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Limits of dense graph sequences
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idea: convergence notion for sequences of finite graphs
compactification of the space of finite graphs ⇒
. . . graphons symmetric Lebesgue-m. functions Ω2 → [0, 1]

Why? same story as with Q vs R: only the latter allows
reasonable e.g. variational and integral calculus
for example argmin(x3 − 2x)
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Limits of dense graph sequences: an abstract approach

F is a “fixed graph” of order k, G is “large” of order n
We define subgraph density t(F ,G ):

t(F ,G ) :=
# copies of F in G(n

k

) = P
[
G [random k-set] ∼= F

]
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Extremal graph theory and Razborov’s flag algebras I

Theorem (≈Turán 1941) For each ε > 0 there exists δ > 0: If an
n-vertex graph has more than (23 + ε)

(n
2

)
edges then it contains

> δ-proportion of �’s.

ExGrTh studies relations between t(F1,G ), t(F2,G ), . . . .

Razborov: But lets rather study these relations on the limit space!
Approach to proving Turán: Suppose the theorem is false.
G1,G2, . . . all contain (23 + ε)-proportion of edges but proportion of
�’s tends to 0. Pass to a subsequential limit Ψ. t(|,Ψ) ≥ 2

3 + ε
and t(�,Ψ) = 0. Derive a contradiction.
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Extremal graph theory and Razborov’s flag algebras II

Razborov provides tools for deriving relations that hold on the limit
object (Cauchy-Schwarz calculus, variational calculus, . . . )

First application: Razborov’08 (AMS Robbins Prize’12) solves the
triangle density problem of Lovász and Simonovits 1983:
Suppose a graph has a given proportion of edges. What proportion
of triangles can it have?

Allows computer to aid for searching for the right inequalities (i.e.,
systematization of extremal graph theory)

I H.-Král’-Norine’09: Caccetta-Häggkvist conj. (progress)

I H.-Hatami-Král’-Norine-Razborov’11 conjecture of Erdős 1984

I HHKNR’11 conjecture of Jagger-Štov́ıček-Thomason 1996

I . . . and many more

Hatami-Norine J.AMS’11 deciding whether an inequality
between subgraph densities holds for all graph limits is undecidable
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Graphons I

Represent these graphs by their adjacency matrices:

. . . works if you do things the right way. But, . . .

In general Szemerédi’s Regularity Lemma can be used to determine
“the right way” of ordering the vertices.
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Graphons II

A graphon is a symmetric Lebesgue-m. function. W : Ω2 → [0, 1].
Theorem (Lovász–Szegedy) sampling conv.⇔graphical conv.
Theorem (L–Sz.) Every graphon W can be achieved in the limit.
Proof:
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Proof: Random graphs G1,G2, . . .; V (Gn) = {1, . . . , n}; sample
x1, . . . xn ∈ Ω and connect i with j with probability W (xi , xj).

It can be shown that almost surely, G1,G2, . . .→W . �

G(n,W ) as a generalization of the Erdős–Rényi model G(n, p).

Interesting model per se!
Bollobás–Janson–Riordan’07, H.–Mathé’15? . . .
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G1,G2,G3, . . . graphs with all the degrees are bounded by an
absolute constant D.
Goal: convergence notion.

ρr (G ) =distribution on rooted r -balls around a randomly selected
root of G . (example r = 2)
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Conjecture (Kaplansky 1969): For any group G and
commutative field K , the group algebra K (G ) is directly finite.
That is ab =K 1 implies ba =K 1.
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Limits of sparse graph sequences II

Why did we have to have all degrees≤ D?

G1,G2,G3, . . . has no limit distribution on random rooted 2-balls!

Maximum degree≤ D ⇒ finitely many r -balls
⇒ measure cannot “escape to infinity”

A sequence of probability measures µ1, µ2, . . . on X is tight if for
every ε > 0 there exists a finite K ⊂ X such that µn(K ) ≥ 1− ε
for all n.
Lyons’07: The concept of Benjamini–Schramm limit can be
extended to sequences G1,G2, . . . where for each r ∈ N, the
sequence ρr (G1), ρr (G2), . . . is tight. AND NOT FURTHER
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Ongoing work with Lukasz Grabowski & Oleg Pikhurko

Theorem (Hatami–Lovász–Szegedy’13)
For every Benjamini–Schramm convergent sequence of graphs of
degree≤ D there is a graphing that is its local-global limit.

Theorem (Elek’10)
The Aldous–Lyons conjecture holds for measures supported on
bounded-degree trees.
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Theorem
For every Benjamini–Schramm convergent sequence of graphs of
degree≤ D there is a graphing that is its local-global limit.

Theorem
The Aldous–Lyons conjecture holds for measures supported on
bounded-degree trees.

. . . and hopefully we will be able to transfer more . . .

Main benefit: The Erdős–Rényi random graph G(n, Cn ) is now within
the theory.


