
Doctoral dissertational thesis

Several Dirac operators in Parabolic
Geometry

Peter Franek

supervisor: prof. RNDr. Vladimı́r Souček, DrSc.
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1. Preface

There are two basic generalizations of the space of holomorphic functions to
higher dimensions. One of them is the notion of holomorphic functions in
several variables, f : R2k ' Ck → C, ∂̄jf = 0 for j = 1, . . . , k.

The second possible generalization deals with functions defined on Rn with
values in the Clifford algebra (a particular generalization of complex num-
bers). The functions in question are solutions of a first order elliptic system
of partial differential equations called Dirac equation, which is a higher di-
mensional analogue of Cauchy-Riemann equations. It is easy to describe the
system in dimension 4 using quaternionic notation (it was done by Fueter
in 30’s). A hyperbolic analogue of the system in dimension 4 was discovered
in theoretical physics by P. Dirac. The (elliptic version of) Dirac equation
has been used extensively in mathematics during the last 40 years (e.g. [3]).
Solutions of the Dirac are often called monogenic functions (or harmonic
spinors). The function theory for them is now known under the name Clif-
ford analysis ([9, 20]). In explicit terms, monogenic functions f are defined
on real Euclidean space Rn with values in the Clifford algebra Cliff(n,R)
(or the space of spinors S) such that Df = 0, where D =

∑

j ej · ∂j is

given by multiplication in the Clifford algebra (or the Clifford multiplica-
tion Rn ⊗ S → S). Monogenic functions have similar nice properties as
holomorphic functions (Cauchy integral formula, theory of residues, ana-
lyticity, maximum principle, unique continuation property, etc.) and they
coincide with usual holomorphic functions on R2 ' C for n = 2 ([28]).

Eigenfunctions of the (hyperbolic version of) the Dirac operator D describe
spin 1/2 particles with mass in relativistic quantum mechanics. As all basic
equations of relativistic physics, it is invariant with respect to the Poincaré
group. Similar nice invariance properties are true also for the elliptic version
of the Dirac equation. In particular, its solutions are invariant with respect
to the group Spin(n). It means that if a function f is monogenic, the same
is true for the function g · f defined by (g · f)(x) = g(f(g−1 · x)) (here Rn

and S are considered as the fundamental defining and fundamental spinor
representation of Spin(n)). Moreover, it turns out that the symmetry group
is much larger then Spin(n). It is a group G which is a double-cover of the
group of all Möbius transformations of Rn. It contains Spin(n) similarly
as the group of Möbius transformations in the plane contains rotations.
This is an analogue of the fact that holomorphic functions are preserved by
conformal transformations.

It is a natural idea to consider monogenic functions of several Clifford vari-
ables, which form a common generalization of the space of holomorphic
functions in several variables and of the space of monogenic functions in
one variable. A monogenic function of several Clifford variables is a func-
tion f : (Rn)k → S, where S is the spinor module over Cliff(n,R) resp.
Cliff(n,C) such that Dif = 0, where Di =

∑

j ej · ∂ij for i = 1, . . . , k (xuv
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are variables on (Rn)k, u = 1, . . . , k, v = 1, . . . , n). The whole system can
be written as Df = 0 where D = (D1, . . . ,Dk), is called Dirac operator in
several Clifford variables.

One important theorem in the theory of holomorphic functions of several
complex variables is the Hartog theorem. It says that not all open sets are
natural domains of definition for holomorphic functions of several complex
variables. There are domains Ω with the property that any function holo-
morphic on Ω can be extended holomorphically to a larger domain. This was
a completely new phenomenon, which is not true for one complex variable.
This property is a consequence of the fact that the Cauchy-Riemann op-
erator D in higher dimensions defines an overdetermined system of PDE’s.
The Hartog type theorems can be systematically studied using a resolution
of D, i.e. the (locally exact) complex of PDE’s starting with the operator
D. This is the Dolbeault sequence, which is nowadays a standard basic part
of the theory of functions of several complex variables.

It can be expected that the Dirac operator in several Clifford variables will
also define an overdetermined system of PDE’s and that Hartog type the-
orem will hold for monogenic functions in several variables as well. As in
the complex case, an adequate tool for a study of such properties of mono-
genic functions in several variables would be an analogue of the Dolbeault
sequence starting with the Dirac operator in several Clifford variables. It is
not an easy task to find such a resolution and its general form is still not
known. However, many special cases of the problem are already understood.

