Limits of dense graph sequences

Jan Hladký Institute of Computer Science Czech Academy of Sciences

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Limits of dense graph sequences

Lovász, Szegedy *JCTB'06* (Fulkerson Prize'12) Borgs, Chayes, Lovász, Sós, Vesztergombi *Adv.Math.'06* Borgs, Chayes, Lovász, Sós, Vesztergombi *Ann.Math.'12*

Limits of dense graph sequences

Lovász, Szegedy *JCTB'06* (Fulkerson Prize'12) Borgs, Chayes, Lovász, Sós, Vesztergombi *Adv.Math.'06* Borgs, Chayes, Lovász, Sós, Vesztergombi *Ann.Math.'12*

idea: convergence notion for sequences of finite graphs compactification of the space of finite graphs \Rightarrow ... graphons symmetric Lebesgue-m. functions $\Omega^2 \rightarrow [0, 1]$ Why? same story as with \mathbb{Q} vs \mathbb{R} : only the latter allows reasonable e.g. variational and integral calculus for example $\operatorname{argmin}(x^3 - 2x)$

Limits of dense graph sequences: an abstract approach

F is a "fixed graph" of order *k*, *G* is "large" of order *n* We define **subgraph density** t(F, G):

$$t(F,G) := \frac{\# \text{ copies of } F \text{ in } G}{\binom{n}{k}} = \mathbf{P}[G[\text{random } k\text{-set}] \cong F]$$

Limits of dense graph sequences: an abstract approach

F is a "fixed graph" of order *k*, *G* is "large" of order *n* We define **subgraph density** t(F, G):

$$t(F,G) := \frac{\# \text{ copies of } F \text{ in } G}{\binom{n}{k}} = \mathbf{P}\big[G[\text{random } k\text{-set}] \cong F\big]$$

A sequence of graphs G_1, G_2, \ldots converges if for each F, the sequence $t(F, G_1), t(F, G_2), \ldots$ converges. We get a **limit object** Ψ , $t(F, \Psi) = \lim_n t(F, G_n)$.

Why dense graph sequences? If the proportion of edges $\searrow 0$ ($\lim \frac{e(G_n)}{n^2} = 0$) we get a trivial limit. That is, the theory is void for trees, planar graphs, ...

Limits of dense graph sequences: an abstract approach

F is a "fixed graph" of order *k*, *G* is "large" of order *n* We define **subgraph density** t(F, G):

$$t(F,G) := \frac{\# \text{ copies of } F \text{ in } G}{\binom{n}{k}} = \mathbf{P}\big[G[\text{random } k\text{-set}] \cong F\big]$$

A sequence of graphs G_1, G_2, \ldots converges if for each F, the sequence $t(F, G_1), t(F, G_2), \ldots$ converges. We get a **limit object** Ψ , $t(F, \Psi) = \lim_n t(F, G_n)$.

Why dense graph sequences? If the proportion of edges $\searrow 0$ ($\lim \frac{e(G_n)}{n^2} = 0$) we get a trivial limit. That is, the theory is void for trees, planar graphs, ...

Razborov'07 flag algebras (next slide)

Extremal graph theory and Razborov's flag algebras I

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extremal graph theory and Razborov's flag algebras I

$$\begin{array}{c} n/3 \overbrace{A_1} & k = 2: \ t(\ \bullet, G) = \frac{1}{3} & t(\ \bullet, G) = \frac{2}{3} \\ k = 3: \ t(\ \bullet, G) = \frac{1}{9} & t(\ \bullet, G) = 0 \\ A_2 & A_3 & t(\ \bullet, G) = \frac{1}{9} & t(\ \bullet, G) = 0 \\ n/3 & n/3 & k = 4: \ t(\ \blacksquare, G) = 0 & \dots \end{array}$$

Theorem (\approxTurán 1941) For each $\epsilon > 0$ there exists $\delta > 0$: If an *n*-vertex graph has more than $(\frac{2}{3} + \epsilon)\binom{n}{2}$ edges then it contains $> \delta$ -proportion of \boxtimes 's.

ExGrTh studies relations between $t(F_1, G)$, $t(F_2, G)$,

Extremal graph theory and Razborov's flag algebras I

$$\begin{array}{c} n/3 \overbrace{A_1} \\ A_2 \\ n/3 \end{array} \begin{array}{c} k = 2: \quad t(\begin{subarray}{c} \bullet, G) = \frac{1}{3} \\ k = 3: \quad t(\begin{subarray}{c} \bullet, G) = \frac{1}{9} \\ n/3 \end{array} \begin{array}{c} t(\begin{subarray}{c} \bullet, G) = \frac{1}{9} \\ t(\begin{subarray}{c} \bullet, G) = 0 \\ t(\begin{subarray}{c} \bullet, G) = \frac{2}{3} \\ t(\begin{subarray}{c} \bullet, G) = \frac{2}{9} \\ n/3 \end{array} \begin{array}{c} t(\begin{subarray}{c} \bullet, G) = \frac{2}{3} \\ k = 4: \quad t(\begin{subarray}{c} \bullet, G) = 0 \\ n/3 \end{array} \end{array} \begin{array}{c} \ldots \end{array}$$

Theorem (\approxTurán 1941) For each $\epsilon > 0$ there exists $\delta > 0$: If an *n*-vertex graph has more than $(\frac{2}{3} + \epsilon)\binom{n}{2}$ edges then it contains $> \delta$ -proportion of \boxtimes 's.

