Limits of graph sequences; dense and sparse

Jan Hladký Mathematics Institute, Academy of Sciences of the Czech Republic

JH's research is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

Limits of dense graph sequences

Lovász, Szegedy *JCTB'06* (Fulkerson Prize'12) Borgs, Chayes, Lovász, Sós, Vesztergombi *Adv.Math.'06* Borgs, Chayes, Lovász, Sós, Vesztergombi *Ann.Math.'12*

Limits of dense graph sequences

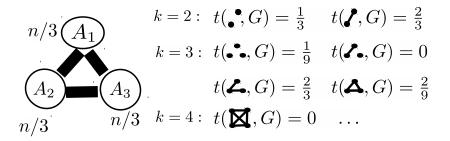
Lovász, Szegedy *JCTB'06* (Fulkerson Prize'12) Borgs, Chayes, Lovász, Sós, Vesztergombi *Adv.Math.'06* Borgs, Chayes, Lovász, Sós, Vesztergombi *Ann.Math.'12*

idea: convergence notion for sequences of finite graphs compactification of the space of finite graphs \Rightarrow ... graphons symmetric Lebesgue-m. functions $\Omega^2 \rightarrow [0, 1]$ Why? same story as with \mathbb{Q} vs \mathbb{R} : only the latter allows reasonable e.g. variational and integral calculus for example $\operatorname{argmin}(x^3 - 2x)$

Limits of dense graph sequences: an abstract approach

F is a "fixed graph" of order *k*, *G* is "large" of order *n* We define **subgraph density** t(F, G):

$$t(F,G) := \frac{\# \text{ copies of } F \text{ in } G}{\binom{n}{k}} = \mathbf{P}[G[\text{random } k\text{-set}] \cong F]$$



Limits of dense graph sequences: an abstract approach

F is a "fixed graph" of order *k*, *G* is "large" of order *n* We define **subgraph density** t(F, G):

$$t(F,G) := \frac{\# \text{ copies of } F \text{ in } G}{\binom{n}{k}} = \mathbf{P}\big[G[\text{random } k\text{-set}] \cong F\big]$$

A sequence of graphs G_1, G_2, \ldots converges if for each F, the sequence $t(F, G_1), t(F, G_2), \ldots$ converges. We get a **limit object** Ψ , $t(F, \Psi) = \lim_n t(F, G_n)$.

Why dense graph sequences? If the proportion of edges $\searrow 0$ ($\lim \frac{e(G_n)}{n^2} = 0$) we get a trivial limit. That is, the theory is void for trees, planar graphs, ...

Limits of dense graph sequences: an abstract approach

F is a "fixed graph" of order *k*, *G* is "large" of order *n* We define **subgraph density** t(F, G):

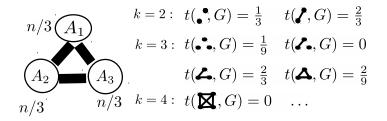
$$t(F,G) := \frac{\# \text{ copies of } F \text{ in } G}{\binom{n}{k}} = \mathbf{P}\big[G[\text{random } k\text{-set}] \cong F\big]$$

A sequence of graphs G_1, G_2, \ldots converges if for each F, the sequence $t(F, G_1), t(F, G_2), \ldots$ converges. We get a **limit object** Ψ , $t(F, \Psi) = \lim_n t(F, G_n)$.

Why dense graph sequences? If the proportion of edges $\searrow 0$ ($\lim \frac{e(G_n)}{n^2} = 0$) we get a trivial limit. That is, the theory is void for trees, planar graphs, ...

