Packing Trees; Gracefully Labelling Trees

Jan Hladký Institute of Mathematics, Czech Academy of Sciences

JH's research is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

Packings

Two graph F_1, F_2 pack into a graph G if there exist injective homomorphisms $\phi_1 : F_1 \to G$, $\phi_2 : F_2 \to G$ such that $E(\phi_1) \cap E(\phi_2) = \emptyset$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Packings

Two graph F_1, F_2 pack into a graph G if there exist injective homomorphisms $\phi_1 : F_1 \to G$, $\phi_2 : F_2 \to G$ such that $E(\phi_1) \cap E(\phi_2) = \emptyset$.

Conjecture (Ringel, 1963)

Any 2n + 1 identical copies of any tree of order n + 1 pack into K_{2n+1} .

Conjecture (Gyarfás-Lehel, 1978)

Let T_1, \ldots, T_n be a family of trees, $v(T_i) = i$. Then T_1, \ldots, T_n pack into K_n .

Best possible: total number of the edges in the trees equals the number of edges of the host graph

イロト 不得 とうせい かほとう ほ

Suppose that a graph G and a map $h: V(G) \to \mathbb{R}$. Then h induces label |h(x) - h(y)| on the edge $xy \in E(G)$.

Suppose that a graph G and a map $h: V(G) \to \mathbb{R}$. Then h induces label |h(x) - h(y)| on the edge $xy \in E(G)$.

Suppose that T is an *n*-vertex tree. A map $h: V(T) \rightarrow [n]$ is a graceful labelling if it is injective and the induced edge-labels are pairwise distinct.

Conjecture (Kotzig-Ringel-Rosa "Graceful Tree Labeling C.", 1967) For every tree T there is a labeling which is graceful.

Graceful Tree Labeling Conjecture \Rightarrow Ringel Conjecture

The results

Theorem (Böttcher, H., Piguet, Taraz; arXiv:1404.0697, Israel J Math+) For every $\Delta \in \mathbb{N}$ and $\epsilon > 0$ there exists n_0 such that for every $n > n_0$ we have:

Let T_1, \ldots, T_k be a family of trees, $v(T_i) \le n$, $\Delta(T_i) \le \Delta$, $\sum e(T_i) \le {n \choose 2}$. Then T_1, \ldots, T_k pack into $K_{(1+\epsilon)n}$.

Theorem (Adamaszek, Adamaszek, Allen, Grosu, H.)

For every $\Delta \in \mathbb{N}$ and $\epsilon > 0$ there exists n_0 such that for every $n > n_0$ we have:

Let T be an n-vertex tree with maximum degree $\leq \Delta$. Then there exists a graceful labeling (i.e., vertex labels distinct, induced edge labels distinct) with $(1 + \epsilon)n$ labels.

Theorem (Böttcher, H., Piguet, Taraz)

Let T_1, \ldots, T_k be a family of trees, $v(T_i) \le n$, $\Delta(T_i) \le \Delta$, $\sum e(T_i) \le {n \choose 2}$. Then T_1, \ldots, T_k pack into $K_{(1+\epsilon)n}$

Theorem (Böttcher, H., Piguet, Taraz)

Let T_1, \ldots, T_k be a family of trees, $v(T_i) \le n$, $\Delta(T_i) \le \Delta$, $\sum e(T_i) \le {n \choose 2}$. Then T_1, \ldots, T_k pack into $K_{(1+\epsilon)n}$

Proof attempt: randomized embedding algorithm

Theorem (Böttcher, H., Piguet, Taraz) Let T_1, \ldots, T_k be a family of trees, $v(T_i) \le n$, $\Delta(T_i) \le \Delta$, $\sum e(T_i) \le {n \choose 2}$. Then T_1, \ldots, T_k pack into $K_{(1+\epsilon)n}$

Proof attempt: randomized embedding algorithm difficult to analyze such dynamical environment!

- * 同 * * ヨ * * ヨ * - ヨ

Theorem (Böttcher, H., Piguet, Taraz)

Let T_1, \ldots, T_k be a family of trees, $v(T_i) \le n$, $\Delta(T_i) \le \Delta$, $\sum e(T_i) \le {n \choose 2}$. Then T_1, \ldots, T_k pack into $K_{(1+\epsilon)n}$ (with a small number of collisions).

Proof attempt: randomized embedding algorithm difficult to analyze such dynamical environment!

Proof:

- glue the trees \Rightarrow family T'_1, \ldots, T'_ℓ , $n/2 \le v(T'_i) \le n$
- cut each T'_i into almost equi-sized layers $L_i^{(1)}, \ldots, L_i^{(R)}$
- inductively, in steps $s = 1, 2, \ldots, R$:
 - embed all the trees $\{L_i^{(s)}\}_{i=1}^{\ell}$ (no updates)
 - preserve quasirandomness of the graph $\mathcal{K}^{(s)}$ formed by unused edges

"limping random walks", analysis for true random walks would probably be possible (Barber–Long'14)