ExGrTh studies relations between $t(F_1, G)$, $t(F_2, G)$,

Razborov: But lets rather study these relations on the limit space! **Approach to proving Turán:** Suppose the theorem is false. G_1, G_2, \ldots all contain $(\frac{2}{3} + \epsilon)$ -proportion of edges but proportion of \boxtimes 's tends to 0. Pass to a subsequential limit Ψ . $t(|, \Psi) \ge \frac{2}{3} + \epsilon$ and $t(\boxtimes, \Psi) = 0$. Derive a contradiction.

Extremal graph theory and Razborov's flag algebras II

Razborov provides tools for deriving relations that hold on the limit object (Cauchy-Schwarz calculus, variational calculus, ...)

First application: Razborov'08 (AMS Robbins Prize'12) solves the triangle density problem of Lovász and Simonovits 1983: Suppose a graph has a given proportion of edges. What proportion of triangles can it have?

Extremal graph theory and Razborov's flag algebras II

Razborov provides tools for deriving relations that hold on the limit object (Cauchy-Schwarz calculus, variational calculus, ...)

First application: Razborov'08 (AMS Robbins Prize'12) solves the triangle density problem of Lovász and Simonovits 1983:

Suppose a graph has a given proportion of edges. What proportion of triangles can it have?

Allows computer to aid for searching for the right inequalities (i.e., systematization of extremal graph theory)

Extremal graph theory and Razborov's flag algebras II

Razborov provides tools for deriving relations that hold on the limit object (Cauchy-Schwarz calculus, variational calculus, \dots)

First application: Razborov'08 (AMS Robbins Prize'12) solves the triangle density problem of Lovász and Simonovits 1983:

Suppose a graph has a given proportion of edges. What proportion of triangles can it have?

Allows computer to aid for searching for the right inequalities (i.e., systematization of extremal graph theory)

- H.-Král'-Norine'09: Caccetta-Häggkvist conj. (progress)
- ► H.-Hatami-Král'-Norine-Razborov'11 conjecture of Erdős 1984
- ► HHKNR'11 conjecture of Jagger-Štovíček-Thomason 1996
- ...and many more

Hatami-Norine *J.AMS'11* deciding whether an inequality between subgraph densities holds for all graph limits is undecidable

Graphons I

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Graphons I

Represent these graphs by their adjacency matrices:

Graphons I

Represent these graphs by their adjacency matrices:

... works if you do things the right way. But, ...

In general Szemerédi's Regularity Lemma can be used to determine "the right way" of ordering the vertices.

Graphons II

A graphon is a symmetric Lebesgue-m. function. $W : \Omega^2 \rightarrow [0, 1]$. Theorem (Lovász–Szegedy) sampling conv. \Leftrightarrow graphical conv. Theorem (L–Sz.) Every graphon W can be achieved in the limit. Proof:

Graphons II

A graphon is a symmetric Lebesgue-m. function. $W : \Omega^2 \rightarrow [0, 1]$. **Theorem (Lovász–Szegedy)** sampling conv.⇔graphical conv. **Theorem (L–Sz.)** Every graphon W can be achieved in the limit. **Proof:** Random graphs $G_1, G_2, ...; V(G_n) = \{1, ..., n\}$; sample $x_1, ..., x_n \in \Omega$ and connect i with j with probability $W(x_i, x_j)$.

Graphons II

A graphon is a symmetric Lebesgue-m. function. $W : \Omega^2 \rightarrow [0, 1]$. Theorem (Lovász–Szegedy) sampling conv.⇔graphical conv. Theorem (L–Sz.) Every graphon W can be achieved in the limit. Proof: Random graphs $G_1, G_2, ...; V(G_n) = \{1, ..., n\}$; sample $x_1, ..., x_n \in \Omega$ and connect i with j with probability $W(x_i, x_j)$.

It can be shown that almost surely, $G_1, G_2, \ldots \rightarrow W$.

 $\mathbb{G}(n, W)$ as a generalization of the Erdős–Rényi model $\mathbb{G}(n, p)$. Interesting model *per se*! Bollobás–Janson–Riordan'07, Doležal–H.–Máthé'15