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Graphons as weak* limits

(1) “entropy minimization” with Doležal (arXiv: 1705.09160)
(2) “Vietoris topology” with Doležal, Greb́ık, Rocha, Rozhoň

(3) hypergraphons with Noel, Piguet, Rocha, Saumell



Limits of dense graph sequences

Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi 2006

idea: convergence notion for sequences of finite graphs
compactification of the space of finite graphs ⇒
. . . graphons symmetric Lebesgue-m. functions Ω2 → [0, 1]

Ω=separable atomless probability space ∼= [0, 1]



Graphons

Represent these graphs by their adjacency matrices:

. . . works if you do things the right way. But, . . .
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The cut-distance topology

Step 1: “Comparing the number of edges inside any vertex set”

d�(U,W ) = sup
S⊂Ω

∣∣∣∣∫
S

∫
S
U(x , y)−W (x , y)

∣∣∣∣ .
Step 2: “Permuting the adjacency matrix”

δ�(U,W ) = inf
π
d�(U,W π) ,

where π : Ω→ Ω runs through all measure-preserving bijections
and W π(x , y) := W (π(x), π(y)) version of W

Many important graph parameters still continuous

Lovász&Szegedy’06 δ� is a compact topology (on Ω2 → [0, 1])



Lovász&Szegedy’06 δ� is a compact topology (on Ω2 → [0, 1])

ACC�(Γ1, Γ2, . . .) := {δ�-acc pts of Γ1, Γ2, . . .}

=
⋃

π1,π2,...

{d�-acc pts of Γπ1
1 , Γ

π2
2 , . . .}

LIM�(Γ1, Γ2, . . .) :=
⋃

π1,π2,...

{d�-limit of Γπ1
1 , Γ

π2
2 , . . .}

Lovász&Szegedy’06 For any sequence Γ1, Γ2, . . . we have that
ACC�(Γ1, Γ2, . . .) 6= ∅.
Proofs of the Lovász–Szegedy Theorem

1. Lovász–Szegedy: Using Szemerédi’s Regularity lemma

2. Elek–Szegedy (2012): Ultraproducts

3. Aldous–Hoover theorem on exchangeable arrays (1981)
Persi Diaconis&Svante Janson and Tim Austin, 2008

4. our proof(s) based on weak* convergence



Comparing the weak* and cut-distance topology

Weak* converg.: Γ1, Γ2, . . .
w∗
−→ Γ iff ∀X ⊂ Ω2: limn

∫
X Γn =

∫
X Γ



Comparing the weak* and cut-distance topology
Weak* converg.: Γ1, Γ2, . . .

w∗
−→ Γ iff ∀X ⊂ Ω2: limn

∫
X Γn =

∫
X Γ

ACCw∗(Γ1, Γ2, . . .) :=
⋃

π1,π2,...

{w*-acc pts of Γπ1
1 , Γ

π2
2 , . . .}

Note: ACCw∗(Γ1, Γ2, . . .) is nonempty by Banach–Alaoglu Thm



Comparing the weak* and cut-distance topology

Wn
d�−→W ⇐⇒ lim sup

n

{
sup
S⊂Ω

∣∣∣∣∫
x∈S

∫
y∈S

Wn(x , y)−W (x , y)

∣∣∣∣} = 0

Wn
w∗
−→W ⇐⇒ sup

S⊂Ω

{
lim sup

n

∣∣∣∣∫
x∈S

∫
y∈S

Wn(x , y)−W (x , y)

∣∣∣∣} = 0



Lovász&Szegedy’06 δ� is a compact topology.
Proof (Doležal-H) Suppose that W1,W2, . . . : Ω2 → [0, 1].
• We need to find an accumulation point w.r.t. cut-distance.

• Lets search only in ACCw∗(W1,W2, . . .)

• From ACCw∗(W1,W2, . . .) take a most structured graphon a
prove that it is also a cut-distance accumulation point:
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• We need to find an accumulation point w.r.t. cut-distance.

• Lets search only in ACCw∗(W1,W2, . . .)

• From ACCw∗(W1,W2, . . .) take a most structured graphon a
prove that it is also a cut-distance accumulation point:
Fix concave function f : [0, 1]→ R. Define INT (W ) :=

∫
x,y

f (W (x , y))

Take Γ ∈ ACCw∗(W1,W2, . . .) that minimizes INT (Γ)
Lemma If U1,U2,U3, . . . converges weak* but not in d� to K .
Then there exists a subsequence of versions U

πn1
n1 ,U

πn2
n2 ,U

πn3
n3 , . . .

that weak* converges to some L, INT (L) < INT (K )
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Proof (Doležal-H) Suppose that W1,W2, . . . : Ω2 → [0, 1].
• We need to find an accumulation point w.r.t. cut-distance.

