
Tilings in graphons

Jan Hladký
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Dense graph limits (either flag algebras or “graphons”) have been
very useful in obtaining results of the type:

density ≥ α of graph F in G implies density ≥ β of H in G
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Could graph limits help us in obtaining such tiling results?
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Allen-Böttcher-H-Piguet 2014 Optimal function f3 : [0, 1]→ [0, 1]
such that if G has α

(n
2

)
edges then it has ≥ (f3(α)± o(1))n3

vertex-disjoint triangles.
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f3 Allen-Böttcher-H-Piguet 2014: modern tools but finite
f4, . . . ??

Could graph limits help us in obtaining such tiling results?



In this talk, we focus on K2-tilings=matchings. This is for
notational convenience only. All the features of the basic theory
hold for H-tilings as well. (Some advanced, like the half-integrality
of the vertex cover polytope do not.)

Aim: notion of matchings of linear size in graphons.
⇒ matching number of a graphon

Bad news: normalized size of the maximum matching not
continuous . . .

Good news: . . . but lower semicontinuous,
which is the more useful half of continuity



Aim: notion of fractional matchings in graphons.

4-vertex graph and its representation W : Ω2 → [0, 1] (measure λ)

finite fractional matching

“brick measure” µ Rad-Nyk der f

weight incident with D

µ(D × Ω)
∫
y f (x , y)dλ

.8+.2=1

.2+.05=.25 1

General properties

supported on edges suppf ⊂ suppW
total weight at vertex≤ 1

∫
y f (y , x)dλ ≤ 1

weights∈ [0, 1] f ≥ 0
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f ∈ L1(Ω2) is a matching in a graphon W if:

I supp(f ) ⊂ supp(W ) (?)

I for each x ∈ Ω:
∫
y f (x , y)dλ ≤ 1,

∫
y f (y , x)dλ ≤ 1

I f non-negative

The size of f is 1
2

∫
x

∫
y f (x , y)

The matching number of W is match(W ) = supf size(f )

Recall: no distinction between integral and fractional matchings in
graphons.

A function c : Ω→ [0, 1] is a fractional vertex cover of W if
W (x , y) = 0 for almost every (x , y) : c(x) + c(y) < 1.
The size of c is

∫
x c(x).

The fractional cover number of W is fcov(W ) = infc size(c)
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Results

Thm1 (finite versus limit)

If Gn →W then lim infn
match(Gn)

n ≥ match(W ).

Thm2 (semicontinuity of Matching Number for graphons)
If Wn →W then lim infn match(Wn) ≥ match(W ).

Thm3 (semicontinuity of Cover Number for graphons)
If Wn →W (cut-norm) and cn a vertex cover of Wn.
Then any weak∗ limit of cn’s is a vertex cover of W .

Thm4 (LP-duality)

fcov(W ) = match(W )

attained not necessarily attained



A new ???? form of the LP duality

Primal
maximize cT x

∑
j cjxj

subject to Ax ≤ b: ∀i :
∑

j Aijxj ≤ bi
and x ≥ 0

Dual
minimize bT y
subject to AT y ≥ c
and y ≥ 0



Applications in random graphs/extremal graph theory

F is an arbitrary “smallish” graph. The theory introduced above
for for matchings generalizes to F -tilings.
TIL(F ,G ), TIL(F ,W ): size of the maximum tiling in G or in W

F -tilings in random graphs G(n,W )
Thm For an fixed graph F , a.a.s.,

lim
TIL(F ,G(n,W ))

n
= TIL(F ,W ) .

Komlós’s Theorem
Thm Suppose G is on n vertices and that δ(G ) ≥ αn. Then

TIL(F ,G ) ≥ hF (α)n ± o(n) ,

where the function hF : [0, 1]→ [0, 1] is best possible.



Property testing in dense graphs
G...all finite graphs
A function f : G → R is testable if for each ε > 0 there exists a
number r ∈ N and a function g : G → R (tester) such that

P
[
|f (G )− g(G [X ])| > ε

]
< ε ,

where X is a uniformly random r -tuple of vertices in G .

..work of Alon, Shapira...
Observation: A function is testable if and only if it is continuous
in the cut-distance.

In particular, the matching ratio is not testable.

Define

matchε(G ) = min
{
match(G ′) : G ′ ⊂ G , e(G ′) > e(G )− εn2

}
Theorem: For each ε > 0, matchε

n is testable.
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Combinatorial optimization of graphons
Recall: if G = (V ,E ) is a finite graph, then we write

I FMATCH(G ) ⊂ [0, 1]E for set of all fractional matchings
(fractional matching polytope)

I FCOV (G ) ⊂ [0, 1]V for set of all fractional vertex covers
(fractional vertex cover polytope)

A basic fact: The following are equivalent:

I G bipartite
I all vertices of FMATCH(G ) integral
I all vertices of FCOV (G ) integral

I MATCH(W ) ⊂ [0,∞)Ω2
: matching polyton

I FCOV (W ) ⊂ [0, 1]Ω: fractional vertex cover polyton

Theorem: The following are equivalent:

I W bipartite
I ??
I all extreme points of FCOV (W ) integral
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