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Abstract

A large-distance graph is a measurable graph whose vertex set is a measurable subset of
Rd, and two vertices are connected by an edge if and only if their distance is larger that 2. We
address questions from extremal graph theory in the setting of large-distance graphs, focusing
in particular on upper-bounds on the measures of vertices and edges ofKr-free large-distance
graphs. For example, one of our main results says that ifA ⊂ R2 is a measurable set such that
the large-distance graph on A does not contain any complete subgraph on three vertices then
the 2-dimensional Lebesgue measure of A is at most 2π.

The results presented in this extended abstract are motivated by the following classical question
from extremal graph theory. Let k ≥ 3 be a given natural number. If we know the number |V |
of vertices in a simple graph G = (V,E), what can we say about the relationship between the
number |E| of edges in G and the number of complete subgraphs on k vertices in G? More
precisely, we are motivated namely by the following two problems.

1. If we know the number |V | of vertices in a graph G(V,E) which does not contain any complete
subgraph on k vertices, what is the optimal upper bound for the number |E| of edges in G?

2. If we know both the number |V | of vertices and the number |E| of edges in a graph G(V,E), what is
the optimal lower bound on the number of complete subgraphs on k vertices in G?

The solution to the first problem was given by Turán in 1941:
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the EPSRC grant EP/N027531/1 and by RVO: 67985840. E-mail: kolar@math.cas.cz
§Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion, Greece. E-mail:

themis.mitsis@gmail.com
¶Institute of Mathematics, Czech Academy of Sciences, Žitna 25, Praha 1, Czech Republic. Research supported by
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Theorem 1 (Turán [12]). Let k ≥ 3 be a fixed natural number. Let G = (V,E) be a graph which does
not contain any complete subgraph on k vertices. Then

|E| ≤ 1

2

(
1− 1

k − 1

)
· |V |2.

The second problem, known as the clique density problem, and first formulated by Lovász and
Simonovits [6] in 1983, turned out to be much more difficult. After Razborov [9] provided a
solution for k = 3 and Nikiforov [8] for k = 4, a complete solution was given by Reiher [10]:

Theorem 2 (Reiher [10]). Let k ≥ 3 be a fixed natural number, and let γ ∈
[
0, 12
)
. Suppose that a

graph G = (V,E) satisfies |E| ≥ γ · |V |2. Then G contains at least

1

(s+ 1)k

(
s+ 1

k

)
(1 + α)k−1 (1− (k − 1)α) · |V |k

complete subgraphs on k vertices, where s ≥ 1 is an integer with γ ∈
[
s−1
2s ,

s
2(s+1)

]
and α ∈

[
0, 1s
]

is

defined by the formula γ = s
2(s+1) (1− α

2).

We shall be interested in certain measure-theoretic counterparts of the two problems mentioned
above. Instead of simple graphs, we consider so called large-distance graphs whose underlying
set is a subset of the Euclidean space Rd for some natural number d, and where two vertices are
connected by an edge whenever they are far apart. This is covered by the following definition.

Definition 1 (Large-distance graphs). Let A be a measurable subset of Rd. Then we define the
large-distance graph GA corresponding to A as follows: The vertex set of GA is the set A. The edge
set EA of GA is defined by

EA = {(p, q) ∈ A×A : ‖p− q‖ > 2}.

Let us emphasize that the precise value of the distance threshold (which is set to 2 in the defini-
tion above) is not important. Only a very simple rescaling would be needed to reformulate all
of our results for any other choice of the distance threshold.

Graphs (finite, or infinite such as here) with edges defined by similar metric conditions arise
naturally in many real-life scenarios. For example, a finite version of large-distance graphs
could be used for planning new train lines. Vertices would be cities and edges would then rep-
resent distant pairs of cities, where a high-speed train line would be desirable. A lot of research
has been done on so-called distance graphs where two points of a subset of Rd are connected
by an edge if and only if their distance equals 1, see e.g. [11]. Recall also that considering the
(d− 1)-dimensional unit sphere Sd−1 in Rd instead of an arbitrary subset A of Rd and changing
the distance threshold in Definition 1 to some α < 2, leads to the so called Borsuk graph (see [7,
p. 30], or [5]).

