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Limits of dense graph sequences

Lovász, Szegedy JCTB’06 (Fulkerson Prize’12)
Borgs, Chayes, Lovász, Sós, Vesztergombi Adv.Math.’06
Borgs, Chayes, Lovász, Sós, Vesztergombi Ann.Math.’12

idea: convergence notion for sequences of finite graphs
compactification of the space of finite graphs ⇒
. . . graphons symmetric Lebesgue-m. functions Ω2 → [0, 1]

Why? same story as with Q vs R: only the latter allows
reasonable e.g. variational and integral calculus
for example argmin(x3 − 2x)
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Graphons

Represent these graphs by their adjacency matrices:

. . . works if you do things the right way. But, . . .

In general Szemerédi’s Regularity Lemma can be used to determine
“the right way” of ordering the vertices.
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Parameters in graphs and graphons (examples)

G . . . graph on n vertices
A . . . adjacency matrix of G
What is number of triangles in G?

=
1

6

∑
i

∑
j

∑
k

Ai ,jAj ,kAk,i

if G ≈W then

1

6

∑
i

∑
j

∑
k

Ai ,jAj ,kAk,i ≈
n3

6
·
∫
x

∫
y

∫
z
W (x , y)W (y , z)W (z , x)
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MAX-CUT in G?

= max
V (G)=XtY

∑
x∈X

∑
y∈Y

A(x , y)

if G ≈W then

MAXCUT (G ) ≈ n2 · sup
Ω=XtY

∫
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If G is connected then it has at least one spanning tree, T (G ) 6= ∅
Let T be a UST of G (T is a random tree!)

Case study: UST in the complete graph Kn

|T (Kn)| = nn−2 (Cayley’s formula)

Quiz question: T ∼ UST (Kn). How many leaves does T have?
(a) log2 n

(b)
√

2
π ·
√
n

(c) e−1n
(d) n

2

And what about vertices of degree 2, 3, . . .?
Frequencies of larger balls? (linear scaling! / local statistics)

And what about if G 6= Kn? Continuity with respect to the
cut-distance?

Main Theorem Suppose that G is a connected graph, G ≈W ,
where W is a nondegenerate graphon. Then we know stuff.
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Main Theorem G ≈W , local structure of UST.

In this sketch of proof: number of leaves of UST (G ).

Given v ∈ V (G ), what is the probability that v is a leaf in UST?
(depends on v)

Wilson’s algorithm STOC’96, loop-erased random walk (LERW)
LERW→Schramm–Loewner evolution, conformal invariance in 2D

2006 Fields medal to Wendelin Werner

PT [v leaf in T ] ≈ P
[
0 =

∑
u∼vBernoulli(

1
degG (u) )

]
≈ P

[
0 = Poisson

(∑
u

Au,v

degG (u)

)]
= exp

(
−
∑

u
Au,v

degG (u)

)

ratio of leaves in UST(G) ≈ 1

n

∑
v

exp
(
−
∑

u
Au,v

degG (u)

)
≈
∫
x

exp

(
−
∫
y

W (x ,y)
degW (y)

)
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