Tilings in graphons

Jan Hladký Mathematics Institute, Czech Academy of Sciences

joint with Ping Hu (Uni Warwick) and Diana Piguet (Czech Academy of Sciences)

JH's research is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

Razborov 2008 Optimal function $g_3 : [0,1] \rightarrow [0,1]$ such that if G has $\alpha\binom{n}{2}$ edges then it has $\geq (g_3(\alpha) \pm o(1))\binom{n}{3}$ triangles.

- g_2 trivial: $g_2 = identity$
- g₃ Razborov: graph limits
- g₄,... Nikiforov, Reiher: graph limits inspired

Razborov 2008 Optimal function $g_3 : [0,1] \to [0,1]$ such that if G has $\alpha \binom{n}{2}$ edges then it has $\geq (g_3(\alpha) \pm o(1))\binom{n}{3}$ triangles.

- g_2 trivial: $g_2 = identity$
- g₃ Razborov: graph limits
- g₄,... Nikiforov, Reiher: graph limits inspired

Dense graph limits (either flag algebras or "graphons") have been very useful in obtaining results of the type:

density $\geq \alpha$ of graph F in G implies density $\geq \beta$ of H in G

Razborov 2008 Optimal function $g_3 : [0,1] \to [0,1]$ such that if G has $\alpha \binom{n}{2}$ edges then it has $\geq (g_3(\alpha) \pm o(1))\binom{n}{3}$ triangles.

- g_2 trivial: $g_2 = identity$
- g₃ Razborov: graph limits
- g₄,... Nikiforov, Reiher: graph limits inspired

Dense graph limits (either flag algebras or "graphons") have been very useful in obtaining results of the type:

density $\geq \alpha$ of graph F in G implies density $\geq \beta$ of H in G

Allen-Böttcher-H-Piguet 2014 Optimal function $f_3 : [0,1] \rightarrow [0,1]$ such that if G has $\alpha \binom{n}{2}$ edges then it has $\geq (f_3(\alpha) \pm o(1))\frac{n}{3}$ vertex-disjoint triangles.

 f_2 Erdős–Gallai 1959: "consider a maximum matching, ..." f_3 Allen-Böttcher-H-Piguet 2014: modern tools but finite f_4, \ldots ??

Could graph limits help us in obtaining such tiling results?

In this talk, we focus on K_2 -tilings=matchings. This is for notational convenience only. All the features of the basic theory hold for *H*-tilings as well. (Some advanced, like the half-integrality of the vertex cover polytope do not.)

Aim: notion of matchings of linear size in graphons. **Bad news:** normalized size of the maximum matching not continuous . . .

Good news: ... but lower semicontinuous, which is the more useful half of continuity

4-vertex graph and its representation $W: \Omega^2 \rightarrow [0,1]$ (measure λ)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

4-vertex graph and its representation $W: \Omega^2 \to [0,1]$ (measure λ)

a normalized frac matching

finite fractional matching	"brick measure" μ	
weight incident with D	$\mu(D imes \Omega)$	
.8+.2=1	.2+.05=.25	

4-vertex graph and its representation $W: \Omega^2 \rightarrow [0,1]$ (measure λ)

finite fractional matching	"brick measure" μ	Rad-Nyk der <i>f</i>
weight incident with D	$\mu(D imes \Omega)$	$\int_{V} f(x, y) d\lambda$
.8+.2=1	.2+.05=.25	1

4-vertex graph and its representation $W: \Omega^2 \rightarrow [0,1]$ (measure λ)

finite fractional matching	"brick measure" μ	Rad-Nyk der f	
weight incident with D	$\mu(D imes \Omega)$	$\int_{V} f(x, y) d\lambda$	
.8+.2=1	.2+.05=.25	1	
General properties			
supported on edges		$supp f \subset supp W$	
total weight at vertex ≤ 1		$\int_{V} f(y, x) d\lambda \leq 1$	
$weights{\in}[0,1]$		$f \ge 0$	

 $f \in L^1(\Omega^2)$ is a matching in a graphon W if:

- $supp(f) \subset supp(W)$ (?)
- ▶ for each $x \in \Omega$: $\int_{V} f(x, y) d\lambda \leq 1$, $\int_{V} f(y, x) d\lambda \leq 1$

f non-negative

The size of f is $\frac{1}{2} \int_{x} \int_{y} f(x, y)$ The matching number of W is $MN(W) = \sup_{f} size(f)$ $f \in L^1(\Omega^2)$ is a matching in a graphon W if:

- $supp(f) \subset supp(W)$ (?)
- ▶ for each $x \in \Omega$: $\int_{Y} f(x, y) d\lambda \leq 1$, $\int_{Y} f(y, x) d\lambda \leq 1$
- f non-negative

The size of f is $\frac{1}{2} \int_{x} \int_{y} f(x, y)$ The matching number of W is $MN(W) = \sup_{f} size(f)$

A function $c : \Omega \to [0, 1]$ is a fractional vertex cover of W if W(x, y) = 0 for almost every (x, y) : c(x) + c(y) < 1. The size of c is $\int_x c(x)$ The cover number of W is $CN(W) = \inf_c size(f)$

Results

Thm1 (finite versus limit) If $G_n \to W$ then $\liminf_n \frac{MN(G_n)}{n} \ge MN(W)$.

Thm2 (semicontinuity of Matching Number for graphons) If $W_n \to W$ then $\liminf_n MN(W_n) \ge MN(W)$.

Thm3 (semicontinuity of Cover Number for graphons) If $W_n \to W$ (optimally overlaid) and c_n a vertex cover of W_n . Then any weak* limit of c_n 's is a vertex cover of W.

Thm4 (LP-duality)

CN(W) = MN(W)attained not necessarily attained

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Applications

F is an arbitrary "smallish" graph. The theory introduced above for for matchings generalizes to *F*-tilings. TIL(F, G), TIL(F, W): size of the maximum tiling in *G* or in *W*

F-tilings in random graphs $\mathbb{G}(n, W)$ Thm For an fixed graph *F*, a.a.s.,

$$\lim \frac{TIL(F, \mathbb{G}(n, W))}{n} = TIL(F, W) .$$

Komlós's Theorem

Thm Suppose G is on n vertices and that $\delta(G) \ge \alpha n$. Then

$$TIL(F,G) \geq h_F(\alpha)n \pm o(n)$$
,

where the function $h_F : [0,1] \rightarrow [0,1]$ is best possible.