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1866 Gregor Johann Mendel
“factors” (=genes), and there are certain laws of inheritance

Genes are stored on a linear structure! Why?
Compute the covariances of the gene switches.
Example: offsprings of a unisexual organism

© red ↑ little

© red ↓ little
� blue ↑ little

� blue ↓ little
© red ↓ BIG
© red ↑ little

The ©/�-switch correlates strongly with the red/blue switch
⇒these two genes must be close in the cell

the corresponding metric space is 1-dimensional.

1944 Avery-MacLeod-McCarty

1952 Hershey-Chase

1953 Watson-Crick

∼ 1959 Nirenberg, . . .


DNA is a double
helix carrying
the genetic
information
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Quite often, in sciences, and in computer science alike, you want
to infer properties of an object you cannot observe directly.

Here, we want to “observe” properties and parameters of graphs.

Property: YES/NO Parameter: real number
planarity, containing a 4 chromatic number, no. of 4’s

What is the average number of “friends” in the Facebook graph?



(Graph) Parameter estimation

Setting:
Alice: Holds a (large) graph G .
Bob: Wants to learn a property/parameter f (G ). Wants to use as
few queries as possible. (and no other computational restrictions)

A 1-query solution
Bob: Tell me f (G ).

So, to turn this into a non-trivial problem, we only allow queries of
the type: Is ij ∈ E (G )?

Typically, it is impossible to determine f (G ) before learning the
entire graph G (at least in the worst case). Rather, we want to get
a high-confidence (= 1− ε) estimate on f (G ) using few
(= K (ε)) randomized queries.
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Parameter estimation in dense graphs

our universe: all graphs. . .G
A parameter f : G → R is estimable if for every ε > 0 there exists a
number K = K (ε) such that

P
[
f (G )− f (G [X ])| > ε

]
< ε ,

where X ⊂ V (G ) is a random K -set.
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Parameter estimation in dense graphs

our universe: all graphs. . .G
A parameter f : G → R is estimable if for every ε > 0 there exists a
number K = K (ε) such that

P
[
f (G )− f (G [X ])| > ε

]
< ε ,

where X ⊂ V (G ) is a random K -set.

e.g. f = triangle density = #4 /n3 is estimable

Why dense? Recall: e(G ) ≤
(n
2

)
≈ n2/2.

Observe that an estimable parameter cannot change substantially
after an o(n2) edge-perturbation of G .

In particular, f (G ) ≈ f (∅), whenever e(G ) = o(n2).

No information about trees, planar graphs, . . .



Limits of dense graph sequences

Lovász, Szegedy JCTB’06 (Fulkerson Prize’12)
Borgs, Chayes, Lovász, Sós, Vesztergombi STOC’06
Borgs, Chayes, Lovász, Sós, Vesztergombi Adv.Math.’06
Borgs, Chayes, Lovász, Sós, Vesztergombi Ann.Math.’12

idea: convergence notion for sequences of finite graphs
compactification of the space of finite graphs ⇒
. . . graphons symmetric Lebesgue-m. functions Ω2 → [0, 1]

Why? same story as with Q vs R: only the latter allows
reasonable e.g. variational and integral calculus
for example argmin(x3 − 2x)
mathematical framework for parameter estimation
and property testing
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Limits of dense graph sequences: an abstract approach

F is a “fixed graph” of order k, G is “large” of order n
We define subgraph density t(F ,G ):

t(F ,G ) :=
# copies of F in G(n

k

) = P
[
G [random k-set] ∼= F

]

A sequence of graphs G1,G2, . . . converges if for each F , the
sequence t(F ,G1), t(F ,G2), . . . converges.

We get a limit object Ψ, t(F ,Ψ) = limn t(F ,Gn).

Topology on the limit space: dist(Ψ1,Ψ2) ≤ 1/k, if the total
variation distance of {t(F ,Ψ1)}v(F )=k and {t(F ,Ψ2)}v(F )=k is at
most 1/k .
In particular, we can measure distance between finite graphs.

The key connection: f : G → R is estimable iff it is continuous.
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Represent these graphs by their adjacency matrices:

. . . works if you do things the right way. But, . . .

In general Szemerédi’s Regularity Lemma can be used to determine
“the right way” of ordering the vertices.
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In general Szemerédi’s Regularity Lemma can be used to determine
“the right way” of ordering the vertices.



Dense model

complete picture:

characterization of testable graph properties and estimable
parameters either

I in the language of the Szemerédi Regularity lemma
(⊆Alon–Fischer–Newman–Shapira’03–’06, . . . ), and

I in the language of graph limits.



Parameter estimation in bounded degree graphs

our universe: graphs of degrees bounded by a constant D . . . GD
A parameter f : GD → R is estimable if for each ε > 0 there exists
a number K = K (ε) and a function g such that

P [|f (G )− g(B1,B2, . . . ,BK )| > ε] < ε ,

where B1, . . . ,BK are balls of radius K around K randomly
selected vertices of G .



Limits of sparse graph sequences

G1,G2,G3, . . . ∈ GD .
Goal: convergence notion.

ρr (G ) =distribution on rooted r -balls around a randomly selected
root of G . (example r = 2)

Definition: G1,G2,G3, . . . is convergent if for each r ∈ N,
ρr (G1), ρr (G2), ρr (G3), . . . converges (and converges to a
probability distribution) (Benjamini–Schramm’01)

The key connection: f : GD → R is estimable iff it is continuous.
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Estimable parameters in the bounded-degree model

Negative example The independence ratio α(G )/n is NOT
estimable.
(α(G ) =maximum size independent set. . . vertices induce no edge)

Thm [Nguyen, Onak, FOCS’08]: Matching ratio is estimable.

Proof: Construct a suitable estimator, and prove that with high
probability it gives a good estimate for the matching ratio
Proof [Elek–Lippner]: (Borel oracles method)
Argue that there exists a “Borel matching” on the limit space.
Show how to make use of this structure to make estimates about
matching ratio of finite graphs.
In particular, this does not give any construction of an algorithm!
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Bounded degrees

Why did we have to have all degrees≤ D?

Random rooted 2-balls G1,G2,G3, . . . have a weak limit, but a
trivial one (total mass=0).

Maximum degree≤ D ⇒ finitely many r -balls
⇒ measure cannot “escape to infinity”

A sequence of probability measures µ1, µ2, . . . on X is tight if for
every ε > 0 there exists a finite K ⊂ X such that µn(K ) ≥ 1− ε
for all n.
Lyons’07: The concept of Benjamini–Schramm limit can be
extended to sequences G1,G2, . . . where for each r ∈ N, the
sequence ρr (G1), ρr (G2), . . . is tight. AND NOT FURTHER
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with Lukasz Grabowski and Oleg Pikhurko, 2014+

the limit space and the soft arguments in the theory of
bounded-degree graph limits make sense even for tight graph
sequences

New graph classes for which the graph limit used not to be
applicable:

I Erdős–Rényi Gn,C/n,

I random planar graphs,. . .

no surprises yet.


