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Definition (Extremal graph theory, Bollobás 1976):

Extremal graph theory, in its strictest sense, is a branch of
graph theory developed and loved by Hungarians.

An alternative definition: substructures in graphs

In this talk:
I Turán’s Theorem
I Erdős–Sós Conjecture
I Szemerédi Regularity Lemma
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Mantel 1907/Turán 1941 G has n vertices
If G has more than n2/4 edges then it contains a triangle.

I optimal⇒ extremal graph
I starting point of extremal graph theory
I Aigner 1995: Turán’s graph theorem, 6 proofs.

Extensions:
I other graphs than the triangle (Turán, Erdős-Stone 1964)
I 3-uniform hypergraphs (still open!!!)
I “triangle density problem”

Alexander Razborov, 2013 Robbins Prize (AMS)

(taken from a presentation by Lovász)
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Erdős–Sós Conjecture

Setting
G . . . graph on n vertices
T` . . . all trees on ` vertices

Embedding trees: motivation δ(G) ≥ k , then Tk+1 ⊂ G.
Can this be weakened?

Erdős-Sós Conjecture ’63 If the average degree of G is at
least k , then Tk+1 ⊂ G.
proof announced by Ajtai, Komlós, Simonovits, and Szemerédi

Loebl-Komlós-Sós Conjecture ’95 If at least n/2 of the
vertices of G have degrees at least k , then Tk+1 ⊂ G.
approximate solution by H., Piguet, Komlós, Simonovits, Stein,
Szemerédi
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Szemerédi Regularity Lemma
Szemerédi 1975: Dense subsets of integers contain arithmetic
progressions of arbitrary length
If A ⊂ N such that lim supn

|A∩{1,...,n}|
n > 0 then

∀k there exists a0,d ∈ N such that
a0,a0 + d ,a0 + 2d , . . . ,a0 + (k − 1)d ∈ A.
History: 1953 Roth k = 3; 1977 Furstenberg (ergodic theory)

Szemerédi 1978: Regularity lemma Every graph can be
decomposed into a bounded number of quasirandom pieces

Ruzsa and Szemerédi 1976: Removal lemma
easy consequence of the Regularity lemma (next slide)

2012: Abel Prize to Szemerédi

2002-2007: Hypergraph regularity lemma
Rödl, Schacht, Skokan, . . . ; Gowers
2012 Pólya Prize to Rödl and Schacht



Removal Lemma
Ruzsa and Szemerédi 1976: (Triangle) Removal lemma:
If a graph contains few triangles then it can be made
triangle-free by removing few edges.
For every ε > 0 there exists δ > 0 and n0 ∈ N such that the
following holds.
If G is an n-vertex graph (n > n0) which has at most δn3

triangles then there is a set of at most εn2 edges deletion of
which makes G triangle-free.

Regularity-lemma free proof: Fox (Annals Math 2012)

Application I: Property testing

Application II: Roth’s Theorem: Dense sets contain 3-AP’s
(Version I) If A ⊂ N such that lim supn

|A∩{1,...,n}|
n > 0 then

there exists a0,d ∈ N such that a0,a0 + d ,a0 + 2d ∈ A.
(Version II) For every α > 0 there exists n0 such that the
following holds. A ⊂ {1, . . . ,n} (for some n > n0) |A| > αn then
there exists a0,d ∈ N such that a0,a0 + d ,a0 + 2d ∈ A.
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