Packing Trees; Gracefully Labelling Trees

Jan Hladký
Institute of Mathematics, Czech Academy of Sciences

European
Commission

JH's research is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

Packings

Two graph F_{1}, F_{2} pack into a graph G if there exist injective homomorphisms $\phi_{1}: F_{1} \rightarrow G, \phi_{2}: F_{2} \rightarrow G$ such that $E\left(\phi_{1}\right) \cap E\left(\phi_{2}\right)=\emptyset$.

Packings

Two graph F_{1}, F_{2} pack into a graph G if there exist injective homomorphisms $\phi_{1}: F_{1} \rightarrow G, \phi_{2}: F_{2} \rightarrow G$ such that $E\left(\phi_{1}\right) \cap E\left(\phi_{2}\right)=\emptyset$.

Conjecture (Ringel, 1963)
Any $2 n+1$ identical copies of any tree of order $n+1$ pack into $K_{2 n+1}$.

Conjecture (Gyarfás-Lehel, 1978)
Let T_{1}, \ldots, T_{n} be a family of trees, $v\left(T_{i}\right)=i$. Then T_{1}, \ldots, T_{n} pack into K_{n}.

Best possible: total number of the edges in the trees equals the number of edges of the host graph

Graceful labeling of trees

Suppose that a graph G and a map $h: V(G) \rightarrow \mathbb{R}$. Then h induces label $|h(x)-h(y)|$ on the edge $x y \in E(G)$.

Graceful labeling of trees

Suppose that a graph G and a map $h: V(G) \rightarrow \mathbb{R}$. Then h induces label $|h(x)-h(y)|$ on the edge $x y \in E(G)$.
Suppose that T is an n-vertex tree. A map $h: V(T) \rightarrow[n]$ is a graceful labelling if it is injective and the induced edge-labels are pairwise distinct.

Conjecture (Kotzig-Ringel-Rosa "Graceful Tree Labeling C.", 1967)
For every tree T there is a labeling which is graceful.

Graceful Tree Labeling Conjecture \Rightarrow Ringel Conjecture

The results

Theorem (Böttcher, H., Piguet, Taraz; arXiv:1404.0697, Israel J Math+) For every $\Delta \in \mathbb{N}$ and $\epsilon>0$ there exists n_{0} such that for every $n>n_{0}$ we have:
Let T_{1}, \ldots, T_{k} be a family of trees, $v\left(T_{i}\right) \leq n, \Delta\left(T_{i}\right) \leq \Delta$, $\sum e\left(T_{i}\right) \leq\binom{ n}{2}$. Then T_{1}, \ldots, T_{k} pack into $K_{(1+\epsilon) n}$.

Theorem (Adamaszek, Adamaszek, Allen, Grosu, H.)
For every $\Delta \in \mathbb{N}$ and $\epsilon>0$ there exists n_{0} such that for every $n>n_{0}$ we have:
Let T be an n-vertex tree with maximum degree $\leq \Delta$. Then there exists a graceful labeling (i.e., vertex labels distinct, induced edge labels distinct) with $(1+\epsilon) n$ labels.

Packing trees: The proof

Theorem (Böttcher, H., Piguet, Taraz)
Let T_{1}, \ldots, T_{k} be a family of trees, $v\left(T_{i}\right) \leq n, \Delta\left(T_{i}\right) \leq \Delta$, $\sum e\left(T_{i}\right) \leq\binom{ n}{2}$. Then T_{1}, \ldots, T_{k} pack into $K_{(1+\epsilon) n}$

Packing trees: The proof

Theorem (Böttcher, H., Piguet, Taraz)
Let T_{1}, \ldots, T_{k} be a family of trees, $v\left(T_{i}\right) \leq n, \Delta\left(T_{i}\right) \leq \Delta$, $\sum e\left(T_{i}\right) \leq\binom{ n}{2}$. Then T_{1}, \ldots, T_{k} pack into $K_{(1+\epsilon) n}$

Proof attempt: randomized embedding algorithm

Packing trees: The proof

Theorem (Böttcher, H., Piguet, Taraz)
Let T_{1}, \ldots, T_{k} be a family of trees, $v\left(T_{i}\right) \leq n, \Delta\left(T_{i}\right) \leq \Delta$,
$\sum e\left(T_{i}\right) \leq\binom{ n}{2}$. Then T_{1}, \ldots, T_{k} pack into $K_{(1+\epsilon) n}$

Proof attempt: randomized embedding algorithm difficult to analyze such dynamical environment!

Packing trees: The proof

Theorem (Böttcher, H., Piguet, Taraz)
Let T_{1}, \ldots, T_{k} be a family of trees, $v\left(T_{i}\right) \leq n, \Delta\left(T_{i}\right) \leq \Delta$,
$\sum e\left(T_{i}\right) \leq\binom{ n}{2}$. Then T_{1}, \ldots, T_{k} pack into $K_{(1+\epsilon) n}$ (with a small number of collisions).

Proof attempt: randomized embedding algorithm difficult to analyze such dynamical environment!

Proof:

- glue the trees \Rightarrow family $T_{1}^{\prime}, \ldots, T_{\ell}^{\prime}, n / 2 \leq v\left(T_{i}^{\prime}\right) \leq n$
- cut each T_{i}^{\prime} into almost equi-sized layers $L_{i}^{(1)}, \ldots, L_{i}^{(R)}$
- inductively, in steps $s=1,2, \ldots, R$:
- embed all the trees $\left\{L_{i}^{(s)}\right\}_{i=1}^{\ell}$ (no updates)
- preserve quasirandomness of the graph $K^{(s)}$ formed by unused edges "limping random walks", analysis for true random walks would probably be possible (Barber-Long'14)

