Loebl-Komlós-Sós Conjecture

Jan Hladký Institute of Mathematics Academy of Sciences of the Czech Republic

JH's research is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

Definition (Extremal graph theory, Bollobás 1976):

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Definition (Extremal graph theory, Bollobás 1976):

Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

Mantel 1907/Turán 1941 *G* has *n* vertices

If G has more than $n^2/4$ edges then it contains a triangle.

(ロ) (同) (三) (三) (三) (○) (○)

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Mantel 1907/Turán 1941 G has n vertices

If G has more than $n^2/4$ edges then it contains a triangle.

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Extending in all possible ways:

If *G* $n^2/4$ edges then it contains a triangle

has more than

Mantel 1907/Turán 1941 G has n vertices

If G has more than $n^2/4$ edges then it contains a triangle.

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Extending in all possible ways:

```
If G n^2/4 edges then it contains at least n/2 triangles
```

has more than

Mantel 1907/Turán 1941 G has n vertices

If G has more than $n^2/4$ edges then it contains a triangle.

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Extending in all possible ways:

If *G* whose edges are colored with two colors has more than $n^2/4$ edges then it contains at least n/2 monochromatic triangles

Mantel 1907/Turán 1941 G has n vertices

If G has more than $n^2/4$ edges then it contains a triangle.

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Extending in all possible ways:

If *G* whose edges are colored with two colors has more than $n^2/4$ edges then it contains at least n/2 monochromatic triangles

So, Ramsey theory meets Extremal graph theory: at a party of 49 (43?) there are either 5 mutual strangers or 5 mutual friends

Setting

 $G \dots$ simple, looples graph of order n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $\mathcal{T}_\ell \dots$ all trees of order ℓ

Setting

 $G \dots$ simple, looples graph of order n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $\mathcal{T}_\ell \dots$ all trees of order ℓ

Setting

 $G \dots$ simple, looples graph of order n

 $\mathcal{T}_\ell \dots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Setting

G... simple, looples graph of order n

 $\mathcal{T}_\ell \dots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Dirac Thm If $\delta(G) \ge n/2$ then *G* contains a spanning path. Again an easy proof but later we attempt for a complicated one...

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Setting

 $G \dots$ simple, looples graph of order n

 $\mathcal{T}_\ell \dots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Dirac Thm If $\delta(G) \ge n/2$ then *G* contains a spanning path. Again an easy proof but later we attempt for a complicated one...

Embedding trees: motivation $\delta(G) \ge k$, then $\mathcal{T}_{k+1} \subset G$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Setting

G... simple, looples graph of order n

 $\mathcal{T}_\ell \dots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Dirac Thm If $\delta(G) \ge n/2$ then *G* contains a spanning path. Again an easy proof but later we attempt for a complicated one...

Embedding trees: motivation $\delta(G) \ge k$, then $\mathcal{T}_{k+1} \subset G$. Can this be weakened?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Setting

G... simple, looples graph of order n

 $\mathcal{T}_\ell \dots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Dirac Thm If $\delta(G) \ge n/2$ then *G* contains a spanning path. Again an easy proof but later we attempt for a complicated one...

Embedding trees: motivation $\delta(G) \ge k$, then $\mathcal{T}_{k+1} \subset G$. Can this be weakened?

Erdős-Sós Conjecture '63 If the average degree of *G* is at least *k*, then $\mathcal{T}_{k+1} \subset G$. proof announced by Ajtai, Komlós, Simonovits, and Szemerédi

Setting

G... simple, looples graph of order n

 $\mathcal{T}_\ell \dots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Dirac Thm If $\delta(G) \ge n/2$ then *G* contains a spanning path. Again an easy proof but later we attempt for a complicated one...

Embedding trees: motivation $\delta(G) \ge k$, then $\mathcal{T}_{k+1} \subset G$. Can this be weakened?

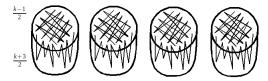
Erdős-Sós Conjecture '63 If the average degree of *G* is at least *k*, then $\mathcal{T}_{k+1} \subset G$. proof announced by Ajtai, Komlós, Simonovits, and Szemerédi

Loebl-Komlós-Sós Conjecture '95 If at least n/2 of the vertices of *G* have degrees at least *k*, then $\mathcal{T}_{k+1} \subseteq \mathcal{G}_{2}$.

