Jan Hladký, TU Dresden Graphons as weak* limits

(1) "entropy minimization" with Doležal (arXiv: 1705.09160)
 (2) "Vietoris topology" with Doležal, Grebík, Rocha, Rozhoň
 (3) hypergraphons with Noel, Piguet, Rocha, Saumell

Limits of dense graph sequences

Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi 2006

 $\begin{array}{ll} \mbox{idea: convergence notion for sequences of finite graphs} \\ \mbox{compactification of the space of finite graphs} \Rightarrow \\ \hdots \mbox{...graphons symmetric Lebesgue-m. functions } \Omega^2 \rightarrow [0,1] \\ \Omega = \mbox{separable atomless probability space} \cong [0,1] \end{array}$

Graphons

Represent these graphs by their adjacency matrices:

Graphons

Represent these graphs by their adjacency matrices:

... works if you do things the right way. But, ...

The cut-distance topology

Step 1: "Comparing the number of edges inside any vertex set"

$$d_{\Box}(U,W) = \sup_{S \subset \Omega} \left| \int_{S} \int_{S} U(x,y) - W(x,y) \right|$$

Step 2: "Permuting the adjacency matrix"

$$\delta_{\Box}(U,W) = \inf_{\pi} d_{\Box}(U,W^{\pi}) ,$$

where $\pi : \Omega \to \Omega$ runs through all measure-preserving bijections and $W^{\pi}(x, y) := W(\pi(x), \pi(y))$ version of W

Many important graph parameters still continuous

Lovász&Szegedy'06 δ_{\Box} is a compact topology (on $\Omega^2 \rightarrow [0,1]$)

Lovász&Szegedy'06 δ_{\Box} is a compact topology (on $\Omega^2 \rightarrow [0,1]$)

$$\begin{split} \mathbf{ACC}_{\Box}(\Gamma_1,\Gamma_2,\ldots) &:= \{ \delta_{\Box} \text{-acc pts of } \Gamma_1,\Gamma_2,\ldots \} \\ &= \bigcup_{\pi_1,\pi_2,\ldots} \{ d_{\Box} \text{-acc pts of } \Gamma_1^{\pi_1},\Gamma_2^{\pi_2},\ldots \} \\ \mathbf{LIM}_{\Box}(\Gamma_1,\Gamma_2,\ldots) &:= \bigcup_{\pi_1,\pi_2,\ldots} \{ d_{\Box} \text{-limit of } \Gamma_1^{\pi_1},\Gamma_2^{\pi_2},\ldots \} \end{split}$$

Lovász&Szegedy'06 For any sequence $\Gamma_1, \Gamma_2, \ldots$ we have that $ACC_{\Box}(\Gamma_1, \Gamma_2, \ldots) \neq \emptyset$. Proofs of the Lovász–Szegedy Theorem

- 1. Lovász-Szegedy: Using Szemerédi's Regularity lemma
- 2. Elek-Szegedy (2012): Ultraproducts
- 3. Aldous-Hoover theorem on exchangeable arrays (1981) Persi Diaconis&Svante Janson and Tim Austin, 2008
- 4. our proof(s) based on weak* convergence

Comparing the weak* and cut-distance topology Weak* converg.: $\Gamma_1, \Gamma_2, \dots \xrightarrow{w^*} \Gamma$ iff $\forall X \subset \Omega^2$: $\lim_n \int_X \Gamma_n = \int_X \Gamma$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Comparing the weak* and cut-distance topology Weak* converg.: $\Gamma_1, \Gamma_2, \ldots \xrightarrow{w^*} \Gamma$ iff $\forall X \subset \Omega^2$: $\lim_n \int_X \Gamma_n = \int_X \Gamma$

$$\mathsf{ACC}_{w*}(\Gamma_1,\Gamma_2,\ldots) := \bigcup_{\pi_1,\pi_2,\ldots} \{ \mathsf{w*-acc \ pts \ of} \ \Gamma_1^{\pi_1},\Gamma_2^{\pi_2},\ldots \}$$

