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Abstract. We prove that if G is a family of graphs with at most n vertices each, with con-
stant degeneracy, with maximum degree at most O (n/ logn), and with total number of edges at
most (1 − o(1))

(n
2

)
, then G packs into the complete graph Kn. This strengthens recent results of

Böttcher�Hladký�Piguet�Taraz, Messuti�Rödl�Schacht, Ferber�Lee�Mousset, Kim�Kühn�Osthus�
Tyomkyn, and Ferber�Samotij related to the Tree Packing Conjecture.

In this extended abstract we describe the main steps of our proof.

1. Introduction

A packing of a family G = {G1, . . . , Gk} of graphs into a host graph H is a colouring of the edges of
H with the colours 0, 1, . . . , k such that the edges of colour i form an isomorphic copy of Gi for each
1 ≤ i ≤ k. Graph packing problems can be considered as a common generalisation of a number of the
most important lines of investigation in Extremal Graph Theory: Turán-type problems, Dirac-type
problems, and Ramsey-type problems.

The focus of this research announcement is on packings of large connected graphs that either
exhaust all (so-called perfect packings) or almost all the edges of the host graph H (so-called near-
perfect packings). Historically the �rst and still the most famous problems in this direction concern
the packing of trees. In 1963 Ringel [9] conjectured that if T is any n + 1-vertex tree, then 2n + 1
copies of T pack into Kn, and in 1976 Gyárfás [5] proposed the Tree Packing Conjecture, stating
that, if Ti is an i-vertex tree for each 1 ≤ i ≤ n, then {T1, . . . , Tn} packs into Kn. Since we have
(2n + 1) · e(T ) =

(
n
2

)
and

∑
e(Ti) =

(
n
2

)
, both conjectures ask for perfect packings. Despite many

partial results (which mostly deal with very restricted classes of trees) both these problems were wide
open until quite recently.

The �rst near-perfect packing result in the direction of these packing conjectures for trees was
obtained by Böttcher, Hladký, Piguet and Taraz [1], who showed that one can pack into Kn any
family of trees whose maximum degree is at most ∆, whose order is at most (1 − δ)n, and whose
total number of edges is at most (1− δ)

(
n
2

)
, provided that n is su�ciently large given the constants

∆ ∈ N and δ > 0. This approximately answers both Ringel's Conjecture and the Tree Packing
Conjecture for bounded degree trees. Various generalisations of this result were obtained in quick
succession. Messuti, Rödl and Schacht [8] showed that one can replace trees with graphs from any
nontrivial minor-closed family (satisfying all other conditions). Then, Ferber, Lee and Mousset [2]
improved on this result by allowing the graphs to be packed to be spanning (but still only providing
a near-perfect packing). Kim, Kühn, Osthus and Tyomkyn [7] proved a near-perfect packing result
for families of graphs with bounded maximum degree which are otherwise unrestricted. Joos, Kim,
Kühn and Osthus [6] solved both Ringel's conjecture and the Tree Packing conjecture for trees of
bounded maximum degree. Relaxing the restriction on the maximum degree, Ferber and Samotij [3]
gave two near-perfect packing results for trees, one for spanning trees, and one for almost spanning
trees. In these results, they allow the maximum degrees to be as big O

(
n1/6/ log6 n

)
, and O

(
n/ log n

)
,

respectively.
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Our new result is a near-perfect packing theorem in the complete graph for spanning graphs with
bounded degeneracy and maximum degrees up to O

(
n/ log n

)
, extending the mentioned packing

results in [1, 2, 3, 7, 8].1 For a graph G, a linear ordering of its vertex set V (G) is D-degenerate if
every vertex has at most D neighbours preceding it (we call these the left-neighbours). The graph G is
D-degenerate if V (G) has a D-degenerate ordering. We remark that such graphs G may be expanding
and may have very high maximum degree.

Theorem 1. For each γ > 0 and each D ∈ N there exist c > 0 and n0 ∈ N such that the following
holds for each n > n0. Suppose that (Gt)t∈[t∗] is a family of D-degenerate graphs, each of which has

at most n vertices and maximum degree at most cn
logn . Suppose further that the total number of edges

of (Gt)t∈[t∗] is at most (1− γ)
(
n
2

)
. Then (Gt)t∈[t∗] packs into Kn.

In the remainder we sketch our proof of Theorem 1. In order to make the presentation of this
sketch more accessible we shall simplify the description of our proof. In particular, the auxiliary
results required to prove Theorem 1 are technically more involved than the ones stated here.