For some reason, the dimension n = 4 is special and an analogy with complex
analysis is stronger than in higher dimensions. The elliptic version of the
Dirac equation in dimension 4 (the Fueter equation) was studied by Fueter
already in 40’s ([26]) and the resolution for it is already well understood for
any number of variables ([38, 4, 2, 1, 37, 42, 10, 19, 11]).

In higher dimensions, the situation is more complicated. In [18], the authors
used Fourier transform and translated the problem into the language of
commutative algebra. Instead of sequences of differential operators, they
were computing the resolution of a module over the ring of polynomials by
using the Hilbert syzygy theorem and Gröbner bases.

The Dirac operator in k variables is invariant with respect to the group
SL(k) × Spin(n) (C is considered to be the trivial and Ck the defining rep-
resentation of SL(k)), similarly as the Dirac operator in one variable is
Spin-invariant. We already mentioned that the usual Dirac operator in one
variable is invariant with respect to a group that is a double-cover of the
group of Möbius transformations. It is shown in this work that a similar
fact is true for the Dirac operator in several variables. It is invariant with
respect to a larger group that contains SL(k) × Spin(n) as its semisimple
subgroup (in a similar way as the group of Möbius transformations contains
SO(n) as it semisimple subgroup).
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While the notion of holomorphic function can be extended to functions
on complex manifolds, the usual Dirac operator can be defined on spin-
manifolds which are manifolds with a given spin structure (see [25]). The
Dirac operator acts not on functions but rather on sections of the associated
spinor bundle over such spin-manifolds. An example of a spin structure on
the sphere is the projection Spin(n+1) → Spin(n+1)/Spin(n). The curved
version (in the Cartan sense) of this are oriented Riemannian manifolds with
a chosen spin structure and the Dirac operator acts between sections of the
vector bundle associated to the spinor representation of Spin(n).

It can be shown that the spin structure on the sphere described above is a
reduction of the bundle G → G/P where G = Spin(n + 1, 1) and P is the
parabolic subgroup fixing a line in the null-cone of the Minkowski metric. If
V and W are two spinor representations of P (it means that we extend the
spinor action of Spin(n) ⊂ P on these modules by a suitable action of the
center of P and let the unipotent part of P act trivially), the Dirac operator
acts between sections of G ×P V and G×P W and is G-invariant (G is the
group of invariance of the Dirac operator mentioned above). The curved
analogues of the homogenous bundle G → G/P are principal P -bundles
G →M over a manifold M called conformal spin structures on M .

This geometric structure on M (together with a Cartan connection ω on
G which is an analogue of the Maurer-Cartan form on G) is an example
of the so called parabolic geometry. These are geometries modeled on a
homogeneous space (G,P ), where G is a semisimple Lie group and P a
parabolic subgroup. The choice of P is equivalent to the choice of a gradation
g = ⊕k

i=−kgi of g. It is well known that conformal geometries and projective
geometries can be described as parabolic geometries with one-graded Lie
algebra g = g−1 ⊕ g0 ⊕ g1, see [31]. The topic was studied in details in e.g.
[40, 39, 32, 33, 43, 24, 17], and many properties of invariant operators on
such manifolds are known ([16, 13]).

The facts indicated above suggest that we may find a suitable parabolic
geometry, which would correspond well to the symmetry of the Dirac oper-
ator in several variables. We show in this thesis that it is indeed possible.
The corresponding couple is the Lie group Spin(n + k, k) and its parabolic
subgroup P having SL(k) × Spin(n) as its Levi factor. If we consider the
SL(k) × Spin(n)-spinors representations V ' C ⊗ S, W ' Ck ⊗ S as irre-
ducible P -modules (choosing a particular action of the center of P ), there
is a unique G-invariant differential operator Γ(G×P V) → Γ(G×P W). Fur-
ther, we show that after suitable local identifications between sections of the
vector bundles and functions on a vector space, this operator really reduces
to the Dirac operator in k variables. Again, it is possible to define an appro-
priate curved version of the operator D and to study properties of solutions
of D on manifolds with a given parabolic structure of type (G,P ). In this
work, we shall not study these questions in a curved situation and restrict
our attention to the homogeneous model.
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Methods used in the thesis are completely algebraic. It is well-known that
there is a duality between invariant differential operators on the flat model
of a parabolic geometry and homomorphisms of so called generalized Verma
modules, which are g-modules dual to the space of infinite jets of sections of
some associated vector bundle:

