Loebl-Komlós-Sós Conjecture

Jan Hladký
Institute of Mathematics
Academy of Sciences of the Czech Republic

JH's research is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

Definition (Extremal graph theory, Bollobás 1976):

Definition (Extremal graph theory, Bollobás 1976):

 Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.
Definition (Extremal graph theory, Bollobás 1976):

Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

Mantel 1907/Turán $1941 G$ has n vertices

If G has more than $n^{2} / 4$ edges then it contains a triangle.

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Definition (Extremal graph theory, Bollobás 1976):

Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

Mantel 1907/Turán $1941 G$ has n vertices

If G has more than $n^{2} / 4$ edges then it contains a triangle.

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Extending in all possible ways:
If G
has more than
$n^{2} / 4$ edges then it contains a
triangle

Definition (Extremal graph theory, Bollobás 1976):

Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

Mantel 1907/Turán $1941 G$ has n vertices

If G has more than $n^{2} / 4$ edges then it contains a triangle.

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Extending in all possible ways:
If G
has more than
$n^{2} / 4$ edges then it contains at least $n / 2$ triangles

Definition (Extremal graph theory, Bollobás 1976):

Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

Mantel 1907/Turán $1941 G$ has n vertices

If G has more than $n^{2} / 4$ edges then it contains a triangle.

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Extending in all possible ways:
If G whose edges are colored with two colors has more than $n^{2} / 4$ edges then it contains at least $n / 2$ monochromatic triangles

Definition (Extremal graph theory, Bollobás 1976):

Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

Mantel 1907/Turán $1941 G$ has n vertices

If G has more than $n^{2} / 4$ edges then it contains a triangle.

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Extending in all possible ways:
If G whose edges are colored with two colors has more than $n^{2} / 4$ edges then it contains at least $n / 2$ monochromatic triangles

So, Ramsey theory meets Extremal graph theory: at a party of 49 (43?) there are either 5 mutual strangers or 5 mutual friends

Conjectures

Setting

Gsimple, looples graph of order n
$\mathcal{T}_{\ell} \ldots$ all trees of order ℓ

Conjectures

Setting

Gsimple, looples graph of order n
$\mathcal{T}_{\ell} \ldots$ all trees of order ℓ

Conjectures

Setting

G ... simple, looples graph of order n
$\mathcal{T}_{\ell} \ldots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Conjectures

Setting

G ... simple, looples graph of order n
$\mathcal{T}_{\ell} \ldots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Dirac Thm If $\delta(G) \geq n / 2$ then G contains a spanning path. Again an easy proof but later we attempt for a complicated one...

Conjectures

Setting

G ... simple, looples graph of order n
$\mathcal{T}_{\ell} \ldots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Dirac Thm If $\delta(G) \geq n / 2$ then G contains a spanning path. Again an easy proof but later we attempt for a complicated one...

Embedding trees: motivation $\delta(G) \geq k$, then $\mathcal{T}_{k+1} \subset G$.

Conjectures

Setting

G ... simple, looples graph of order n
$\mathcal{T}_{\ell} \ldots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Dirac Thm If $\delta(G) \geq n / 2$ then G contains a spanning path. Again an easy proof but later we attempt for a complicated one...

Embedding trees: motivation $\delta(G) \geq k$, then $\mathcal{T}_{k+1} \subset G$. Can this be weakened?

Conjectures

Setting

G ... simple, looples graph of order n
$\mathcal{T}_{\ell} \ldots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Dirac Thm If $\delta(G) \geq n / 2$ then G contains a spanning path. Again an easy proof but later we attempt for a complicated one...

Embedding trees: motivation $\delta(G) \geq k$, then $\mathcal{T}_{k+1} \subset G$. Can this be weakened?

Erdős-Sós Conjecture '63 If the average degree of G is at least k, then $\mathcal{T}_{k+1} \subset G$. proof announced by Ajtai, Komlós, Simonovits, and Szemerédi

Conjectures

Setting

G ... simple, looples graph of order n
$\mathcal{T}_{\ell} \ldots$ all trees of order ℓ

ExGrTh DENSITY CONDITION \Rightarrow SUBGRAPH.

Dirac Thm If $\delta(G) \geq n / 2$ then G contains a spanning path. Again an easy proof but later we attempt for a complicated one...

Embedding trees: motivation $\delta(G) \geq k$, then $\mathcal{T}_{k+1} \subset G$. Can this be weakened?

Erdős-Sós Conjecture '63 If the average degree of G is at least k, then $\mathcal{T}_{k+1} \subset G$. proof announced by Ajtai, Komlós, Simonovits, and Szemerédi

Loebl-Komlós-Sós Conjecture ' 95 If at least $n / 2$ of the vertices of G have degrees at least k, then $\mathcal{T}_{k+1} \subset G$.

LKS Conjecture

Loebl-Komlós-Sós Conjecture '95 If at least $n / 2$ of the vertices of G have degrees at least k, then $\mathcal{T}_{k+1} \subset G$.

LKS Conjecture

Loebl-Komlós-Sós Conjecture '95 If at least $n / 2$ of the vertices of G have degrees at least k, then $\mathcal{T}_{k+1} \subset G$.

Figure : The extremal graph

LKS Conjecture

Loebl-Komlós-Sós Conjecture '95 If at least $n / 2$ of the vertices of G have degrees at least k, then $\mathcal{T}_{k+1} \subset G$.

Figure : The extremal graph

various partial results

LKS Conjecture

Loebl-Komlós-Sós Conjecture '95 If at least $n / 2$ of the vertices of G have degrees at least k, then $\mathcal{T}_{k+1} \subset G$.

