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Graph limit theories

Limits of dense graph sequences~2004
Borgs, Chayes, Lovdsz, Razborov, Sés, Szegedy, Vesztergombi
works for all graph sequences but trivial when e(G,)/v(G,)? — 0.

note e(G,) < (V(g”)z) ~ "(%”)2
= breakthroughs in graph theory (extremal GrTh, random graphs)
= stimulated developements in Higher Order Fourier Analysis
(Szegedy, Green-Tao, ...)

Limits of sparse graphs~2001, Benjamini—-Schramm
one needs to fix D € N and work in the category of graphs of
maximum degree < D.

note e(G,) <

N}

v(Gn)
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Gi, Gy, Gz, ... graphs with all the degrees are bounded by an
absolute constant D.
Goal: convergence notion.
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Convergence

Gi, Gy, Gz, ... graphs with all the degrees are bounded by an
absolute constant D.

Goal: convergence notion.

pr(G) =distribution on rooted r-balls around a randomly selected
root of G. (example r = 2)

Definition: Gi, Gy, Gs, ... is convergent if for each r € N,
pr(G1), pr(G2), pr(G3), ... converges (and converges to a
probability distribution) (Benjamini—-Schramm’01)

...and then we can associate to it a probability measure on rooted
countable graphs by Kolmogorov's extension theorem

Observation Every sequence of uniformly degree-bounded graphs
contains a convergent subsequence.



Example: grids

nxn
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Example: 3-regular trees

n — oo

depth n >

7A



Example: 3-regular trees

Pr=1/2 - Pr=1/4

Pr=1/8 ;-



Obtaining the 3-regular tree in the limit

3-regular graphs

with no short cycles >




The Aldous—Lyons conjecture

Pr=




The Aldous—Lyons conjecture

Pr=

If 1 is a limit distribution then sampling according to p and
moving to a random neighbor must give the original law p
(weighted by degrees) = unimodular distributions
Conjecture (Aldous—Lyons’07) Every unimodular distribution
can be obtained as a limit.



Sofic groups (Gromov 1990)

A (finitely generated) group I' = (S) is sofic if the Dirac measure
on the Cayley graph (I, S) can be approximated by finite graphs.
(in the actual definition, one has to move to the category of
edge-labelled directed graphs)

This definition does not depend on the choice of S.



Sofic groups (Gromov 1990)

A (finitely generated) group I' = (S) is sofic if the Dirac measure
on the Cayley graph (I, S) can be approximated by finite graphs.
(in the actual definition, one has to move to the category of
edge-labelled directed graphs)

This definition does not depend on the choice of S.

Alternative definition: subgroup of a metric ultraproduct of S,,’s
Gromov 1990: It could perhaps be the case (?!) that every group
is sofic???

Elek—Szabé 2005: Every sofic group is hyperlinear.



Applications of soficity: equations in groups

F...group, kl,kg,...,kn € Z, Y1,7Y2, -5 Yn € I.
We want to find a solution x € T,

’nxkl’ygka .. .fy,,xk" =1.



Applications of soficity: equations in groups

F...group, kl,kz,...,kn € Z, Y1,7Y2, -5 Yn € I.
We want to find a solution x € T,

’ylxklfygle .. .fy,,xk" =1.
Sometimes, the above equation does not have a solution, e.g.
axBx =1 when ord(«) # ord(3)
An equation is regular if Y k; # 0.
Conjecture Any regular equation (in a group I') has a solution

over some extension A D .
Theorem True for hyperlinear (and thus also sofic) groups I'.



Applications of soficity: equations in groups

F...group, kl,kz,...,kn EZ, Y1,7Y2, -5 Yn € I.
We want to find a solution x € T,

’ylxklfygle .. .%xk" =1.
Sometimes, the above equation does not have a solution, e.g.
axBx =1 when ord(«) # ord(3)

An equation is regular if Y k; # 0.