Similarly to the motivating question from extremal graph theory mentioned above, we ask the
following. Let k ≥ 3 and d ≥ 2 be given natural numbers. If we know the d-dimensional
Lebesgue measure of a set A ⊂ Rd, what can we say about the relationship between the 2d-
dimensional Lebesgue measure of the edge set EA of the large-distance graph GA and the kd-
dimensional Lebesgue measure of all k-tuples of elements of A which induce a complete sub-
graph of GA? That is, the number of edges from the classical problem is replaced by their
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2d-dimensional Lebesgue measure, and the number of complete subgraphs on k vertices is
replaced by their kd-dimensional Lebesgue measure. In a complete analogy to Problems 1
and 2, this suggests the following two problems (here and later, λs denotes the s-dimensional
Lebesgue measure).

1’. Let A be a measurable subset of Rd of a known d-dimensional Lebesgue measure. Suppose that the
large-distance graph GA does not contain any complete subgraph on k vertices (or that the kd-dimensional
Lebesgue measure of all k-tuples of elements of A which induce a complete subgraph of GA is zero). What
is the optimal upper bound on the 2d-dimensional Lebesgue measure of the edge set EA?

2’. Let A be a measurable subset of Rd. Suppose that we know the ratio λd(A)2

λ2d(EA) . What is the optimal
lower bound on the kd-dimensional Lebesgue measure of all k-tuples of elements of A which induce a
complete subgraph of the large-distance graph GA?

Note that for Problem 1’ to make sense, we do not even need to have any knowledge of the
d-dimensional Lebesgue measure of A. This is because each set A satisfying the assumptions
is clearly a subset (up to points belonging to a set of measure zero) of k balls of radius 2, and
so there is an upper bound on the measure of A depending only on the dimension d. This
consideration also shows that, in contrast to the motivating Problem 1 (where the number of
vertices is essential), it is also legit to ask for the maximum d-dimensional Lebesgue measure of
a set A satisfying the assumptions of Problem 1’. That is, we ask the following.

3’. Let A be a measurable subset of Rd. Suppose that the large-distance graph GA does not contain
any complete subgraph on k vertices (or that the kd-dimensional Lebesgue measure of all k-tuples of
elements of A which induce a complete subgraph of GA is zero). What is the optimal upper bound on the
d-dimensional Lebesgue measure of the set A?

Note also that while all the previous problems were nontrivial only for k ≥ 3, Problem 3’ is
interesting even in the easiest case when k = 2. Indeed, the solution of this special case is very
well known as the isodiametric inequality (see [4, Theorem 2.4] or [2, Theorem 11.2.1]):

Theorem 3 (Isodiametric inequality). Let A ⊂ Rd be a measurable set and let diam(A) denote its
diameter. Then

λd(A) ≤
(
diam(A)

2

)d
ωd ,

where ωd denotes the d-dimensional Lebesgue measure of the unit ball in Rd.

By the isodiametric inequality, it immediately follows that for k = 2, the optimal upper bound
for the d-dimensional Lebesgue measure of the set A from Problem 3’ equals ωd.

Problem 1’ has already been considered in [1], where the following result has been obtained.

Theorem 4 ([1]). Let k ≥ 3 be a given natural number. Let A ⊂ Rd be a measurable set such that the
kd-dimensional Lebesgue measure of all k-tuples of elements of A which induce a complete subgraph of
GA is zero. Then the 2d-dimensional Lebesgue measure of the edge set EA is at most

(
1− 1

k−1

)
·λd(A)2.

We reprove this theorem by a different method which also allows us to characterize those sets
for which the inequality reduces to an equality.