Note: $ACC_{w^*}(\Gamma_1, \Gamma_2, ...)$ is nonempty by Banach–Alaoglu Thm

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Comparing the weak* and cut-distance topology

$$W_n \xrightarrow{d_{\Box}} W \iff \limsup_n \left\{ \sup_{S \subset \Omega} \left| \int_{x \in S} \int_{y \in S} W_n(x, y) - W(x, y) \right| \right\} = 0$$
$$W_n \xrightarrow{w^*} W \iff \sup_{S \subset \Omega} \left\{ \limsup_n \left| \int_{x \in S} \int_{y \in S} W_n(x, y) - W(x, y) \right| \right\} = 0$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Lovász&Szegedy'06 δ_{\Box} is a compact topology. **Proof (Doležal-H)** Suppose that $W_1, W_2, \ldots : \Omega^2 \to [0, 1]$.

- We need to find an accumulation point w.r.t. cut-distance.
- Lets search only in $ACC_{w^*}(W_1, W_2, \ldots)$
- From $ACC_{w^*}(W_1, W_2, ...)$ take a most structured graphon a prove that it is also a cut-distance accumulation point:

Lovász&Szegedy'06 δ_{\Box} is a compact topology. **Proof (Doležal-H)** Suppose that $W_1, W_2, \ldots : \Omega^2 \to [0, 1]$.

- We need to find an accumulation point w.r.t. cut-distance.
- Lets search only in $ACC_{w^*}(W_1, W_2, \ldots)$

• From $ACC_{w^*}(W_1, W_2, ...)$ take a most structured graphon a prove that it is also a cut-distance accumulation point: Fix concave function $f : [0,1] \to \mathbb{R}$. Define $INT(W) := \int_{x,y} f(W(x,y))$

Take $\Gamma \in ACC_{w^*}(W_1, W_2, ...)$ that minimizes $INT(\Gamma)$ **Lemma** If $U_1, U_2, U_3, ...$ converges weak* but not in d_{\Box} to K. Then there exists a subsequence of versions $U_{n_1}^{\pi_{n_1}}, U_{n_2}^{\pi_{n_2}}, U_{n_3}^{\pi_{n_3}}, ...$ that weak* converges to some L, INT(L) < INT(K)

Lovász&Szegedy'06 δ_{\Box} is a compact topology. **Proof (Doležal-H)** Suppose that $W_1, W_2, \ldots : \Omega^2 \to [0, 1]$.

- We need to find an accumulation point w.r.t. cut-distance.
- Lets search only in $ACC_{w^*}(W_1, W_2, \ldots)$

• From $ACC_{w^*}(W_1, W_2, ...)$ take a most structured graphon a prove that it is also a cut-distance accumulation point:

??? $ACC_{w^*}(W_1, W_2, ...)$ or $LIM_{w^*}(W_1, W_2, ...)$??? Needs for using ACC: • nonempty • in the Lemma, we pass to subsequence Need for using LIM: • infimum of $INT(\cdot)$ is attained

Take $\Gamma \in \mathbf{ACC}_{w^*}(W_1, W_2, ...)$ that minimizes $INT(\Gamma)$ **Lemma** If $U_1, U_2, U_3, ...$ converges weak* but not in d_{\Box} to K. Then there exists a subsequence of versions $U_{n_1}^{\pi_{n_1}}, U_{n_2}^{\pi_{n_2}}, U_{n_3}^{\pi_{n_3}}, ...$ that weak* converges to some L, INT(L) < INT(K)

Theorem A For every sequence W_1, W_2, \ldots there exists a subsequence so that

$$\mathsf{ACC}_{w^*}(W_{n_1}, W_{n_2}, \ldots) = \mathsf{LIM}_{w^*}(W_{n_1}, W_{n_2}, \ldots)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem A For every sequence W_1, W_2, \ldots there exists a subsequence so that

$$\mathsf{ACC}_{w^*}(W_{n_1}, W_{n_2}, \ldots) = \mathsf{LIM}_{w^*}(W_{n_1}, W_{n_2}, \ldots)$$

Theorem B Any sequence of graphons $U_1, U_2, ...$ is cut-distance Cauchy if and only if $ACC_{w^*}(U_1, U_2, ...) = LIM_{w^*}(U_1, U_2, ...)$

