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f-vectors of flag complexes

f-vector(�)=(8,12,6)
A typical question in enumerative/combinatorial geometry:
Class C of geometric objects. What f-vectors are attained?

Example 1: C =connected planar graphs
f-vectors=(v ,e, f ): v − e + f = 2 integral (Euler’s formula)

Example 2: C =3-polytopes
f-vectors=(f0, f1, f2): f0 − f1 + f2 = 2, f2 ≤ 2f0 − 4, f0 ≤ 2f2 − 4
(Steinitz’s theorem 1906)

Example 3: C =4-polytopes
f-vectors=??? not a polyhedral cone; holes

Definition A simplicial complex is flag if every clique induces a
simplex. A flag homology manifold is a homology manifold that
is flag.



Hopf’s conjecture and the Charney–Davis conjecture
Euler characteristic: χ = f0 − f1 + f2 − . . .

(homology computations) = b0 − b1 + b2 − . . . Betti numbers

Gauss–Bonnet 1848 For a compact surface with Riemannian metric,

χ =
1

2π

∫
Gauss curv d(area)

Corollary If the Gauss curvature is ≤ 0 everywhere then χ ≤ 0.

Hopf’s conjecture ∼1930’s For a compact Riemannian manifold of
dimension 2n with sectional curvature ≤ 0, we have (−1)nχ ≥ 0.
(dim = 4 Chern–Milnor’56 from Chern–Gauss–Bonnet integral)

Alexandrov’s approach: non-smooth manifolds, CAT(0) spaces.
Gromov’s lemma: In a non-positively curved complex links of vertices
are flag.
The integrand: κ(v) = 1 +

∑
i (−

1
2 )i+1fi (Lv ), where Lv is the link of v

Charney–Davis conjecture 1995
For a flag sphere of dimension 2n − 1 we have (−1)nκ ≥ 0.
(dim = 1 trivial, dim = 3 Davis–Okun’01 deep)



flag manifolds and graph theory

flag simplicial complex=all the structure encoded in the
1-skeleton (which is a graph)

we use methods of extremal graph theory
1. [Adamaszek, H., Transactions AMS 2015]

essentially solve a conjecture of Gal 2005 by
characterizing f-vectors of sufficiently large
three-dimensional flag Gorenstein* complexes

2. [Adamaszek, H., arXiv:1503.05961]
upper bound theorem for flag triangulations of manifolds of
odd dimension

Proofs:
I geometric ingredient: close to trivial
I extremal graph theory ingredient: not much harder



Upper Bound Theorem For every even d , if M is a flag
homology manifold of dimension d − 1 on n ≥ n0 vertices then
for every k ≤ d − 1:

fk (M) ≤ fk (T ′
d/2(n)) ,

where T ′
d/2(n) is a d/2-fold join of cycles of the same(±1)

length
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Extremal graph theory tools

Turán 1941 (Mantel 1903) If an n-vertex graph G is Kq+1-free
then e(G) ≤ e(Tq(n)). (Note: think of n large, q fixed.)

Stability If an n-vertex graph G has e(G) ≥ e(Tq(n))− δn2 then
it contains Θ(nq+1) copies of Kq+1, unless G is ε-close to Tq(n).

approximate structure + ad-hoc arguments⇒ exact structure



Proof
Our theorem
T ′

d/2(n) maximizes face numbers (counting faces of a fixed
dimension k ≤ d − 1) among flag manifolds of dim=d − 1.



Proof
Our theorem restated
T ′

d/2(n) maximizes clique numbers (counting cliques of a fixed
order k ≤ d) among flag manifolds of dim=d − 1.

. . . in particular T ′
d/2(n) maximizes the number of edges among

flag manifolds of dim=d − 1.

Turán’s Theorem
Tq(n) maximizes the number of edges among Kq+1-free
graphs.


