Packing degenerate graphs

Peter Allen, Julia Böttcher (LSE)
Jan Hladký (TU Dresden)

Diana Piguet (Czech Academy of Sciences)

Tree packing conjectures

Two graphs G_{1}, G_{2} pack into a graph H if there exist injective homomorphisms $\phi_{1}: G_{1} \rightarrow H, \phi_{2}: G_{2} \rightarrow H$ such that $E\left(\phi_{1}\right) \cap E\left(\phi_{2}\right)=\emptyset$.

Tree packing conjectures

Two graphs G_{1}, G_{2} pack into a graph H if there exist injective homomorphisms $\phi_{1}: G_{1} \rightarrow H, \phi_{2}: G_{2} \rightarrow H$ such that $E\left(\phi_{1}\right) \cap E\left(\phi_{2}\right)=\emptyset$.
Conjecture (Ringel, 1963)
Any $2 n+1$ identical copies of any tree of order $n+1$ pack into $K_{2 n+1}$.

Conjecture (Gyarfás-Lehel "The Tree packing conj.", 1978) Let T_{1}, \ldots, T_{n} be a family of trees, $v\left(T_{i}\right)=i$. Then T_{1}, \ldots, T_{n} pack into K_{n}.
Best possible: total number of the edges in the trees equals the number of edges of the host graph

Tree packing conjectures

Two graphs G_{1}, G_{2} pack into a graph H if there exist injective homomorphisms $\phi_{1}: G_{1} \rightarrow H, \phi_{2}: G_{2} \rightarrow H$ such that $E\left(\phi_{1}\right) \cap E\left(\phi_{2}\right)=\emptyset$.
Conjecture (Ringel, 1963)
Any $2 n+1$ identical copies of any tree of order $n+1$ pack into $K_{2 n+1}$.

Conjecture (Gyarfás-Lehel "The Tree packing conj.", 1978) Let T_{1}, \ldots, T_{n} be a family of trees, $v\left(T_{i}\right)=i$. Then T_{1}, \ldots, T_{n} pack into K_{n}.
Best possible: total number of the edges in the trees equals the number of edges of the host graph
Theorem (Böttcher, H., Piguet, Taraz 2014)
$\forall \epsilon>0, \Delta \in \mathbb{N} \exists n_{0} \forall n>n_{0}$
Let T_{1}, \ldots, T_{k} be a family of trees, $\Delta\left(T_{i}\right) \leq \Delta, v\left(T_{i}\right) \leq(1-\epsilon) n$, $\sum e\left(T_{i}\right) \leq(1-\epsilon)\binom{n}{2}$. Then T_{1}, \ldots, T_{k} pack into K_{n}.

Packing large graphs into K_{n}

Böttcher, H., Piguet, Taraz 2014:

1. trees 2. bounded degree 3. $v \leq(1-\epsilon) n 4$. $\sum e \leq(1-\epsilon)\binom{n}{2}$

Messuti, Rödl, Schacht 2015

1. non-expanding 2.-4.

Ferber, Lee, Mousset 2015

1. non-expanding 2. 3. $\mathbf{v} \leq \mathbf{n} 4$.

Kim, Kühn, Osthus, Tyomkyn 2016

1. any 2.

Joos, Kim, Kühn, Osthus 2016
Ringel's conjecture and the Tree packing conjecture for trees of bounded degree

Ferber, Samotij 2016

1. trees 2. $\Delta \leq O\left(n^{c}\right) 3$. spanning or almost spanning 4.

Packing large graphs into K_{n}

Böttcher, H., Piguet, Taraz 2014:

1. trees 2. bounded degree 3. $v \leq(1-\epsilon) n 4$. $\sum e \leq(1-\epsilon)\binom{n}{2}$

Messuti, Rödl, Schacht 2015

1. non-expanding 2.-4.

Ferber, Lee, Mousset 2015

1. non-expanding 2. 3. $\mathbf{v} \leq \mathbf{n} 4$.

Kim, Kühn, Osthus, Tyomkyn 2016

1. any 2.

Joos, Kim, Kühn, Osthus 2016
Ringel's conjecture and the Tree packing conjecture for trees of bounded degree

Ferber, Samotij 2016

1. trees 2. $\Delta \leq O\left(n^{c}\right) 3$. spanning or almost spanning 4.
A.-B.-H.-P.
2. D-degenerate 2. $\Delta=O(n / \log n) 3$. $\mathbf{v} \leq \mathbf{n} 4$.

Theorem

For each $\epsilon>0$ and each $D \in \mathbb{N}$ there exists $c>0$ and a number n_{0} such that the following holds for each integer $n>n_{0}$. Suppose that $\left(G_{t}\right)_{t \in\left[t^{*}\right]}$ is a family of D-degenerate graphs, each of which has at most n vertices and maximum degree at most $\frac{c n}{\log n}$. Suppose further that the total number of edges of $\left(G_{t}\right)_{t \in\left[t^{*}\right]}$ is at most $(1-\epsilon)\binom{n}{2}$. Then $\left(G_{t}\right)_{t \in\left[t^{*}\right]}$ packs into K_{n}.

Proof

$H_{0}:=K_{n}$
for $i=1, \ldots, t^{*}$, take a D-degenerate ordering of G_{i}
embed G_{i} into H_{i-1} vertex-by-vertex randomly:

$$
\text { for } v=1, \ldots, v\left(G_{i}\right)
$$

$$
\phi_{i}(v):=\operatorname{random}\left(N_{G_{i-1}}^{\text {common }}\left(\phi_{i}\left(N_{H_{i}}^{\text {left }}(v)\right)\right) \backslash \phi_{i}([v-1])\right)
$$

set $H_{i}:=H_{i-1}-\phi_{i}\left(G_{i}\right)$

Theorem

For each $\epsilon>0$ and each $D \in \mathbb{N}$ there exists $c>0$ and a number n_{0} such that the following holds for each integer $n>n_{0}$. Suppose that $\left(G_{t}\right)_{t \in\left[t^{*}\right]}$ is a family of D-degenerate graphs, each of which has at most n vertices and maximum degree at most $\frac{c n}{\log n}$.
Suppose further that the total number of edges of $\left(G_{t}\right)_{t \in\left[t^{*}\right]}$ is at most $(1-\epsilon)\binom{n}{2}$. Then $\left(G_{t}\right)_{t \in\left[t^{*}\right]}$ packs into K_{n}.
Proof
$H_{0}:=K_{n}$
for $i=1, \ldots, t^{*}$, take a D-degenerate ordering of G_{i}
embed G_{i} into H_{i-1} vertex-by-vertex randomly:

$$
\begin{aligned}
& \text { for } v=1, \ldots, v\left(G_{i}\right), \\
& \phi_{i}(v):=\operatorname{random}\left(N_{G_{i-1}}^{\text {common }}\left(\phi_{i}\left(N_{H_{i}}^{\text {left }}(v)\right)\right) \backslash \phi_{i}([v-1])\right) \\
& \text { set } H_{i}:=H_{i-1}-\phi_{i}\left(G_{i}\right)
\end{aligned}
$$

Cannot work at the end. So, run the previous for $G_{i}^{*}:=G_{i}-U_{i}$, where U_{i} is a small independent set. Pack U_{i} 's at the end using a matching argument