Mp(V) ' (J∞
eP (Γ(G ×P V∗)))∗

On such modules, the action of g, the Lie algebra of G, is defined naturally
as the derivative of the action of G on sections. More precisely, due to the
transitive action of G, it is possible to reduce the classification of G-invariant
differential operators between sections of homogeneous bundles associated
to P -modules V and W to a classification of P -invariant maps between
infinite jets of sections of the corresponding associated vector bundle at the
origin. The dual P -homomorphism can be always extended to a (g, P )-
homomorphism of the generalized Verma modules Mp(W∗) →Mp(V∗) (and
vice versa).

The theory of generalized Verma modules (further denoted simply by GVM)
was created mostly by Lepowski ([35]) who generalized the results about true
Verma modules of Bernstein-Gelfand-Gelfand and Verma ([5, 6, 44]).

For an irreducible finite dimensional P -module V, there exist only a finite
sequence of homomorphisms of GVM’s starting with Mp(V) and all the
GVM’s in this sequence are induced by highest weights that are linked by the
affine action of the Weyl group W (associated to g). The homomorphisms
of GVM’s that have regular infinitesimal character are quite well understood
([8]). But the homomorphism dual to the Dirac operator in several variables
described above acts between GVM’s that have singular character. The
general theory gives only few tools to deal with this case, but despite this,
we prove the existence of a nonzero homomorphism of GVM’s so that the
dual operator is the Dirac operator in several variables.

All GVM’s with highest weights on a chosen affine orbit and homomorphisms
between them form the BGG graph. In the thesis, the structure of this graph
is described (for the specific singular orbit that contains the homomorphism
dual to the Dirac operator) in case the dimension of the variables is odd. A
conjecture is formulated that, if the dimension n of the variables is even and
n/2 ≥ k, where k is the number of Clifford variables, the BGG graph has
the same form as in the odd case. This implies that the Dirac operator in
k variables is only the first operator in a sequence of G-invariant operators.
For k = 2 (Dirac operator in 2 variables), there are only 2 further operators
in this sequence and their form was found explicitly. It turned out that these
operators were identical with the operators forming a resolution of the Dirac
operator in 2 variables computed in [18]. So, these operators not only form
a resolution but each of them is also G-invariant. After the identifications
between sections of spinor bundles and functions on the flat space, action of
G includes translation (f(x, y) 7→ f(x+ u, y + v)), SL(k) × Spin(n)-action,
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and much more. The invariance of these operators is one of the main results
of this work.

Now we give an overview of the chapters and their content.

The first chapter is the preface.

In the second chapter we give an overview of the ingredients used later. This
includes the highest weight theory, parabolic subalgebras and associated
grading, definition of GVM and the duality between homomorphisms of
GVM’s and invariant differential operators. The only new result is Theorem
2.4.1 that gives a simple tool how to determine the order of an operator dual
to a homomorphism of GVM for first and second order operators. Finally,
the classical Dirac operator on the flat space is introduced.

The third chapter is devoted purely to properties of GVM’s. Results of
Bernstein-Gelfand-Gelfand and Lepowski are presented, partially with com-
prehensive proofs (lemma 3.3.1 and Theorem 3.3.3) and with a slight exten-
sion of Lepowski’s theorem for non-integral weights (Theorem 3.3.4). Fur-
ther, we show that this theorem cannot be generalized to weights of singular
characters. We give a precise definition of singular Hasse graph and BGG
graph and give a conjecture that, in most cases, these graphs coincide.

In the fourth chapter, we choose the pair (G = Spin(n + 1, 1), P ) and par-
ticular weights µ, λ and show the existence of a nonzero homomorphism
between GVM’s induced by P -representations with these highest weights.
We show that this is dual to a differential operator that is, locally, the usual
Dirac operator. Further, we choose the pair (G = Spin(n + k, k), P ) and
particular weights µ, λ and we again show the existence of the homomor-
phism of the GVM’s. We claim that this is dual to the Dirac operator in k
variables. To give a meaning to this, we need to assign to each section of the
spinor bundle a function f on g− and then to restrict the operator to such
sections, so that the corresponding functions do not depend on g−2 and can
be considered as functions of g−1 only.

