(n-1, C / n) \approx \operatorname{Poi}(C)$.

## Sparse graphs with unbounded maximum degree

Erdős-Rényi random graph $\mathbb{G}(n, p)$ (Erdős-Rényi, Gilbert, 1959):
Take $V(G)=\{1, \ldots, n\}$. To randomly generate the edges, we put $i j \in E(G)$ with probability $p$.

Typically, interest in typical behaviour as $n \rightarrow \infty$.
Many interesting phenomena occur for $C>0$ constant, and

$$
\mathbb{G}(n, C / n) \quad(n \rightarrow \infty) .
$$

In that regime, $\operatorname{deg}(v) \sim \operatorname{Bin}(n-1, C / n) \approx \operatorname{Poi}(C)$.
Claim Let $C>0$ and let $G_{n} \sim \mathbb{G}(n, C / n)$. Almost surely $\left(G_{n}\right)$ is Benjamini-Schramm convergent (and converges to a Galton-Watson branching process with parameter $C$ ).

## Sparse graphs with unbounded maximum degree

Erdős-Rényi random graph $\mathbb{G}(n, p)$ (Erdős-Rényi, Gilbert, 1959):
Take $V(G)=\{1, \ldots, n\}$. To randomly generate the edges, we put $i j \in E(G)$ with probability $p$.

Typically, interest in typical behaviour as $n \rightarrow \infty$.
Many interesting phenomena occur for $C>0$ constant, and

$$
\mathbb{G}(n, C / n) \quad(n \rightarrow \infty) .
$$

In that regime, $\operatorname{deg}(v) \sim \operatorname{Bin}(n-1, C / n) \approx \operatorname{Poi}(C)$.
Claim Let $C>0$ and let $G_{n} \sim \mathbb{G}(n, C / n)$. Almost surely $\left(G_{n}\right)$ is Benjamini-Schramm convergent (and converges to a Galton-Watson branching process with parameter C).

Why important? Questions from dynamical systems. Previously, more complicated model of random $D$-regular graphs.