Loebl-Komlós-Sós Conjecture '95 If at least n/2 of the vertices of *G* have degrees at least *k*, then $\mathcal{T}_{k+1} \subset G$.

Loebl-Komlós-Sós Conjecture '95 If at least n/2 of the vertices of *G* have degrees at least *k*, then $\mathcal{T}_{k+1} \subset G$.

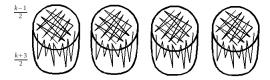
Figure : The extremal graph



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Loebl-Komlós-Sós Conjecture '95 If at least n/2 of the vertices of *G* have degrees at least *k*, then $\mathcal{T}_{k+1} \subset G$.

Figure : The extremal graph



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

various partial results

Loebl-Komlós-Sós Conjecture '95 If at least n/2 of the vertices of *G* have degrees at least *k*, then $\mathcal{T}_{k+1} \subset G$.

Figure : The extremal graph

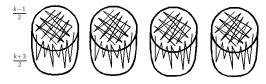


various partial results **Piguet, Stein '07** For ϵ , q > 0 there exists n_0 such that the following holds. For any $n > n_0$ and k > qn it holds that if *G* of order *n* has at least $(1/2 + \epsilon)n$ vertices of degree at least $(1 + \epsilon)k$, then $\mathcal{T}_{k+1} \subset G$.

(日) (日) (日) (日) (日) (日) (日)

Loebl-Komlós-Sós Conjecture '95 If at least n/2 of the vertices of *G* have degrees at least *k*, then $\mathcal{T}_{k+1} \subset G$.

Figure : The extremal graph



various partial results **Piguet, Stein '07** For ϵ , q > 0 there exists n_0 such that the following holds. For any $n > n_0$ and k > qn it holds that if *G* of order *n* has at least $(1/2 + \epsilon)n$ vertices of degree at least $(1 + \epsilon)k$, then $\mathcal{T}_{k+1} \subset G$. **Hladký, Piguet '08 & Cooley '09** For q > 0 there exists n_0 such that the following holds. For any $n > n_0$ and k > qn it holds that if *G* of order *n* has at least n/2 vertices of degrees at least *k*, then $\mathcal{T}_{k+1} \subset G$.

Szemerédi's Regularity Lemma and graph embedding

Szemerédi 1975: dense subsets of \mathbb{N} contain a *k*-AP, $\forall k$ Szemerédi 1978: Regularity Lemma

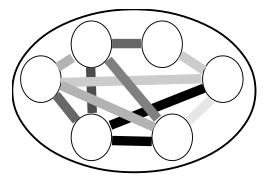
Sporadic applications in ExGrTh in the '80's, boom in the '90's.

(ロ) (同) (三) (三) (三) (○) (○)

Now, various strenthenings, for graphs and other structures.

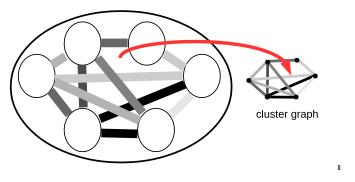
Szemerédi's Regularity Lemma and graph embedding Szemerédi 1975: dense subsets of N contain a *k*-AP, ∀*k* Szemerédi 1978: Regularity Lemma Statement, informally: Vertices of each graph can be partitioned into "clusters" so that all the bipartite graphs look random-like ("regular pairs").

Figure : density of a pair=edges/(cluster size)²



Szemerédi's Regularity Lemma and graph embedding Szemerédi 1975: dense subsets of \mathbb{N} contain a *k*-AP, $\forall k$ Szemerédi 1978: Regularity Lemma Statement, informally: Vertices of each graph can be partitioned into "clusters" so that all the bipartite graphs look random-like ("regular pairs").

