Packing degenerate graphs

Peter Allen, Julia Böttcher (LSE) Jan Hladký (TU Dresden) Diana Piguet (Czech Academy of Sciences)

Tree packing conjectures

Two graphs G_1, G_2 **pack** into a graph H if there exist injective homomorphisms $\phi_1 : G_1 \to H$, $\phi_2 : G_2 \to H$ such that $E(\phi_1) \cap E(\phi_2) = \emptyset$.

Tree packing conjectures

Two graphs G_1, G_2 **pack** into a graph H if there exist injective homomorphisms $\phi_1 : G_1 \to H$, $\phi_2 : G_2 \to H$ such that $E(\phi_1) \cap E(\phi_2) = \emptyset$.

Conjecture (Ringel, 1963)

Any 2n + 1 identical copies of any tree of order n + 1 pack into K_{2n+1} .

Conjecture (Gyarfás–Lehel "The Tree packing conj.", 1978) Let T_1, \ldots, T_n be a family of trees, $v(T_i) = i$. Then T_1, \ldots, T_n pack into K_n .

Best possible: total number of the edges in the trees equals the number of edges of the host graph

Tree packing conjectures

Two graphs G_1, G_2 **pack** into a graph H if there exist injective homomorphisms $\phi_1 : G_1 \to H$, $\phi_2 : G_2 \to H$ such that $E(\phi_1) \cap E(\phi_2) = \emptyset$.

Conjecture (Ringel, 1963)

Any 2n + 1 identical copies of any tree of order n + 1 pack into K_{2n+1} .

Conjecture (Gyarfás–Lehel "The Tree packing conj.", 1978) Let T_1, \ldots, T_n be a family of trees, $v(T_i) = i$. Then T_1, \ldots, T_n pack into K_n .

Best possible: total number of the edges in the trees equals the number of edges of the host graph

Theorem (Böttcher, H., Piguet, Taraz 2014) $\forall \epsilon > 0, \Delta \in \mathbb{N} \exists n_0 \forall n > n_0$ Let T_1, \ldots, T_k be a family of trees, $\Delta(T_i) \leq \Delta$, $v(T_i) \leq (1 - \epsilon)n$, $\sum e(T_i) \leq (1 - \epsilon) \binom{n}{2}$. Then T_1, \ldots, T_k pack into K_n .

Packing large graphs into K_n

Böttcher, H., Piguet, Taraz 2014: 1. trees 2. bounded degree 3. $v \leq (1 - \epsilon)n$ 4. $\sum e \leq (1 - \epsilon)\binom{n}{2}$

Messuti, Rödl, Schacht 2015 1. non-expanding 2.-4.

Ferber, Lee, Mousset 2015

1. non-expanding 2. — 3. $v \leq n$ 4. —

Kim, Kühn, Osthus, Tyomkyn 2016

1. any 2. — 3. $v \le n 4$. —

Joos, Kim, Kühn, Osthus 2016 Ringel's conjecture and the Tree packing conjecture for trees of bounded degree

Ferber, Samotij 2016

1. trees 2. $\Delta \leq O(n^c)$ 3. spanning or almost spanning 4. —

・ロト・西ト・西ト・西ト・日・

Packing large graphs into K_n

Böttcher, H., Piguet, Taraz 2014: 1. trees 2. bounded degree 3. $v \leq (1 - \epsilon)n$ 4. $\sum e \leq (1 - \epsilon)\binom{n}{2}$

Messuti, Rödl, Schacht 2015 1. non-expanding 2.-4.

Ferber, Lee, Mousset 2015

1. non-expanding 2. — 3. $v \leq n$ 4. —

Kim, Kühn, Osthus, Tyomkyn 2016

1. any 2. — 3. $v \le n 4$. —

Joos, Kim, Kühn, Osthus 2016 Ringel's conjecture and the Tree packing conjecture for trees of bounded degree

Ferber, Samotij 2016

1. trees 2. $\Delta \leq O(n^c)$ 3. spanning or almost spanning 4. —

A.-B.-H.-P.

1. D-degenerate 2. $\Delta = O(n/\log n)$ 3. $\mathbf{v} \leq \mathbf{n}$ 4.

Theorem

For each $\epsilon > 0$ and each $D \in \mathbb{N}$ there exists c > 0 and a number n_0 such that the following holds for each integer $n > n_0$. Suppose that $(G_t)_{t \in [t^*]}$ is a family of D-degenerate graphs, each of which has at most n vertices and maximum degree at most $\frac{cn}{\log n}$. Suppose further that the total number of edges of $(G_t)_{t \in [t^*]}$ is at most $(1 - \epsilon) \binom{n}{2}$. Then $(G_t)_{t \in [t^*]}$ packs into K_n . **Proof**

 $H_0 := K_n$ for $i = 1, ..., t^*$, take a *D*-degenerate ordering of G_i embed G_i into H_{i-1} vertex-by-vertex randomly:

for
$$v = 1, ..., v(G_i)$$
,
 $\phi_i(v) := random\left(N_{G_{i-1}}^{common}(\phi_i(N_{H_i}^{left}(v))) \setminus \phi_i([v-1])\right)$
set $H_i := H_{i-1} - \phi_i(G_i)$

Theorem

For each $\epsilon > 0$ and each $D \in \mathbb{N}$ there exists c > 0 and a number n_0 such that the following holds for each integer $n > n_0$. Suppose that $(G_t)_{t \in [t^*]}$ is a family of D-degenerate graphs, each of which has at most n vertices and maximum degree at most $\frac{cn}{\log n}$. Suppose further that the total number of edges of $(G_t)_{t \in [t^*]}$ is at most $(1 - \epsilon) \binom{n}{2}$. Then $(G_t)_{t \in [t^*]}$ packs into K_n . **Proof**

 $H_0 := K_n$ for $i = 1, ..., t^*$, take a *D*-degenerate ordering of G_i embed G_i into H_{i-1} vertex-by-vertex randomly:

for
$$v = 1, ..., v(G_i)$$
,
 $\phi_i(v) := random\left(N_{G_{i-1}}^{common}(\phi_i(N_{H_i}^{left}(v))) \setminus \phi_i([v-1])\right)$
set $H_i := H_{i-1} - \phi_i(G_i)$

Cannot work at the end. So, run the previous for $G_i^* := G_i - U_i$, where U_i is a small independent set. Pack U_i 's at the end using a matching argument