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idea: convergence notion for sequences of finite graphs
compactification of the space of finite graphs ⇒
. . . graphons symmetric Lebesgue-m. functions Ω2 → [0, 1]

Why? same story as with Q vs R: only the latter allows
reasonable e.g. variational and integral calculus
for example argmin(x3 − 2x)



Graphons

Represent these graphs by their adjacency matrices:

. . . works if you do things the right way. But, . . .
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The L1 topology

ground space =symmetric Lebesgue measurable U : Ω2 → [0, 1]

L1-topology a.k.a. edit distance

d1(U,W ) =

∫
x

∫
y
|U(x , y)−W (x , y)|

“repermuting the adjacency matrix”

δ1(U,W ) = inf
π
d1(U,W π)

where π ranges over all measure preserving bijections, and
W π(x , y) = W (π(x), π(y)). (pseudometric)

extremely strong topology. . .
. . . continuity of many graph parameters
Bad news: not compact (e.g., chessboards)
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The cut-distance topology

d�(U,W ) = sup
S⊂Ω

∣∣∣∣∫
S

∫
S
U(x , y)−W (x , y)

∣∣∣∣ .
δ�(U,W ) = inf

π
d�(U,W π)

Implicitly used by graph theorists since the 1990’s

Many important graph parameters still continuous

Lovász&Szegedy’06 δ� is a compact topology (on Ω2 → [0, 1])

A sample application (A version of Turán’s/Mantel’s Theorem)
Theorem For any ε > 0 there exists δ > 0 such that if an n-vertex
graph has more than ( 1

2 + ε)
(n

2

)
edges than it has more than δn3

many triangles.
Proof By contradiction: There exists ε > 0 and a sequence of
graphs of edge densities > ( 1

2 + ε) and vanishing triangle densities.
Accumulation point W .

∫
x

∫
y W (x , y) ≥ 1

2 + ε and∫
x

∫
y

∫
z W (x , y)W (y , z)W (z , x) = 0
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Proofs of the Lovász–Szegedy Theorem

1. Lovász–Szegedy: Using Szemerédi’s Regularity lemma

2. Elek–Szegedy (2012): Ultraproducts

3. Via the Aldous–Hoover theorem on exchangeable arrays
(1981, realized by Persi Diaconis& Svante Janson and
Tim Austin, 2008)

4. our proof based on weak* convergence



Comparing the weak* and cut-distance topology

Wn
d�−→W ⇐⇒ lim sup

n

{
sup
S⊂Ω

∣∣∣∣∫
x∈S

∫
y∈S

Wn(x , y)−W (x , y)

∣∣∣∣} = 0

Wn
w∗
−→W ⇐⇒ sup

S⊂Ω

{
lim sup

n

∣∣∣∣∫
x∈S

∫
y∈S

Wn(x , y)−W (x , y)

∣∣∣∣} = 0



Lovász&Szegedy’06 δ� is a compact topology.
Our proof Suppose that W1,W2,W3 . . . : Ω2 → [0, 1].
• We need to find an accumulation point w.r.t. cut-distance.

• Take all possible W π1
1 ,W π2

2 ,W π3
3 , . . . and take all their weak*

accumulation points (Banach–Alaoglu Theorem) → ACCw∗

• From ACCw∗ take a most structured graphon a prove that it is
also a cut-distance accumulation point:

Fix concave function f : [0, 1]→ R. Define INT (W ) :=
∫
x,y

f (W (x , y))

Take Γ ∈ ACCw∗ that minimizes INT (Γ) (infimum is attained, nontrivial)
Lemma If U1,U2,U3, . . . converges weak* but not in d� to K . Then
there exists a subsequence of versions U

πn1
n1 ,U

πn2
n2 ,U

πn3
n3 , . . . that weak*

converges to some L, INT (L) < INT (K )
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