Figure : density of a pair=edges/(cluster size)²



(日) (日) (日) (日) (日) (日) (日)

Szemerédi's Regularity Lemma and graph embedding

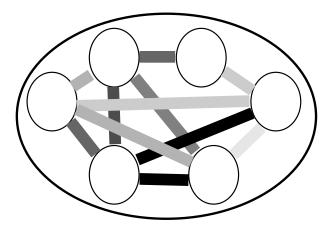
Szemerédi 1975: dense subsets of \mathbb{N} contain a *k*-AP, $\forall k$ **Szemerédi 1978**: Regularity Lemma **Statement, informally**: Vertices of each graph can be partitioned into "clusters" so that all the bipartite graphs look random-like ("regular pairs").

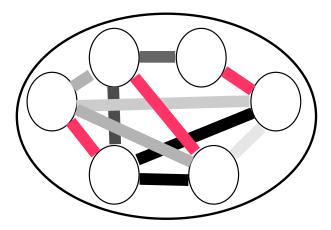
Embedding a spanning path in G (satisfying some density condition, e.g. Dirac's Thm) with the RL:

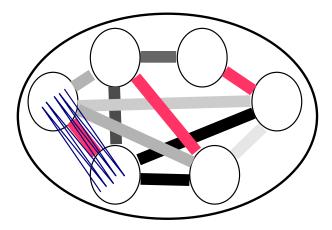
- regularize $G \Rightarrow$ cluster graph **G**
- **G** satisfies the same density conditions
- prove that G is connected and contains a perfect matching (easier task!)

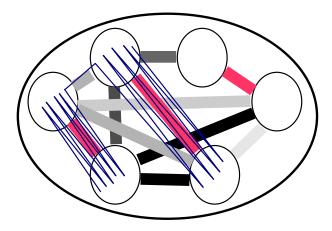
(ロ) (同) (三) (三) (三) (○) (○)

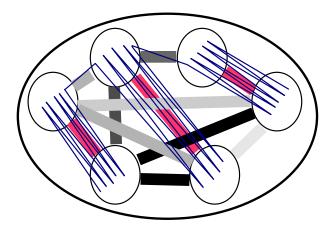
 this gives you directions how to embed the path (next slide)











Our result

H., Komlós, Piguet, Simonovits, Stein, Szemerédi

For every $\eta > 0$ there exists k_0 such that for every $k > k_0$ any graph *n*-vertex graph *G* with at least $(\frac{1}{2} + \eta)n$ with degrees at least $(1 + \eta)k$ contains any tree of order *k*.

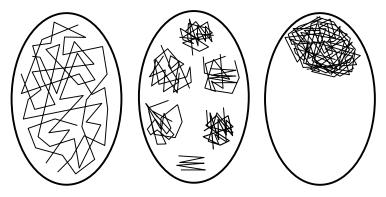
What is the structure of G?

Our result

H., Komlós, Piguet, Simonovits, Stein, Szemerédi

For every $\eta > 0$ there exists k_0 such that for every $k > k_0$ any graph *n*-vertex graph *G* with at least $(\frac{1}{2} + \eta)n$ with degrees at least $(1 + \eta)k$ contains any tree of order *k*.

What is the structure of G?

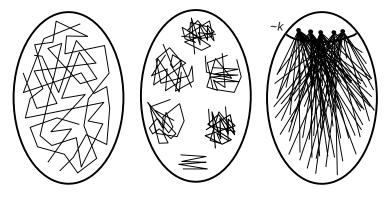


Our result

H., Komlós, Piguet, Simonovits, Stein, Szemerédi

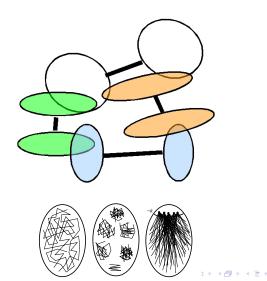
For every $\eta > 0$ there exists k_0 such that for every $k > k_0$ any graph *n*-vertex graph *G* with at least $(\frac{1}{2} + \eta)n$ with degrees at least $(1 + \eta)k$ contains any tree of order *k*.

What is the structure of G?



► Isolate vertices of high degree ⇒ bounded-degree graph

- ► Isolate vertices of high degree \Rightarrow bounded-degree graph
- Greedily take out dense spots \Rightarrow nowhere-dense graph



- ► Isolate vertices of high degree \Rightarrow bounded-degree graph
- Greedily take out dense spots \Rightarrow nowhere-dense graph
- Regularize the dense spots