Conjecture Any regular equation (in a group I') has a solution
over some extension A D .

Theorem True for hyperlinear (and thus also sofic) groups I'.
Baby version For each regular equation in a finite group I has a
solution over some A D T.

Proof I < S, < O(n), and we have

Gerstenhaber—Rothaus'62: O(n) is algebraically close.
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Applications of soficity: group rings

Conjecture (Kaplansky 1969): For any group G and
commutative field K, the group algebra K(G) is directly finite.
That is ab = 1k implies ba = 1.

Theorem (Elek—Szab6'04): For any sofic group G and
commutative field K, the group algebra K(G) is directly finite.
That is ab = 1k implies ba = 1.



An application in global analysis

Theorem (Liick 1994, Abért, Thom, Virag 2017):

Let X be a finite connected simplicial complex. Let

m1(X) >T1>T2 > ... be a chain of normal subgroups of finite
index in 71(X) with N,I, =1, and let X, = )N(/r,,. Then

b(Xn) L2
IF:r, 7k (X) -

lim
n

(6,((2). .. k-th L2 Betti number)
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Bounded degrees
Why did we have to have all degrees< D?

G, Go \ Gs

Random rooted 2-balls Gy, Gy, Gs, ... have a weak limit, but a
trivial one (total mass=0).

Maximum degree< D => finitely many r-balls

= measure cannot “escape to infinity”
A sequence of probability measures p1, o, ... on X is tight if for
every € > 0 there exists a finite K C X such that p,(K) >1—¢

for all n.
Lyons’07: The concept of Benjamini-Schramm limit can be
extended to sequences Gy, Go, ... where for each r € N, the

sequence p,(G1), pr(G2),. .. is tight. AND NOT FURTHER



Ongoing work with Lukasz Grabowski & Oleg Pikhurko

Theorem (Elek’10)
The Aldous—Lyons conjecture holds for measures supported on
bounded-degree trees.

Theorem (Elek—Lippner'10) (Borel Oracles Method)
The matching ratio is Benjamini—-Schramm continuous for
bounded-degree graphs.

Definition A graphing is a unimodular Borel graph whose each
degree is finite and bounded by an absolute constant D € N.

Theorem (Hatami—Lovasz—Szegedy’13)
For every Benjamini—-Schramm convergent sequence of graphs of
degree< D there is a graphing that is its local-global limit.



Ongoing work with Lukasz Grabowski & Oleg Pikhurko

Theorem
The Aldous—Lyons conjecture holds for measures supported on

botnded-degree trees.

Theorem (Borel Oracles Method)
The matching ratio is Benjamini—-Schramm continuous fer

beunded-degreegraphs. (Bordenave, Lelarge, Salez’13)

Definition A graphing is a unimodular Borel graph whose each
degree is finite and-bounded-by-an-abselute constant-D-< N,

Theorem
For every Benjamini—-Schramm convergent sequence of graphs of

degree<<—D there is a graphing that is its local-global limit.

...and perhaps almost all of the theory can be extended
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Take V(G) = {1,...,n}. To randomly generate the edges, we put
ij € E(G) with probability p.
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Sparse graphs with unbounded maximum degree

Erdés—Rényi random graph G(n, p) (Erdés—Rényi, Gilbert, 1959):
Take V(G) = {1,...,n}. To randomly generate the edges, we put
ij € E(G) with probability p.

Typically, interest in typical behaviour as n — co.

Many interesting phenomena occur for C > 0 constant, and

G(n,C/n) (n— o00) .

In that regime, deg(v) ~ Bin(n—1, C/n) ~ Poi(C).

Claim Let C > 0 and let G, ~ G(n, C/n). Almost surely (G,) is
Benjamini-Schramm convergent (and converges to a
Galton—-Watson branching process with parameter C).

Why important? Questions from dynamical systems. Previously,
more complicated model of random D-regular graphs.