2. Outline of the main idea

We shall call the host graph H; it turns out that it is convenient not to restrict ourselves to
H = Kn but to a more general setting of quasirandom graphs (de�ned below).

The main idea of our proof is as follows. We shall �rst select almost spanning subgraphs G′i of
the graphs Gi in the given family. Then we shall use a random embedding process to embed the
graphs G′i one by one edge-disjointly into the host graph H (deleting any edges of H that we used).
We shall show that this random embedding process with high probability preserves three invariants:
quasirandomness of the host graph, and the diet and cover conditions (de�ned in Section 3). Further,
we prove that, as long as these invariants are satis�ed, the random embedding process can successfully
continue. Finally, we complete the packing of the almost spanning G′i to a packing of the Gi by using
a matching argument.

An n-vertex graph with p
(
n
2

)
edges is (ε,∆)-quasirandom if the common neighbourhood N(S) of

any set S of at most ∆ vertices has size (1± ε)p|S|n. We remark that this notion of quasirandomness
is slightly stronger than the standard notion, in which the neighbourhoods of most, rather than all,
sets S are controlled.

We now state formally under what conditions we can pack the almost-spanning graphs
(
G′t
)
. For

the promised completion to
(
Gt

)
we actually need a slightly stronger statement, which we will sketch

later; however the proof of Theorem 2 already contains all the di�culties.

Theorem 2. For each ν > 0 and each D ∈ N there exist c, ε > 0 and n0 ∈ N such that the following
holds for each n > n0. Suppose that (G′t)t∈[t∗] is a family of t∗ ≤ 2n many D-degenerate graphs,

each of which has at most (1− ν)n vertices and maximum degree at most cn
logn . Suppose that H is a

(ε, 2D+3)-quasirandom graph of order n. Suppose further that the total number of edges of (G′t)t∈[t∗]
is at most e(H)− ν

(
n
2

)
. Then (G′t)t∈[t∗] packs into H.

We outline the proof of Theorem 2 in Section 3. Let us now explain why in Theorem 2 we need
to pack not into Kn but into any quasirandom subgraph of Kn. Suppose that (Gt)t∈[t∗] is a family

as in Theorem 1. We �rst deal with the possibility t∗ > 2n by modifying the family. We remove any
isolated vertices from all graphs in the family, and so we obtain v(Gt) ≤ 2e(Gt) for each t ∈ [t∗].
Now, given Gt1 and Gt2 both of which have at most n/4 edges and hence at most n/2 vertices, we
merge them into a single graph Gt1 tGt2 with at most n vertices. Repeating this procedure until no
further merging is possible, we end up with t∗ graphs each having at least n/4 edges; since the total
number of edges in the family is at most

(
n
2

)
we have t∗ ≤ 2n, as is required in Theorem 2. Any

1While our result extends these results in the setting of complete host graphs, the main focus of [3] is on packing
into random graphs, and [7] provides a general packing result in the setting of the Regularity lemma.
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packing of the modi�ed family (which we still call (Gt)t∈[t∗]) trivially gives a packing of the original

family.
Next, we want to �nd a subgraph G′t ⊆ Gt for each t ∈ [t∗] of order at most (1− ν)n. Theorem 2

gives us a packing of the
(
G′t
)
; we want to choose G′t in order to make it easy to extend this packing

to a packing of the
(
Gt

)
. It turns out to be convenient to �nd an independent set It in Gt, all of

whose vertices have the same degree, and that degree should be at most 2D, and set G′t = Gt − It.
We obtain It with the following simple lemma.

Lemma 3. Let G be a D-degenerate n-vertex graph. Then there exists an integer 0 ≤ d ≤ 2D and a
set I ⊆ V (G) with |I| ≥ (2D + 1)−3n which is independent, and all of whose vertices have the same
degree d in G.

