Face vectors of flag manifolds

Jan Hladký
Institute of Mathematics
Czech Academy of Sciences

joint work with Michal Adamaszek (Uni Copenhagen)

JH's research is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

f -vectors of flag complexes

f-vector(四)=(8,12,6)

A typical question in enumerative/combinatorial geometry: Class \mathcal{C} of geometric objects. What f-vectors are attained?

Example 1: $\mathcal{C}=$ connected planar graphs
f -vectors $=(v, e, f): v-e+f=2$ integral (Euler's formula)
Example 2: $\mathcal{C}=3$-polytopes
f-vectors=($\left.f_{0}, f_{1}, f_{2}\right): f_{0}-f_{1}+f_{2}=2, f_{2} \leq 2 f_{0}-4, f_{0} \leq 2 f_{2}-4$
(Steinitz's theorem 1906)
Example 3: $\mathcal{C}=4$-polytopes
f -vectors=??? not a polyhedral cone; holes
Definition A simplicial complex is flag if every clique induces a simplex. A flag homology manifold is a homology manifold that is flag.

Hopf's conjecture and the Charney-Davis conjecture

Euler characteristic: $\quad \chi=f_{0}-f_{1}+f_{2}-\ldots$
(homology computations) $=b_{0}-b_{1}+b_{2}-\ldots$. Betti numbers
Gauss-Bonnet 1848 For a compact surface with Riemannian metric,

$$
\chi=\frac{1}{2 \pi} \int \text { Gauss curv } d(\text { area })
$$

Corollary If the Gauss curvature is ≤ 0 everywhere then $\chi \leq 0$.
Hopf's conjecture ~ 1930 's For a compact Riemannian manifold of dimension $2 n$ with sectional curvature ≤ 0, we have $(-1)^{n} \chi \geq 0$. (dim $=4$ Chern-Milnor'56 from Chern-Gauss-Bonnet integral)

Alexandrov's approach: non-smooth manifolds, CAT(0) spaces. Gromov's lemma: In a non-positively curved complex links of vertices are flag.
The integrand: $\kappa(v)=1+\sum_{i}\left(-\frac{1}{2}\right)^{i+1} f_{i}\left(L_{v}\right)$, where L_{v} is the link of v
Charney-Davis conjecture 1995
For a flag sphere of dimension $2 n-1$ we have $(-1)^{n} \kappa \geq 0$.
(dim = 1 trivial, dim = 3 Davis-Okun'01 deep)

flag manifolds and graph theory

flag simplicial complex=all the structure encoded in the
1-skeleton (which is a graph)
we use methods of extremal graph theory

1. [Adamaszek, H., Transactions AMS 2015] essentially solve a conjecture of Gal 2005 by characterizing f-vectors of sufficiently large three-dimensional flag Gorenstein* complexes
2. [Adamaszek, H., arXiv:1503.05961] upper bound theorem for flag triangulations of manifolds of odd dimension
Proofs:

- geometric ingredient: close to trivial
- extremal graph theory ingredient: not much harder

Upper Bound Theorem For every even d, if M is a flag homology manifold of dimension $d-1$ on $n \geq n_{0}$ vertices then for every $k \leq d-1$:

$$
f_{k}(M) \leq f_{k}\left(T_{d / 2}^{\prime}(n)\right),
$$

where $T_{d / 2}^{\prime}(n)$ is a $d / 2$-fold join of cycles of the same (± 1) length

Upper Bound Theorem For every even d, if M is a flag homology manifold of dimension $d-1$ on $n \geq n_{0}$ vertices then for every $k \leq d-1$:

$$
f_{k}(M) \leq f_{k}\left(T_{d / 2}^{\prime}(n)\right),
$$

where $T_{d / 2}^{\prime}(n)$ is a $d / 2$-fold join of cycles of the same (± 1) length

Extremal graph theory tools

Turán 1941 (Mantel 1903) If an n-vertex graph G is K_{q+1}-free then $e(G) \leq e\left(T_{q}(n)\right) . \quad$ (Note: think of n large, q fixed.)

Stability If an n-vertex graph G has $e(G) \geq e\left(T_{q}(n)\right)-\delta n^{2}$ then it contains $\Theta\left(n^{q+1}\right)$ copies of K_{q+1}, unless G is ϵ-close to $T_{q}(n)$.
approximate structure + ad-hoc arguments \Rightarrow exact structure

Proof

Our theorem
$T_{d / 2}^{\prime}(n)$ maximizes face numbers (counting faces of a fixed dimension $k \leq d-1$) among flag manifolds of $\operatorname{dim}=d-1$.

Proof

Our theorem restated
$T_{d / 2}^{\prime}(n)$ maximizes clique numbers (counting cliques of a fixed order $k \leq d$) among flag manifolds of $\operatorname{dim}=d-1$.
\ldots in particular $T_{d / 2}^{\prime}(n)$ maximizes the number of edges among flag manifolds of $\operatorname{dim}=d-1$.

Turán's Theorem

$T_{q}(n)$ maximizes the number of edges among K_{q+1}-free graphs.

