Tilings in graphons

Jan Hladký
Mathematics Institute, Czech Academy of Sciences

> joint with Ping Hu (Uni Warwick) and Diana Piguet (Czech Academy of Sciences)

JH's research is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

Razborov 2008 Optimal function $g_{3}:[0,1] \rightarrow[0,1]$ such that if G has $\alpha\binom{n}{2}$ edges then it has $\geq\left(g_{3}(\alpha) \pm o(1)\right)\binom{n}{3}$ triangles.
g_{2} trivial: $g_{2}=$ identity
$g_{3} \quad$ Razborov: graph limits
g_{4}, \ldots Nikiforov, Reiher: graph limits inspired

Razborov 2008 Optimal function $g_{3}:[0,1] \rightarrow[0,1]$ such that if G has $\alpha\binom{n}{2}$ edges then it has $\geq\left(g_{3}(\alpha) \pm o(1)\right)\binom{n}{3}$ triangles.
g_{2} trivial: $g_{2}=$ identity
$g_{3} \quad$ Razborov: graph limits
g_{4}, \ldots Nikiforov, Reiher: graph limits inspired
Dense graph limits (either flag algebras or "graphons") have been very useful in obtaining results of the type:

$$
\text { density } \geq \alpha \text { of graph } F \text { in } G \text { implies density } \geq \beta \text { of } H \text { in } G
$$

Razborov 2008 Optimal function $g_{3}:[0,1] \rightarrow[0,1]$ such that if G has $\alpha\binom{n}{2}$ edges then it has $\geq\left(g_{3}(\alpha) \pm o(1)\right)\binom{n}{3}$ triangles.
g_{2} trivial: $g_{2}=$ identity
$g_{3} \quad$ Razborov: graph limits
g_{4}, \ldots Nikiforov, Reiher: graph limits inspired
Dense graph limits (either flag algebras or "graphons") have been very useful in obtaining results of the type:

$$
\text { density } \geq \alpha \text { of graph } F \text { in } G \text { implies density } \geq \beta \text { of } H \text { in } G
$$

Allen-Böttcher-H-Piguet 2014 Optimal function $f_{3}:[0,1] \rightarrow[0,1]$ such that if G has $\alpha\binom{n}{2}$ edges then it has $\geq\left(f_{3}(\alpha) \pm o(1)\right) \frac{n}{3}$ vertex-disjoint triangles.
f_{2} Erdős-Gallai 1959: "consider a maximum matching, ..."
$f_{3} \quad$ Allen-Böttcher-H-Piguet 2014: modern tools but finite
f_{4}, \ldots ??
Could graph limits help us in obtaining such tiling results?

In this talk, we focus on K_{2}-tilings=matchings. This is for notational convenience only. All the features of the basic theory hold for H-tilings as well. (Some advanced, like the half-integrality of the vertex cover polytope do not.)

Aim: notion of matchings of linear size in graphons.
Bad news: normalized size of the maximum matching not continuous...

Good news: ... but lower semicontinuous, which is the more useful half of continuity

Aim: notion of fractional matchings in graphons.
4-vertex graph and its representation $W: \Omega^{2} \rightarrow[0,1]$ (measure λ)

A B C D

a fractional matching

finite fractional matching		
weight incident with D $.8+.2=1$		

Aim: notion of fractional matchings in graphons.
4-vertex graph and its representation $W: \Omega^{2} \rightarrow[0,1]$ (measure λ)

a normalized frac matching

A B C D

finite fractional matching	"brick measure" μ	
weight incident with D	$\mu(D \times \Omega)$	
$.8+.2=1$	$.2+.05=.25$	

Aim: notion of fractional matchings in graphons.
4-vertex graph and its representation $W: \Omega^{2} \rightarrow[0,1]$ (measure λ)

finite fractional matching	"brick measure" μ	Rad-Nyk der f
weight incident with D	$\mu(D \times \Omega)$	$\int_{y} f(x, y) d \lambda$
$.8+.2=1$	$.2+.05=.25$	1

Aim: notion of fractional matchings in graphons.
4-vertex graph and its representation $W: \Omega^{2} \rightarrow[0,1]$ (measure λ)

finite fractional matching	"brick measure" μ	Rad-Nyk der f
weight incident with D	$\mu(D \times \Omega)$	$\int_{y} f(x, y) d \lambda$
$.8+.2=1$	$.2+.05=.25$	1
General properties		
supported on edges		$\operatorname{supp} f \subset \operatorname{supp} W$
total weight at vertex ≤ 1		$\int_{y} f(y, x) d \lambda \leq 1$
weights $\in[0,1]$		$f \geq 0$

$f \in L^{1}\left(\Omega^{2}\right)$ is a matching in a graphon W if:

- $\operatorname{supp}(f) \subset \operatorname{supp}(W)(?)$
- for each $x \in \Omega: \int_{y} f(x, y) d \lambda \leq 1, \int_{y} f(y, x) d \lambda \leq 1$
- f non-negative

The size of f is $\frac{1}{2} \int_{x} \int_{y} f(x, y)$
The matching number of W is $M N(W)=\sup _{f} \operatorname{size}(f)$
$f \in L^{1}\left(\Omega^{2}\right)$ is a matching in a graphon W if:

- $\operatorname{supp}(f) \subset \operatorname{supp}(W)(?)$
- for each $x \in \Omega: \int_{y} f(x, y) d \lambda \leq 1, \int_{y} f(y, x) d \lambda \leq 1$
- f non-negative

The size of f is $\frac{1}{2} \int_{x} \int_{y} f(x, y)$
The matching number of W is $M N(W)=\sup _{f} \operatorname{size}(f)$
A function $c: \Omega \rightarrow[0,1]$ is a fractional vertex cover of W if $W(x, y)=0$ for almost every $(x, y): c(x)+c(y)<1$.
The size of c is $\int_{x} c(x)$ The cover number of W is
$C N(W)=\inf _{c} \operatorname{size}(f)$

Results

Thm1 (finite versus limit)

If $G_{n} \rightarrow W$ then $\liminf _{n} \frac{M N\left(G_{n}\right)}{n} \geq M N(W)$.
Thm2 (semicontinuity of Matching Number for graphons)
If $W_{n} \rightarrow W$ then $\liminf _{n} M N\left(W_{n}\right) \geq M N(W)$.
Thm3 (semicontinuity of Cover Number for graphons)
If $W_{n} \rightarrow W$ (optimally overlaid) and c_{n} a vertex cover of W_{n}.
Then any weak* limit of c_{n} 's is a vertex cover of W.
Thm4 (LP-duality)

$$
C N(W)=M N(W)
$$

attained not necessarily attained

Applications

F is an arbitrary "smallish" graph. The theory introduced above for for matchings generalizes to F-tilings.
$\operatorname{TIL}(F, G), \operatorname{TIL}(F, W)$: size of the maximum tiling in G or in W
F-tilings in random graphs $\mathbb{G}(n, W)$
Thm For an fixed graph F, a.a.s.,

$$
\lim \frac{\operatorname{TIL}(F, \mathbb{G}(n, W))}{n}=\operatorname{TIL}(F, W)
$$

Komlós's Theorem
Thm Suppose G is on n vertices and that $\delta(G) \geq \alpha n$. Then

$$
\operatorname{TIL}(F, G) \geq h_{F}(\alpha) n \pm o(n)
$$

where the function $h_{F}:[0,1] \rightarrow[0,1]$ is best possible.