In the fifth chapter, we compute the affine orbit of the weights µ, λ intro-
duced in chapter four. We show that in case n is even, the structure of the
singular Hasse graph does not depend on n for n/2 ≥ k but becomes larger
for n/2 < k (its form is described in the case k = n/2 + 1). This does not
happen in odd dimension. If n is odd, the BGG graph was computed and its
structure is independent of n. We show that all homomorphisms of GVM’s
in the odd case are standard whereas in the even case the second order ho-
momorphisms are nonstandard, if they exist. The existence of these second
order homomorphisms, however, is not proved in general and it remains as
a conjecture.
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The sixth chapter is devoted to a study of the sequence of GVM’s that
corresponds to k = 2 (Dirac operator in 2 variables). In this case, the
sequence consists of only 3 operators, whereas the second one is nonstandard
and of second order. The existence of the nonstandard operator is proved
by computing the extremal vector. This is a vector in the GVM that is the
image of the highest weight vector in another GVM by the homomorphism in
question. This vector determines the homomorphism uniquely and the only
condition on it is its weight and the fact that it is annihilated by the action
of all positive root spaces in g. Finally, we used the explicit form of this
extremal vector and “translated” the GVM homomorphism into operators.
We found the form of the three operators to be (assigning functions on g−
to sections and restricting to functions constant in g−2)

f 7→
(

D1f

D2f

)

(

g1
g2

)

7→
(

D1D1g2 −D2D1g1
D1D2g2 −D2D2g1

)

(

h1

h2

)

7→ D1h2 −D2h1

where Di =
∑

j ej · ∂ij for i = 1, 2. This coincides with the resolution

computed in [18, pp. 238]. The equation given by the third operator D1h2−
D2h1 = i has solution for any smooth function i so the resolution ends here.
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2. Introduction

2.1. Semisimple Lie algebras. Let g be a (real or complex) semisimple
Lie algebra. We fix a maximal commutative subalgebra h of g called Cartan
subalgebra and a set of positive roots Φ+ for (g, h). Let Φ = Φ+ ∪ −Φ+ be
the set of all roots. The root space gφ corresponding to the root φ is one-
dimensional and consists of elements eφ such that [h, eφ] = φ(h)eφ for each
h ∈ h.

It is well known that, for g semisimple, g = h⊕φ∈Φ gφ. For a fixed (g, h,Φ+),
we define ∆ = {α1, . . . , αn} to be the set of simple roots (basis of h∗ so
that each positive root is an integral combination of αi’s with nonnegative
coefficients).

The Killing form (a, b) 7→ Tr(ad(a)ad(b)) defines a duality between h and h∗.
For each root φ we define the coroot Hφ := 2

(φ,φ)φ ∈ h where we identified φ

with an element of h via the Killing form.

We will call elements of h∗ weights. The fundamental weights $1, . . . ,$n

are elements of h∗ dual to the simple coroots Hα1, . . . ,Hαn . Fundamental
weights form a basis of h∗ and we will sometimes denote weights by its
coefficients in this basis. We define an ordering on the weights by µ ≤ λ
if and only if λ − µ is a sum of positive roots with nonnegative integral
coefficients.

A weight µ ∈ h is said to be dominant, if Hα(µ) ≥ 0 for all α ∈ ∆ and
strictly dominant, if Hα(µ) > 0 for all α ∈ ∆. The set of dominant weights
is sometimes called fundamental Weyl chamber. A weight µ ∈ h is called to
be integral, if Hα(µ) ∈ Z for all α ∈ ∆. We denote by P the set of integral
weights (it is called weight lattice) and by P++ the set of dominant integral
weights. We see that a weight is integral, if it is an integral combination
of fundamental weights and dominant, if it is a nonnegative combination of
fundamental weights.

A representation of g is a vector space V that is a g-module, i.e. there is a
homomorphisms of Lie algebras ϕ : g → gl(V). For a representation V and
µ ∈ h, we define the weight space Vµ of weight µ by

Vµ := {v ∈ V, ∀h ∈ h ϕ(h)(v) = µ(h)v }.