Razborov'07 flag algebras (next slide)

Extremal graph theory and Razborov's flag algebras I



Extremal graph theory and Razborov's flag algebras I

$$\begin{array}{c} n/3 \overbrace{A_1} & k = 2: \ t(\ \bullet, G) = \frac{1}{3} & t(\ \bullet, G) = \frac{2}{3} \\ k = 3: \ t(\ \bullet, G) = \frac{1}{9} & t(\ \bullet, G) = 0 \\ \hline A_2 & A_3 & t(\ \bullet, G) = \frac{1}{9} & t(\ \bullet, G) = 0 \\ n/3 & n/3 & k = 4: \ t(\ \blacksquare, G) = 0 & \dots \end{array}$$

Theorem (\approxTurán 1941) For each $\epsilon > 0$ there exists $\delta > 0$: If an *n*-vertex graph has more than $(\frac{2}{3} + \epsilon)\binom{n}{2}$ edges then it contains $> \delta$ -proportion of \boxtimes 's.

ExGrTh studies relations between $t(F_1, G)$, $t(F_2, G)$,

Extremal graph theory and Razborov's flag algebras I

$$\begin{array}{c} n/3 & \overbrace{A_1} \\ A_2 \\ A_2 \\ n/3 \end{array} \begin{array}{c} k = 2: & t(\bullet,G) = \frac{1}{3} & t(\swarrow,G) = \frac{2}{3} \\ k = 3: & t(\bullet,G) = \frac{1}{9} & t(\clubsuit,G) = 0 \\ t(\clubsuit,G) = \frac{2}{3} & t(\clubsuit,G) = \frac{2}{9} \\ n/3 & k = 4: & t(\bigstar,G) = 0 \\ \ldots \end{array}$$

Theorem (\approxTurán 1941) For each $\epsilon > 0$ there exists $\delta > 0$: If an *n*-vertex graph has more than $(\frac{2}{3} + \epsilon)\binom{n}{2}$ edges then it contains $> \delta$ -proportion of \boxtimes 's.

ExGrTh studies relations between $t(F_1, G)$, $t(F_2, G)$,

Razborov: But lets rather study these relations on the limit space! **Approach to proving Turán:** Suppose the theorem is false. G_1, G_2, \ldots all contain $(\frac{2}{3} + \epsilon)$ -proportion of edges but proportion of \boxtimes 's tends to 0. Pass to a subsequential limit Ψ . $t(|, \Psi) \ge \frac{2}{3} + \epsilon$ and $t(\boxtimes, \Psi) = 0$. Derive a contradiction.

Extremal graph theory and Razborov's flag algebras II

Razborov provides tools for deriving relations that hold on the limit object (Cauchy-Schwarz calculus, variational calculus, ...)

First application: Razborov'08 (AMS Robbins Prize'12) solves the triangle density problem of Lovász and Simonovits 1983: Suppose a graph has a given proportion of edges. What proportion of triangles can it have?

Extremal graph theory and Razborov's flag algebras II

Razborov provides tools for deriving relations that hold on the limit object (Cauchy-Schwarz calculus, variational calculus, ...)

First application: Razborov'08 (AMS Robbins Prize'12) solves the triangle density problem of Lovász and Simonovits 1983:

Suppose a graph has a given proportion of edges. What proportion of triangles can it have?

Allows computer to aid for searching for the right inequalities (i.e., systematization of extremal graph theory)

Extremal graph theory and Razborov's flag algebras II

Razborov provides tools for deriving relations that hold on the limit object (Cauchy-Schwarz calculus, variational calculus, \dots)

First application: Razborov'08 (AMS Robbins Prize'12) solves the triangle density problem of Lovász and Simonovits 1983:

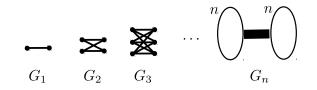
Suppose a graph has a given proportion of edges. What proportion of triangles can it have?