Next, we focus on Problem 3’. Unfortunately, we are not able to find a general solution, so we
treat only the simplest case of d = 2 and k = 3. It turns out that the answer to the problem is
very natural and predictable: the optimal upper bound is attained by the disjoint union of two
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unit balls that are far apart. However, the proof is very far from being trivial and contains some
tedious computations. A precise formulation of the result follows.

Theorem 5. Let A ⊂ R2 be a measurable set such that the large-distance graph GA does not contain any
complete subgraph on three vertices. Then the 2-dimensional Lebesgue measure of A is at most 2π.

To prove this theorem, we distinguish three cases depending on the diameter diam(A) of the
set A. The cases where either diam(A) ≤ 2

√
2 or diam(A) ≥ 4 are easy. In the last case where

2
√
2 < diam(A) < 4 we proceed as follows. Suppose, without loss of generality, that A is

compact and find two points p, q ∈ A whose distance realizes the diameter of A. Then A is the
disjoint union of the following three subsets: the set of points from A that are in a distance > 2
from p, the set of points fromA that are in a distance> 2 from q, and the intersection ofA and of
the two balls centered in p and q, respectively, with radius 2. The measure of the intersection of
the two balls centered in p and q, respectively, with radius 2 can be easily computed (it depends
on diam(A), of course). The most difficult part is to obtain upper bounds on the measure of the
set of those points from A that are in a distance > 2 from p (or from q). To this end, we use the
observation that the diameter of such a set is at most 2, and that such a set is contained in an
annulus with inner radius 2 and outer radius diam(A). Then we prove an analogous result to
the isodiametric inequality but with the additional assumption that the set under consideration
is contained in the annulus. Finally, summing all the obtained upper bounds yields the result.
Although we believe that some ideas from our proof could be useful even in the cases k > 3 or
d > 2, we were not able to straightforwardly adapt our argument to this more general setting.
Let us remark that for k = 3 and d ≥ 5, the optimal upper bound in Problem 3’ is, maybe a little
bit surprisingly, strictly larger than the volume of the union of two disjoint unit balls. This can
be easily verified by computing the volume of a ball with radius 2√

3
which clearly satisfies the

assumptions of the problem.

By combining Theorems 4 and 5, we obtain the following result.

Theorem 6. Let A ⊂ R2 be a measurable set such that the large-distance graph GA does not contain any
complete subgraph on three vertices. Then the 4-dimensional Lebesgue measure of the edge set EA is at
most 2π2.

As far as Problem 2’ is concerned, we report the following partial solution.

Theorem 7. Let γ ∈
[
0, 12
]

be given. Suppose that A is a measurable subset of Rd such that the 2d-
dimensional Lebesgue measure of the edge set EA of the large-distance graph GA equals γ · λd(A)2. Then
the 3d-dimensional Lebesgue measure of all triples of elements of A which induce a complete subgraph of
GA is at least 2γ (4γ − 1) · λd(A)3.

Last, let us turn to graphs which are not complete. Recall that the Erdős–Stone Theorem [3]
states that the Turán density of a given graph H with chromatic number k is asymptotically
the same as the Turán density of the complete graph on k vertices. To understand the relation
between the Erdős–Stone-type setting and Turán-setting in large-distance graphs, the following
proposition, based on the Lebesgue density theorem, is central.

Proposition 8. Suppose that H is a graph of chromatic number k and of order n. Suppose that A is a
measurable subset of Rd such that the kd-dimensional Lebesgue measure of all k-tuples of elements of A
which induce a complete subgraph of the large-distance graph GA is positive. Then the the nd-dimensional
Lebesgue measure of all copies of H in GA is positive as well.
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In particular, this implies that the upper bounds in our Problems 1’ and 3’ remain the same if
we replace the complete graph on k vertices by any graph H of chromatic number k (although,
in the general case, we do not know whether the bounds still remain optimal).
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