Uniform spanning tree and limits of dense graphs

Jan Hladký (TU Dresden) Asaf Nachmias, Wojciech Samotij (Tel Aviv University) Tuan Tran (ICS Czech Academy of Sciences)

Limits of dense graph sequences

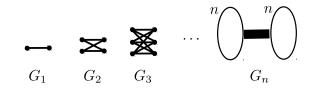
Lovász, Szegedy *JCTB'06* (Fulkerson Prize'12) Borgs, Chayes, Lovász, Sós, Vesztergombi *Adv.Math.'06* Borgs, Chayes, Lovász, Sós, Vesztergombi *Ann.Math.'12*

Limits of dense graph sequences

Lovász, Szegedy *JCTB'06* (Fulkerson Prize'12) Borgs, Chayes, Lovász, Sós, Vesztergombi *Adv.Math.'06* Borgs, Chayes, Lovász, Sós, Vesztergombi *Ann.Math.'12*

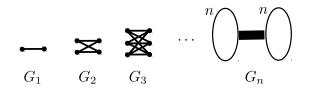
idea: convergence notion for sequences of finite graphs compactification of the space of finite graphs \Rightarrow ... graphons symmetric Lebesgue-m. functions $\Omega^2 \rightarrow [0, 1]$ Why? same story as with \mathbb{Q} vs \mathbb{R} : only the latter allows reasonable e.g. variational and integral calculus for example $\operatorname{argmin}(x^3 - 2x)$

Graphons



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

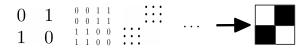
Graphons



Represent these graphs by their adjacency matrices:

Graphons

Represent these graphs by their adjacency matrices:



... works if you do things the right way. But, ...

In general Szemerédi's Regularity Lemma can be used to determine "the right way" of ordering the vertices.

G ... graph on n verticesA ... adjacency matrix of GWhat is number of triangles in G?

G ... graph on *n* verticesA ... adjacency matrix of GWhat is number of triangles in G?

$$=rac{1}{6}\sum_{i}\sum_{j}\sum_{k}A_{i,j}A_{j,k}A_{k,i}$$

G ... graph on *n* verticesA ... adjacency matrix of GWhat is number of triangles in G?

$$=\frac{1}{6}\sum_{i}\sum_{j}\sum_{k}A_{i,j}A_{j,k}A_{k,i}$$

if $G \approx W$ then

$$\frac{1}{6}\sum_{i}\sum_{j}\sum_{k}A_{i,j}A_{j,k}A_{k,i}\approx\frac{n^{3}}{6}\cdot\int_{x}\int_{y}\int_{z}W(x,y)W(y,z)W(z,x)$$

 $G \dots$ graph on *n* vertices $A \dots$ adjacency matrix of G MAX-CUT in G?

 $G \dots$ graph on *n* vertices $A \dots$ adjacency matrix of G MAX-CUT in G?

$$= \max_{V(G)=X\sqcup Y} \sum_{x\in X} \sum_{y\in Y} A(x,y)$$

 $G \dots$ graph on *n* vertices $A \dots$ adjacency matrix of G MAX-CUT in G?

$$= \max_{V(G)=X\sqcup Y} \sum_{x\in X} \sum_{y\in Y} A(x,y)$$

if $G \approx W$ then

$$MAXCUT(G) \approx n^2 \cdot \sup_{\Omega = X \sqcup Y} \int_{x \in X} \int_{y \in Y} W(x, y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Case study: UST in the complete graph K_n $|\mathcal{T}(K_n)| = n^{n-2}$ (Cayley's formula)

Case study: UST in the complete graph K_n $|\mathcal{T}(K_n)| = n^{n-2}$ (Cayley's formula)

Quiz question: $T \sim UST(K_n)$. How many leaves does T have? (a) $\log_2 n$ (b) $\sqrt{\frac{2}{\pi}} \cdot \sqrt{n}$ (c) $e^{-1}n$ (d) $\frac{n}{2}$

Case study: UST in the complete graph K_n $|\mathcal{T}(K_n)| = n^{n-2}$ (Cayley's formula)

Quiz question: $T \sim UST(K_n)$. How many leaves does T have? (a) $\log_2 n$ (b) $\sqrt{\frac{2}{\pi}} \cdot \sqrt{n}$ (c) $e^{-1}n$ (d) $\frac{n}{2}$

And what about vertices of degree $2, 3, \ldots$? Frequencies of larger balls? (linear scaling! / local statistics)

And what about if $G \neq K_n$? Continuity with respect to the cut-distance?

Main Theorem

Case study: UST in the complete graph K_n $|\mathcal{T}(K_n)| = n^{n-2}$ (Cayley's formula)

Quiz question: $T \sim UST(K_n)$. How many leaves does T have? (a) $\log_2 n$ (b) $\sqrt{\frac{2}{\pi}} \cdot \sqrt{n}$ (c) $e^{-1}n$ (d) $\frac{n}{2}$

And what about vertices of degree 2, 3, ...? Frequencies of larger balls? (linear scaling! / local statistics)

And what about if $G \neq K_n$? Continuity with respect to the cut-distance?

Main Theorem Suppose that G is a connected graph, $G \approx W$, where W is a nondegenerate graphon. Then we know stuff.

In this sketch of proof: number of leaves of UST(G).

Given $v \in V(G)$, what is the probability that v is a leaf in UST? (depends on v)

In this sketch of proof: number of leaves of UST(G).

- Given $v \in V(G)$, what is the probability that v is a leaf in UST? (depends on v)
- Wilson's algorithm STOC'96, loop-erased random walk (LERW) LERW→Schramm–Loewner evolution, conformal invariance in 2D 2006 Fields medal to Wendelin Werner

In this sketch of proof: number of leaves of UST(G).

- Given $v \in V(G)$, what is the probability that v is a leaf in UST? (depends on v)
- Wilson's algorithm STOC'96, loop-erased random walk (LERW) LERW→Schramm–Loewner evolution, conformal invariance in 2D 2006 Fields medal to Wendelin Werner

$$\mathbb{P}_{T} [v \text{ leaf in } T] \approx \mathbb{P} \left[0 = \sum_{u \sim v} Bernoulli(\frac{1}{\deg_{G}(u)}) \right]$$
$$\approx \mathbb{P} \left[0 = Poisson\left(\sum_{u} \frac{A_{u,v}}{\deg_{G}(u)}\right) \right] = \exp\left(-\sum_{u} \frac{A_{u,v}}{\deg_{G}(u)}\right)$$

In this sketch of proof: number of leaves of UST(G).

- Given $v \in V(G)$, what is the probability that v is a leaf in UST? (depends on v)
- Wilson's algorithm STOC'96, loop-erased random walk (LERW) LERW→Schramm–Loewner evolution, conformal invariance in 2D 2006 Fields medal to Wendelin Werner

$$\mathbb{P}_{T} [v \text{ leaf in } T] \approx \mathbb{P} \left[0 = \sum_{u \sim v} Bernoulli(\frac{1}{\deg_{G}(u)}) \right]$$
$$\approx \mathbb{P} \left[0 = Poisson\left(\sum_{u} \frac{A_{u,v}}{\deg_{G}(u)}\right) \right] = \exp\left(-\sum_{u} \frac{A_{u,v}}{\deg_{G}(u)}\right)$$

ratio of leaves in UST(G)
$$\approx \frac{1}{n} \sum_{v} \exp\left(-\sum_{u} \frac{A_{u,v}}{\deg_{G}(u)}\right)$$

 $\approx \int_{x} \exp\left(-\int_{y} \frac{W(x,y)}{\deg_{W}(y)}\right)$