Figure : The extremal graph

various partial results
Piguet, Stein ' 07 For $\epsilon, q>0$ there exists n_{0} such that the following holds. For any $n>n_{0}$ and $k>q n$ it holds that if G of order n has at least $(1 / 2+\epsilon) n$ vertices of degree at least $(1+\epsilon) k$, then $\mathcal{T}_{k+1} \subset G$.

LKS Conjecture

Loebl-Komlós-Sós Conjecture '95 If at least $n / 2$ of the vertices of G have degrees at least k, then $\mathcal{T}_{k+1} \subset G$.

Figure : The extremal graph

various partial results
Piguet, Stein '07 For $\epsilon, q>0$ there exists n_{0} such that the following holds. For any $n>n_{0}$ and $k>q n$ it holds that if G of order n has at least $(1 / 2+\epsilon) n$ vertices of degree at least $(1+\epsilon) k$, then $\mathcal{T}_{k+1} \subset G$. Hladký, Piguet ' 08 \& Cooley ' 09 For $q>0$ there exists n_{0} such that the following holds. For any $n>n_{0}$ and $k>q n$ it holds that if G of order n has at least $n / 2$ vertices of degrees at least k, then $\mathcal{T}_{k+1} \subset G$.

Szemerédi's Regularity Lemma and graph embedding

Szemerédi 1975: dense subsets of \mathbb{N} contain a k-AP, $\forall k$ Szemerédi 1978: Regularity Lemma Sporadic applications in ExGrTh in the '80's, boom in the '90's. Now, various strenthenings, for graphs and other structures.

Szemerédi's Regularity Lemma and graph embedding

 Szemerédi 1975: dense subsets of \mathbb{N} contain a k-AP, $\forall k$ Szemerédi 1978: Regularity Lemma Statement, informally: Vertices of each graph can be partitioned into "clusters" so that all the bipartite graphs look random-like ("regular pairs").Figure : density of a pair=edges/(cluster size) ${ }^{2}$

Szemerédi's Regularity Lemma and graph embedding

 Szemerédi 1975: dense subsets of \mathbb{N} contain a k-AP, $\forall k$ Szemerédi 1978: Regularity Lemma Statement, informally: Vertices of each graph can be partitioned into "clusters" so that all the bipartite graphs look random-like ("regular pairs").Figure : density of a pair=edges/(cluster size) ${ }^{2}$

Szemerédi's Regularity Lemma and graph embedding

Szemerédi 1975: dense subsets of \mathbb{N} contain a k-AP, $\forall k$ Szemerédi 1978: Regularity Lemma Statement, informally: Vertices of each graph can be partitioned into "clusters" so that all the bipartite graphs look random-like ("regular pairs").

Embedding a spanning path in G (satisfying some density condition, e.g. Dirac's Thm) with the RL:

- regularize $G \Rightarrow$ cluster graph \mathbf{G}
- G satisfies the same density conditions
- prove that \mathbf{G} is connected and contains a perfect matching (easier task!)
- this gives you directions how to embed the path (next slide)

A complicated proof of Dirac's Theorem

 If $\delta(G) \geq n$ then G contains a spanning path.Figure : Embedding a path

A complicated proof of Dirac's Theorem

 If $\delta(G) \geq n$ then G contains a spanning path.Figure : Embedding a path

A complicated proof of Dirac's Theorem

 If $\delta(G) \geq n$ then G contains a spanning path.Figure : Embedding a path

A complicated proof of Dirac's Theorem

 If $\delta(G) \geq n$ then G contains a spanning path.Figure : Embedding a path

A complicated proof of Dirac's Theorem

 If $\delta(G) \geq n$ then G contains a spanning path.Figure : Embedding a path

A complicated proof of Dirac's Theorem

If $\delta(G) \geq n$ then G contains a spanning path.

Figure : Embedding a path

Our result

H., Komlós, Piguet, Simonovits, Stein, Szemerédi

For every $\eta>0$ there exists k_{0} such that for every $k>k_{0}$ any graph n-vertex graph G with at least $\left(\frac{1}{2}+\eta\right) n$ with degrees at least $(1+\eta) k$ contains any tree of order k.

What is the structure of G ?

Our result

H., Komlós, Piguet, Simonovits, Stein, Szemerédi

For every $\eta>0$ there exists k_{0} such that for every $k>k_{0}$ any graph n-vertex graph G with at least $\left(\frac{1}{2}+\eta\right) n$ with degrees at least $(1+\eta) k$ contains any tree of order k.

What is the structure of G ?

Our result

H., Komlós, Piguet, Simonovits, Stein, Szemerédi

For every $\eta>0$ there exists k_{0} such that for every $k>k_{0}$ any graph n-vertex graph G with at least $\left(\frac{1}{2}+\eta\right) n$ with degrees at least $(1+\eta) k$ contains any tree of order k.

What is the structure of G ?

The ad-hoc Regularity Lemma

The ad-hoc Regularity Lemma

- Isolate vertices of high degree \Rightarrow bounded-degree graph

The ad-hoc Regularity Lemma

- Isolate vertices of high degree \Rightarrow bounded-degree graph
- Greedily take out dense spots \Rightarrow nowhere-dense graph

The ad-hoc Regularity Lemma

- Isolate vertices of high degree \Rightarrow bounded-degree graph
- Greedily take out dense spots \Rightarrow nowhere-dense graph
- Regularize the dense spots

