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Definition (Extremal graph theory, Bollobás 1976):

Extremal graph theory, in its strictest sense, is a branch of
graph theory developed and loved by Hungarians.

Mantel 1907/Turán 1941 G has n vertices
If G has more than n2/4 edges then it contains a triangle.

I optimal⇒ extremal graph
I starting point of extremal graph theory
I Aigner 1995: Turán’s graph theorem, 6 proofs.

Extending in all possible ways:

If G

whose edges are colored with two colors

has more than
n2/4 edges then it contains a

t least n/2 monochromatic

triangle

s

So, Ramsey theory meets Extremal graph theory:
at a party of 49 (43?) there are either 5 mutual strangers or 5
mutual friends
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Conjectures
Setting
G . . . simple, looples graph of order n
T` . . . all trees of order `

ExGrTh DENSITY CONDITION⇒ SUBGRAPH.

Dirac Thm If δ(G) ≥ n/2 then G contains a spanning path.
Again an easy proof but later we attempt for a complicated
one. . .

Embedding trees: motivation δ(G) ≥ k , then Tk+1 ⊂ G.
Can this be weakened?

Erdős-Sós Conjecture ’63 If the average degree of G is at
least k , then Tk+1 ⊂ G.
proof announced by Ajtai, Komlós, Simonovits, and Szemerédi

Loebl-Komlós-Sós Conjecture ’95 If at least n/2 of the
vertices of G have degrees at least k , then Tk+1 ⊂ G.
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LKS Conjecture
Loebl-Komlós-Sós Conjecture ’95 If at least n/2 of the
vertices of G have degrees at least k , then Tk+1 ⊂ G.

Figure : The extremal graph

various partial results
Piguet, Stein ’07 For ε,q > 0 there exists n0 such that the following
holds. For any n > n0 and k > qn it holds that if G of order n has at
least (1/2 + ε)n vertices of degree at least (1 + ε)k , then Tk+1 ⊂ G.
Hladký, Piguet ’08 & Cooley ’09 For q > 0 there exists n0 such that
the following holds. For any n > n0 and k > qn it holds that if G of
order n has at least n/2 vertices of degrees at least k , then Tk+1 ⊂ G.
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Szemerédi’s Regularity Lemma and graph embedding
Szemerédi 1975: dense subsets of N contain a k -AP, ∀k
Szemerédi 1978: Regularity Lemma
Sporadic applications in ExGrTh in the ’80’s, boom in the ’90’s.
Now, various strenthenings, for graphs and other structures.

Statement, informally: Vertices of each graph can be
partitioned into “clusters” so that all the bipartite graphs look
random-like (“regular pairs”).

Embedding a spanning path in G (satisfying some density
condition, e.g. Dirac’s Thm) with the RL:

I regularize G⇒ cluster graph G
I G satisfies the same density conditions
I prove that G is connected and contains a perfect matching

(easier task!)
I this gives you directions how to embed the path

(next slide)
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A complicated proof of Dirac’s Theorem
If δ(G) ≥ n then G contains a spanning path.

Figure : Embedding a path
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Our result
H., Komlós, Piguet, Simonovits, Stein, Szemerédi
For every η > 0 there exists k0 such that for every k > k0 any
graph n-vertex graph G with at least (1

2 + η)n with degrees at
least (1 + η)k contains any tree of order k .

What is the structure of G?
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The ad-hoc Regularity Lemma

I Isolate vertices of high degree⇒ bounded-degree graph
I Greedily take out dense spots⇒ nowhere-dense graph
I Regularize the dense spots
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