Allows computer to aid for searching for the right inequalities (i.e., systematization of extremal graph theory)

- H.-Král'-Norine'09: Caccetta-Häggkvist conj. (progress)
- ► H.-Hatami-Král'-Norine-Razborov'11 conjecture of Erdős 1984
- ► HHKNR'11 conjecture of Jagger-Štovíček-Thomason 1996
- ...and many more

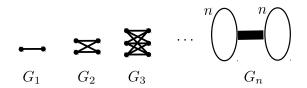
Hatami-Norine *J.AMS'11* deciding whether an inequality between subgraph densities holds for all graph limits is undecidable

Graphons I



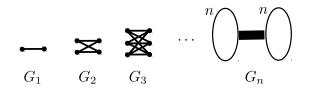
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Graphons I



Represent these graphs by their adjacency matrices:

Graphons I



Represent these graphs by their adjacency matrices:

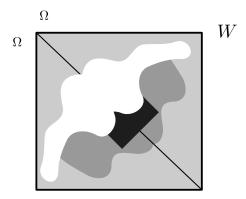


... works if you do things the right way. But, ...

In general Szemerédi's Regularity Lemma can be used to determine "the right way" of ordering the vertices.

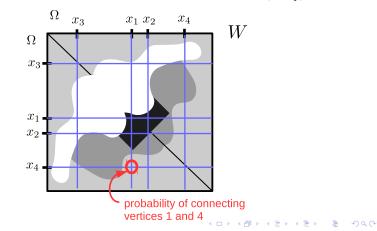
Graphons II

A graphon is a symmetric Lebesgue-m. function. $W : \Omega^2 \rightarrow [0, 1]$. Theorem (Lovász–Szegedy) sampling conv. \Leftrightarrow graphical conv. Theorem (L–Sz.) Every graphon W can be achieved in the limit. Proof:



Graphons II

A graphon is a symmetric Lebesgue-m. function. $W : \Omega^2 \rightarrow [0, 1]$. Theorem (Lovász–Szegedy) sampling conv.⇔graphical conv. Theorem (L–Sz.) Every graphon W can be achieved in the limit. Proof: Random graphs $G_1, G_2, ...; V(G_n) = \{1, ..., n\}$; sample $x_1, ..., x_n \in \Omega$ and connect i with j with probability $W(x_i, x_j)$.



Graphons II

A graphon is a symmetric Lebesgue-m. function. $W : \Omega^2 \rightarrow [0, 1]$. Theorem (Lovász–Szegedy) sampling conv.⇔graphical conv. Theorem (L–Sz.) Every graphon W can be achieved in the limit. Proof: Random graphs $G_1, G_2, ...; V(G_n) = \{1, ..., n\}$; sample $x_1, ..., x_n \in \Omega$ and connect *i* with *j* with probability $W(x_i, x_j)$.

It can be shown that almost surely, $G_1, G_2, \ldots \rightarrow W$. **Proof:** Random graphs $G_1, G_2, \ldots; V(G_n) = \{1, \ldots, n\}$; sample $x_1, \ldots, x_n \in \Omega$ and connect *i* with *j* with probability $W(x_i, x_j)$.

It can be shown that almost surely, ${\it G}_1, {\it G}_2, \ldots o W.$

 $\mathbb{G}(n, W)$ as a generalization of the Erdős–Rényi model $\mathbb{G}(n, p)$. Interesting model *per se*! Bollobás–Janson–Riordan'07, H.–Mathé'15? ...

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

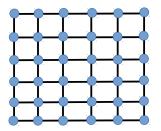
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Goal: convergence notion.

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

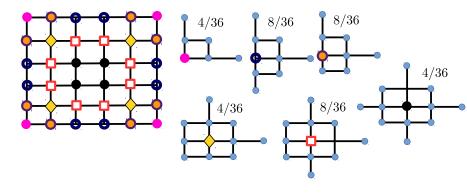
 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2)



 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2)



 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2)

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2)

Definition: G_1, G_2, G_3, \ldots is **convergent** if for each $r \in \mathbb{N}$, $\rho_r(G_1), \rho_r(G_2), \rho_r(G_3), \ldots$ converges. **(Benjamini–Schramm'01)**

Always exists an explicit limit object: graphing.

Conjecture (Aldous–Lyons'07) Every graphing can be obtained as a limit.