Now Theorem 2 gives a packing of the (G′t) into any n-vertex su�ciently quasirandom graph H
with nearly

(
n
2

)
edges. To complete the derivation of Theorem 1 we need to explain how we choose

H inside Kn and how we complete the packing of the (G′t) to a packing of the (Gt).
We choose H by taking away a random subgraph from Kn, and we let H∗ = Kn −H. We choose

the number of edges in H large enough that Theorem 2 applies, but small enough that H∗ contains
much more than

∑
t∈[t∗] e(Gt) − e(G′t) edges. We apply Theorem 2 to pack the (G′t) into H, and

then for each t ∈ [t∗] we �nd a way to complete the copy of G′t in H to a copy of Gt in Kn using
edges of H∗. The vertices of Gt remaining to embed are an independent set It. Each vertex x ∈ It
has d ≤ 2D neighbours y1, . . . , yd in Gt, which are all in G′t and hence already embedded to vertices
v1, . . . , vd of Kn. Now we complete the embeddings of the Gt, starting with t = 1. For t = 1, we only
allow embedding x to vertices in the candidate set

C(x) :=
{
u ∈ Kn : u 6∈ im(G′t), uv1, . . . , uvd ∈ H∗

}
,

and we simply need to match the vertices of It to the vertices of Kn such that each x is matched to
a vertex of C(x). To see that this matching exists, we need to verify Hall's condition. Part of the
strengthening of Theorem 2 that we need to do this roughly states that the sets C(x) are distributed
in a random-like fashion. It is straightforward to argue from this that Hall's condition holds. Since
all vertices of It have d neighbours, all the sets C(x) have about the same size, which makes this
argument easier.

For t ≥ 2, of course when we want to complete the embedding of Gt we should not use edges of H∗

which were used to complete any of G1, . . . , Gt−1, and the de�nition of C(x) must change accordingly.
The other strengthening of Theorem 2 that we require is that the vertices adjacent to those in It are
embedded to sets distributed in a random-like fashion. This means that during the entire packing
process we will use only a few edges of H∗ at each vertex, and the veri�cation of Hall's condition is
robust enough to allow for such a change.

3. Proof of Theorem 2

In this section we outline the proof of Theorem 2. We will not explain how to obtain the strength-
enings sketched in the previous section that we need for Theorem 1. However, this strengthening
turns out not to require any fundamentally di�erent ideas.

The vertices of the graphs G′t will be always the �rst v(G′t) natural numbers, in a degeneracy order.
We proceed by packing the graphs G′1, . . . , G

′
t∗ one by one in this order and call the randomised

algorithm which embeds the graph G′t RandomEmbedding. The graphs H =: H0 ⊃ H1 ⊃ . . . ⊃ Ht∗

record the host graph edges remaining throughout the process. At a given stage t = 1, . . . , t∗, we
proceed as follows. We need to embed the graph G′t into Ht−1. We embed the vertex 1 into Ht−1
uniformly at random. Having embedded vertices 1, . . . , j − 1 of G′t to Ht−1, we need to embed the
vertex j. We simply pick a valid choice uniformly at random. In other words, we choose uniformly an
image for j from the set of vertices x ∈ V (Ht−1) to which we have not embedded any vertex 1, . . . , j of
G′t, and which are adjacent to all of the embedded left-neighbours of j. If this set is ever empty then
RandomEmbedding fails; if for each stage t ∈ [t∗] and j ∈ V (G′t) it is not empty, then the sequence
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of RandomEmbeddings gives an embedding of each G′t into Ht−1, hence a packing of the
(
G′t
)
into

H. Therefore we need to analyse the evolution of (Ht)t∈[t∗] and the run of RandomEmbedding at
each stage t. In order to analyse the run of RandomEmbedding at stage t, we need Ht−1 to be very
quasirandom; on the other hand, the graph Ht will be a little less quasirandom than Ht−1. We set

αx = C−1 exp
(C(x− 2n)

n

)
for some large constant C. The required quasirandomness for H = H0 is α0; note that this quantity
does not depend on n. Our strategy is to prove that with high probability the sequence of Ran-
domEmbeddings does not fail and each of the graphs Hi is (αi, 2D + 3)-quasirandom. The following
two lemmas are key to the analysis.

Lemma 4. Suppose that an n-vertex graph H is (α, 2D + 3)-quasirandom with p
(
n
2

)
edges for some

small α and p � α. The probability that RandomEmbedding fails when embedding a D-degenerate
graph G of order at most (1− ν)n into H is o(1/n).

Lemma 5. Suppose that we are in the setting described above Lemma 4. As the graphs G′1, G
′
2, . . .

are embedded one by one, for each t the following holds. Provided that Hi is (αi, 2D+3)-quasirandom
for each 0 ≤ i < t and that RandomEmbedding does not fail before the end of stage t, the probability
that Ht−1 fails to be (αt, 2D + 3)-quasirandom is o(1/n).

These two lemmas imply Theorem 2. Indeed, if some RandomEmbedding fails, then there must be a
�rst time t when either RandomEmbedding fails although Ht−1 is quasirandom, or RandomEmbedding
succeeds but the resulting Ht s not quasirandom. Lemmas 4 and 5 respectively state that these two
events have probability o(1/n); taking the union bound over times t, the probability of failure is o(1).