• Lets search only in ACCw∗(W1,W2, . . .)

• From ACCw∗(W1,W2, . . .) take a most structured graphon a
prove that it is also a cut-distance accumulation point:

??? ACCw∗(W1,W2, . . .) or LIMw∗(W1,W2, . . .) ???
Needs for using ACC: • nonempty

•in the Lemma, we pass to subsequence
Need for using LIM: • infimum of INT (·) is attained

Take Γ ∈ ACCw∗(W1,W2, . . .) that minimizes INT (Γ)
Lemma If U1,U2,U3, . . . converges weak* but not in d� to K .
Then there exists a subsequence of versions U
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n1 ,U
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n2 ,U

πn3
n3 , . . .

that weak* converges to some L, INT (L) < INT (K )



Graphons and the Vietoris topology
(with Doležal-Greb́ık-Rocha-Rozhoň)

Theorem A For every sequence W1,W2, . . . there exists a
subsequence so that

ACCw∗(Wn1 ,Wn2 , . . .) = LIMw∗(Wn1 ,Wn2 , . . .) .

Theorem B Any sequence of graphons U1,U2, . . . is cut-distance
Cauchy if and only if ACCw∗(U1,U2, . . .) = LIMw∗(U1,U2, . . .) ...
and converges to the most structured element in LIMw∗ .

Envelopes and the structurdness order
〈W 〉 := LIMw∗(W ,W , . . .)
U �W iff 〈U〉 ⊆ 〈W 〉
Minimal elements . . . constant graphons
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Theorem A For every sequence W1,W2, . . . there exists a
subsequence so that

ACCw∗(Wn1 ,Wn2 , . . .) = LIMw∗(Wn1 ,Wn2 , . . .) .

Theorem B Any sequence of graphons U1,U2, . . . is cut-distance
Cauchy if and only if ACCw∗(U1,U2, . . .) = LIMw∗(U1,U2, . . .)

...
and converges to the most structured element in LIMw∗ .

Envelopes and the structurdness order
〈W 〉 := LIMw∗(W ,W , . . .)
U �W iff 〈U〉 ⊆ 〈W 〉
Minimal elements . . . constant graphons



Graphons and the Vietoris topology
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Theorem A For every sequence W1,W2, . . . there exists a
subsequence so that

ACCw∗(Wn1 ,Wn2 , . . .) = LIMw∗(Wn1 ,Wn2 , . . .) .

Theorem B Any sequence of graphons U1,U2, . . . is cut-distance
Cauchy if and only if ACCw∗(U1,U2, . . .) = LIMw∗(U1,U2, . . .) ...
and converges to the most structured element in LIMw∗ .

Envelopes and the structurdness order
〈W 〉 := LIMw∗(W ,W , . . .)
U �W iff 〈U〉 ⊆ 〈W 〉
Minimal elements . . . constant graphons



Theorem A For every sequence W1,W2, . . . there exists a
subsequence so that

ACCw∗(Wn1 ,Wn2 , . . .) = LIMw∗(Wn1 ,Wn2 , . . .) .

Key tool Vietoris topology (hyperspace)
Abstractly (X , d):
(1) points of K (X ): closed sets of X w.r.t. d .
(2) distance on K (X ): how far two closed sets are
Fact: if X is metric compact then K (X ) is compact.

Proof Apply this with X =W, d ≈weak* topology
W 7→ 〈W 〉 is a homeomorphism of W/δ�=0 to a closed subset of
K (W).



Cut-distance identifying graphon parameters
(with Doležal-Greb́ık-Rocha-Rozhoň)

Motivation: The Chung-Graham-Wilson Theorem:
Among all graphons with edge density p, the constant-p graphon is
the only graphon U satisfying any of the following:

I t(C4,U) ≤ p4, Sidorenko’s Conj: t(B,U) ≤ pe(B)

I |λ1(U)| ≤ p and |λ2(U)| ≤ 0.

I INTf (U) =
∫
x

∫
y f (U(x , y)) ≤ f (p) for a fixed convex

function f .

Definition F :W → R is a cut-distance identifying graphon
parameter (CDIGP) if for each U ≺W we have F (U) < F (W ).

Results:

I t(C4, ·), t(C6, ·), t(C8, ·), . . . are CDIGPs

I generalized Sidorenko conjecture not true, i.e., t(P3, ·) is not
CDIGP

I each kth eigenvalue is CDIGP (not precise)
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Hypergraphons
(with Noel-Piguet-Rocha-Saumell)

We can (??) construct limits of k-uniform hypergraph(on)s in a
similar manner.

Martingale approach by Yufei Zhao ⇒ weak* limits