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G)$ =distribution on rooted *r*-balls around a randomly selected root of *G*. (example r = 2) **Definition:** G_1, G_2, G_3, \ldots is **convergent** if for each $r \in \mathbb{N}$,

 $\rho_r(G_1), \rho_r(G_2), \rho_r(G_3), \dots$ converges. (Benjamini–Schramm'01)

Always exists an explicit limit object: graphing.

Conjecture (Aldous–Lyons'07) Every graphing can be obtained as a limit.

A soficity detour: Notion of sofic groups (Gromov 1999). Is every group sofic?

Conjecture (Kaplansky 1969): For any group G and commutative field K, the group algebra K(G) is directly finite. That is $ab =_{K} 1$ implies $ba =_{K} 1$.

 G_1, G_2, G_3, \ldots graphs with all the degrees are bounded by an absolute constant D.

Goal: convergence notion.

 $\rho_r(G) = \text{distribution on rooted } r\text{-balls around a randomly selected root of } G. (example <math>r = 2$) **Definition:** G_1, G_2, G_3, \ldots is **convergent** if for each $r \in \mathbb{N}$,

 $\rho_r(G_1), \rho_r(G_2), \rho_r(G_3), \dots$ converges. (Benjamini–Schramm'01)

Always exists an explicit limit object: graphing.

Conjecture (Aldous–Lyons'07) Every graphing can be obtained as a limit.

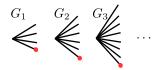
A soficity detour: Notion of sofic groups (Gromov 1999). Is every group sofic?

Theorem (Elek–Szabó'04): For any sofic group G and commutative field K, the group algebra K(G) is directly finite. That is $ab =_{K} 1$ implies $ba =_{K} 1$.

Why did we have to have all degrees $\leq D$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why did we have to have all degrees $\leq D$?



 G_1, G_2, G_3, \ldots has no limit distribution on random rooted 2-balls! Maximum degree $\leq D \Rightarrow$ finitely many *r*-balls \Rightarrow measure cannot "escape to infinity"

Why did we have to have all degrees $\leq D$?

 $\overset{G_1}{\leqslant}\overset{G_2}{\leqslant}\overset{G_3}{\leqslant}\cdots$

 G_1, G_2, G_3, \ldots has no limit distribution on random rooted 2-balls!

Maximum degree $\leq D \Rightarrow$ finitely many *r*-balls

 \Rightarrow measure cannot "escape to infinity"

A sequence of probability measures μ_1, μ_2, \ldots on \mathcal{X} is **tight** if for every $\epsilon > 0$ there exists a **finite** $\mathcal{K} \subset \mathcal{X}$ such that $\mu_n(\mathcal{K}) \ge 1 - \epsilon$ for all *n*.

Lyons'07: The concept of Benjamini–Schramm limit can be extended to sequences G_1, G_2, \ldots where for each $r \in \mathbb{N}$, the sequence $\rho_r(G_1), \rho_r(G_2), \ldots$ is tight. AND NOT FURTHER

Ongoing work with Lukasz Grabowski & Oleg Pikhurko

Theorem (Hatami-Lovász-Szegedy'13)

For every Benjamini–Schramm convergent sequence of graphs of degree $\leq D$ there is a graphing that is its local-global limit.

Theorem (Elek'10)

The Aldous–Lyons conjecture holds for measures supported on bounded-degree trees.

Ongoing work with Lukasz Grabowski & Oleg Pikhurko

Theorem

For every Benjamini–Schramm convergent sequence of graphs of $\frac{\text{degree} \leq D}{\text{degree} \leq D}$ there is a graphing that is its local-global limit.

Theorem

The Aldous–Lyons conjecture holds for measures supported on bounded-degree trees.

... and hopefully we will be able to transfer more

Main benefit: The Erdős–Rényi random graph $\mathbb{G}(n, \frac{C}{n})$ is now within the theory.