Theorem A For every sequence W_1, W_2, \ldots there exists a subsequence so that

$$\mathsf{ACC}_{w^*}(W_{n_1}, W_{n_2}, \ldots) = \mathsf{LIM}_{w^*}(W_{n_1}, W_{n_2}, \ldots)$$

Theorem B Any sequence of graphons U_1, U_2, \ldots is cut-distance Cauchy if and only if $ACC_{w^*}(U_1, U_2, \ldots) = LIM_{w^*}(U_1, U_2, \ldots) \ldots$ and converges to the most structured element in LIM_{w^*} .

Theorem A For every sequence W_1, W_2, \ldots there exists a subsequence so that

$$\mathsf{ACC}_{w^*}(W_{n_1}, W_{n_2}, \ldots) = \mathsf{LIM}_{w^*}(W_{n_1}, W_{n_2}, \ldots)$$

Theorem B Any sequence of graphons U_1, U_2, \ldots is cut-distance Cauchy if and only if $ACC_{w^*}(U_1, U_2, \ldots) = LIM_{w^*}(U_1, U_2, \ldots) \ldots$ and converges to the most structured element in LIM_{w^*} .

Envelopes and the structurdness order $\langle W \rangle := \text{LIM}_{w^*}(W, W, ...)$ $U \preceq W$ iff $\langle U \rangle \subseteq \langle W \rangle$ Minimal elements ... constant graphons **Theorem A** For every sequence W_1, W_2, \ldots there exists a subsequence so that

 $ACC_{w^*}(W_{n_1}, W_{n_2}, \ldots) = LIM_{w^*}(W_{n_1}, W_{n_2}, \ldots)$.

Key tool Vietoris topology (hyperspace)
Abstractly (X, d):
(1) points of K(X): closed sets of X w.r.t. d.
(2) distance on K(X): how far two closed sets are
Fact: if X is metric compact then K(X) is compact.

Proof Apply this with X = W, $d \approx \text{weak}^*$ topology $W \mapsto \langle W \rangle$ is a homeomorphism of $W/\delta_{\Box}=0$ to a closed subset of $\mathcal{K}(W)$.

Cut-distance identifying graphon parameters (with Doležal-Grebík-Rocha-Rozhoň)

Motivation: The Chung-Graham-Wilson Theorem:

Among all graphons with edge density p, the constant-p graphon is the only graphon U satisfying any of the following:

- ► $t(C_4, U) \le p^4$, Sidorenko's Conj: $t(B, U) \le p^{e(B)}$
- $|\lambda_1(U)| \leq p$ and $|\lambda_2(U)| \leq 0$.
- ► $INT_f(U) = \int_x \int_y f(U(x, y)) \le f(p)$ for a fixed convex function f.

Cut-distance identifying graphon parameters (with Doležal-Grebík-Rocha-Rozhoň)

Motivation: The Chung-Graham-Wilson Theorem:

Among all graphons with edge density p, the constant-p graphon is the only graphon U satisfying any of the following:

- ► $t(C_4, U) \le p^4$, Sidorenko's Conj: $t(B, U) \le p^{e(B)}$
- $|\lambda_1(U)| \leq p$ and $|\lambda_2(U)| \leq 0$.
- ► $INT_f(U) = \int_x \int_y f(U(x, y)) \le f(p)$ for a fixed convex function f.

Definition $F : W \to \mathbb{R}$ is a cut-distance identifying graphon parameter (CDIGP) if for each $U \prec W$ we have F(U) < F(W).

Results:

- $t(C_4, \cdot), t(C_6, \cdot), t(C_8, \cdot), \ldots$ are CDIGPs
- ▶ generalized Sidorenko conjecture not true, i.e., t(P₃, ·) is not CDIGP
- ► each *k*th eigenvalue is CDIGP (not precise)

Hypergraphons (with Noel-Piguet-Rocha-Saumell)

We can (??) construct limits of *k*-uniform hypergraph(on)s in a similar manner.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Martingale approach by Yufei Zhao \Rightarrow weak* limits