Extremal Graph Theory

Jan Hladký

Definition (Extremal graph theory, Bollobás 1976):

Definition (Extremal graph theory, Bollobás 1976):

Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Definition (Extremal graph theory, Bollobás 1976):

Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

(日) (日) (日) (日) (日) (日) (日)

An alternative definition: substructures in graphs

In this talk:

- Turán's Theorem
- Erdős–Sós Conjecture
- Szemerédi Regularity Lemma

Mantel 1907/Turán 1941 G has n vertices

If G has more than $n^2/4$ edges then it contains a triangle.

(ロ) (同) (三) (三) (三) (○) (○)

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Mantel 1907/Turán 1941 G has n vertices

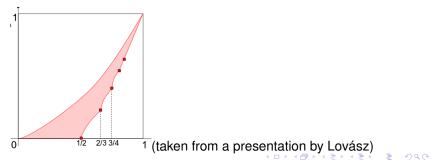
If *G* has more than $n^2/4$ edges then it contains a triangle.

- optimal \Rightarrow extremal graph
- starting point of extremal graph theory
- Aigner 1995: Turán's graph theorem, 6 proofs.

Extensions:

- other graphs than the triangle (Turán, Erdős-Stone 1964)
- 3-uniform hypergraphs (still open!!!)
- "triangle density problem"

Alexander Razborov, 2013 Robbins Prize (AMS)



Setting

- G...graph on *n* vertices
- $\mathcal{T}_\ell \dots$ all trees on ℓ vertices

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Setting

 $G \dots$ graph on *n* vertices $\mathcal{T}_{\ell} \dots$ all trees on ℓ vertices

Embedding trees: motivation $\delta(G) \ge k$, then $\mathcal{T}_{k+1} \subset G$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Setting

 $G \dots$ graph on *n* vertices $\mathcal{T}_{\ell} \dots$ all trees on ℓ vertices

Embedding trees: motivation $\delta(G) \ge k$, then $\mathcal{T}_{k+1} \subset G$. Can this be weakened?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Setting

 $G \dots$ graph on *n* vertices $\mathcal{T}_{\ell} \dots$ all trees on ℓ vertices

Embedding trees: motivation $\delta(G) \ge k$, then $\mathcal{T}_{k+1} \subset G$. Can this be weakened?

Erdős-Sós Conjecture '63 If the average degree of *G* is at least *k*, then $\mathcal{T}_{k+1} \subset G$. proof announced by Ajtai, Komlós, Simonovits, and Szemerédi

(日) (日) (日) (日) (日) (日) (日)

Setting $G \dots$ graph on *n* vertices $\mathcal{T}_{\ell} \dots$ all trees on ℓ vertices

Embedding trees: motivation $\delta(G) \ge k$, then $\mathcal{T}_{k+1} \subset G$. Can this be weakened?

Erdős-Sós Conjecture '63 If the average degree of *G* is at least *k*, then $\mathcal{T}_{k+1} \subset G$. proof announced by Ajtai, Komlós, Simonovits, and Szemerédi

Loebl-Komlós-Sós Conjecture '95 If at least n/2 of the vertices of *G* have degrees at least *k*, then $\mathcal{T}_{k+1} \subset G$. approximate solution by H., Piguet, Komlós, Simonovits, Stein, Szemerédi

Szemerédi Regularity Lemma

Szemerédi 1975: Dense subsets of integers contain arithmetic progressions of arbitrary length

If $A \subset \mathbb{N}$ such that $\limsup_{n} \frac{|A \cap \{1, \dots, n\}|}{n} > 0$ then $\forall k$ there exists $a_0, d \in \mathbb{N}$ such that $a_0, a_0 + d, a_0 + 2d, \dots, a_0 + (k-1)d \in A$.

History: 1953 Roth k = 3; 1977 Furstenberg (ergodic theory)

Szemerédi 1978: Regularity lemma Every graph can be decomposed into a bounded number of quasirandom pieces

Ruzsa and Szemerédi 1976: Removal lemma easy consequence of the Regularity lemma (next slide)

2012: Abel Prize to Szemerédi

2002-2007: Hypergraph regularity lemma Rödl, Schacht, Skokan, ...; Gowers 2012 Pólya Prize to Rödl and Schacht

Removal Lemma

Ruzsa and Szemerédi 1976: (Triangle) Removal lemma:

If a graph contains few triangles then it can be made triangle-free by removing few edges.

For every $\epsilon > 0$ there exists $\delta > 0$ and $n_0 \in \mathbb{N}$ such that the following holds.

If *G* is an *n*-vertex graph $(n > n_0)$ which has at most δn^3 triangles then there is a set of at most ϵn^2 edges deletion of which makes *G* triangle-free.

Regularity-lemma free proof: Fox (Annals Math 2012)

Removal Lemma

Ruzsa and Szemerédi 1976: (Triangle) Removal lemma:

If a graph contains few triangles then it can be made triangle-free by removing few edges.

For every $\epsilon > 0$ there exists $\delta > 0$ and $n_0 \in \mathbb{N}$ such that the following holds.

If *G* is an *n*-vertex graph $(n > n_0)$ which has at most δn^3 triangles then there is a set of at most ϵn^2 edges deletion of which makes *G* triangle-free.

Regularity-lemma free proof: Fox (Annals Math 2012)

Application I: Property testing

Removal Lemma

Ruzsa and Szemerédi 1976: (Triangle) Removal lemma:

If a graph contains few triangles then it can be made triangle-free by removing few edges.

For every $\epsilon > 0$ there exists $\delta > 0$ and $n_0 \in \mathbb{N}$ such that the following holds.

If *G* is an *n*-vertex graph $(n > n_0)$ which has at most δn^3 triangles then there is a set of at most ϵn^2 edges deletion of which makes *G* triangle-free.

Regularity-lemma free proof: Fox (Annals Math 2012)

Application I: Property testing

Application II: Roth's Theorem: Dense sets contain 3-AP's (Version I) If $A \subset \mathbb{N}$ such that $\limsup_n \frac{|A \cap \{1, \dots, n\}|}{n} > 0$ then there exists $a_0, d \in \mathbb{N}$ such that $a_0, a_0 + d, a_0 + 2d \in A$. (Version II) For every $\alpha > 0$ there exists n_0 such that the following holds. $A \subset \{1, \dots, n\}$ (for some $n > n_0$) $|A| > \alpha n$ then there exists $a_0, d \in \mathbb{N}$ such that $a_0, a_0 + d, a_{0-1} + 2d \in A$.