3.1. Sketch of the proof of Lemma 4. Recall that RandomEmbedding fails when it comes to
a vertex j and there is no valid choice of an image for j. Since H is quasirandom, if j has d left-
neighbours then about pdn vertices in H are adjacent to all these embedded left-neighbours, so failure
can only occur if these vertices have been eaten up by the previous embeddings. We show that this
is unlikely; in fact, we show that the following stronger diet condition for each t ∈ V (H) is likely to
hold:

For each S ⊆ V (H) of size at most 2D+3, we have that |N(S)\ im(G[1, . . . , t])| ≈ p|S|(n−t).(3.1)

We �x S and aim to show that S is very unlikely to be a set which witnesses the diet condition failing
at the �rst time (since such an S must exist if the diet condition ever fails). In other words, assuming
the diet condition holds up to time t− 1, we want to show that the sum

t∑
i=1

1
(
i is embedded to N(S)

)
is likely to be about p|S|t. If these Bernoulli random variables were independent, Hoe�ding's inequality
would tell us that the sum is very likely to be close to its expectation. They are not independent, but
nevertheless a martingale version of Hoe�ding's inequality shows that the sum is likely to be close to
the sum of conditional expectations

(3.2)

t∑
i=1

E
[
1
(
i is embedded to N(S)

)∣∣Hi−1
]

=

t∑
i=1

∑
w∈N(S)

P
(
i is embedded to w

∣∣Hi−1
)

where Hi−1 denotes the history, that is, the choices for embedding vertices 1, . . . , i − 1, and the
equality is by linearity of expectation. This sum is itself a random variable, but it turns out to be
easier to control. To avoid a technical complication, let us pretend that each i has exactly d left-
neighbours. Letting κ be a very small constant, for i in the interval j+1, . . . , j+κn there is a chance
to embed i to w each time w is in the candidate set of i; that is, each time that w is adjacent to all
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the embedded neighbours of i. The following cover condition states that this happens about as often
as one would expect:

For each j ∈ V (G) and w ∈ V (H), there are about pdκn vertices among [j+1, j+κn] ⊆ V (G)
which contain w in their candidate set.

(3.3)

For each i in the interval j + 1, . . . , j + κn whose candidate set contains w 6∈ im(G[1, . . . , i− 1]), the
vertex i is embedded to a set of size about pd(n− i+ 1) ≈ pd(n− j) by the diet condition, where the
approximation is since κ is very small. So the probability of embedding i to w is about p−d(n− j)−1.
On the other hand, by the diet condition we have

∣∣N(S) \ im(G[1, . . . , i − 1])
∣∣ ≈ p|S|(n − j), which

gives the number of vertices w contributing to the sum (3.2). Summing up, if the cover condition
holds then the interval j + 1, . . . , j + κn contributes about p|S|κn to the sum (3.2). So the cover
condition holding implies that the whole sum (3.2) comes to about p|S|t, as desired. This means that,
provided the cover condition did not yet fail, the diet condition is unlikely to fail.

We sketch why the cover condition is likely to hold provided the diet condition has not yet failed.
When we embed a vertex i, provided the diet condition did not yet fail, the probability of embedding
it to a neighbour of w is about p. Now a similar application of a martingale Hoe�ding inequality
shows that the probability of a given w and j witnessing the failure of the cover condition, given that
the diet condition did not yet fail, is very small.

Consider the �rst time at which one of the cover and diet conditions fails. Before this time both
hold, so the probability that t is that �rst time is by the above argument very small. Taking the
union bound over t we conclude that with high probability no such �rst time exists, and therefore
RandomEmbedding succeeds, as desired.

3.2. Idea of the proof of Lemma 5. For lack of space, we will not explain any details of the proof
of Lemma 5. We use similar ideas of showing that sums of dependent random variables concentrate
using martingale inequalities. The interesting feature is that, because we allow the G′t to have
vertices of very high degree but (because the G′t are D-degenerate) these must be very few, this
time the random variables we are summing (such as the number of edges removed at a vertex of
Ht−1 to form Ht) have maximum values vastly larger than the expected value. In this situation
Hoe�ding-type inequalities perform very poorly. We use Freedman's inequality [4] to obtain the
desired concentration: this inequality performs better when the variance of each random variable is
much smaller than its maximum value, and gives us the concentration we need.
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