A representation V is called a highest weight module, if it is generated by a
weight vector vµ that is annihilated by all the positive root spaces in g.

The following statements can be found in, e.g. [29, 27, 30]:

For g semisimple, each finite-dimensional representation V of g is a direct
sum of irreducible representations. V is a direct sum of its weight spaces.
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There is a one to one correspondence between isomorphism classes of fi-
nite dimensional irreducible representations and P++. This correspondence
assigns to each µ ∈ P++ an irreducible finite dimensional highest weight
module Vµ with highest weight µ (and all such modules are isomorphic).

For (g, h,Φ+) we define the lowest form δ ∈ h∗ to be δ := 1
2

∑

φ∈Φ+ φ. It is

easy to show that δ =
∑

j $j . For each root φ we define the root reflection

sφ : h∗ → h∗, µ 7→ µ − Hφ(µ)φ (it is a reflection in h∗ with respect to the
hyperplane orthogonal to φ, and the Killing metric). The Weyl group W
is the (finite) group generated by all simple root reflections sα. For any
element w ∈ W , we define the length l(w) to be the minimal number k so
that w = sα1 . . . sαk

for some αj ∈ ∆.

We will be interested mainly in the case when g is the complex orthogonal
Lie algebra so(l, β) consisting of endomorphismsA of Cl such that β(x,Ay)+
β(Ax, y) = 0 for x, y ∈ Cl, β being some non-degenerate symmetric bilinear
form on Cl. This is, clearly, the Lie algebra of the orthogonal Lie group
so(l, β). All such algebras, for different choices of β, are isomorphic, but for

convenient computing, we will choose the form β(x, y) =
∑l

j=1 xjyl+1−j. In

this case, we can describe elements of so(l, β) explicitly.

Let us suppose that l = 2n is even. The Lie algebra has rank n and is
sometimes denoted by Dn. In the formalisms of [29], it consists of matri-
ces of size 2n × 2n, antisymmetric with respect to the anti-diagonal and
the Cartan subalgebra h can be chosen to be the subalgebra of diagonal
matrices. It has dimension n. In this formalism, we introduce the orthog-
onal (with respect to the Killing form) basis {ε1, . . . , εn} of h∗ defined by
εi(diag(a1, . . . , an,−an, . . . ,−a1)) := ai. The positive roots can be chosen
to be εi ± εj, i < j. For n = 3, the matrices have the following form:

















h1 x12 x13 x14 x15 0
y21 h2 x23 x24 0 −x15

y31 y32 h3 0 −x24 −x34

y41 y42 0 −h3 −x23 −x13

y51 0 −y42 −y32 −h2 −x12

0 −y51 −y41 −y31 −y21 −h1

















The matrices with xij = 1 for some i, j and having 0 on other positions are
generators of positive root spaces. Similarly, matrices with yij = 1 and 0
elsewhere are generators of negative root spaces and the matrices with hj = 1
generate the Cartan subalgebra h. Further, we will usually denote by xij
resp. yij the corresponding root space generator and by hj the elements
of h. In the upper left square, the generator of a positive root space xij
corresponds to the root εi−εj and in the upper right square, xij is a generator
of the root space corresponding to the root εi+ ε2n+1−j (in our case, n = 3).
The generator of negative root space for the root −φ is just the transposed
generator of the φ-root space. In the εj-basis, fundamental weights are
$j = [1, . . . , 1, 0, . . . , 0] where the last 1 is on the j-th position for j ≤ n− 2
and $n−1 = 1

2 [1, . . . , 1], $n = 1
2 [1, . . . , 1,−1]. A weight µ = [a1, . . . , an] is

8



dominant exactly if a1 ≥ a2 ≥ . . . ≥ an−1 ≥ |an| and strictly dominant if
strict inequalities hold. The weight µ is integral, if the ai’s are all integers
or all half-integers. The lowest form is δ = [n− 1, n − 2, . . . , 1, 0].

In case l = 2n + 1, the algebra is denoted by Bn and consists of matrices
(2n + 1) × (2n + 1) antisymmetric with respect to the anti-diagonal. The
Cartan subalgebra h can be again chosen to be the subalgebra of diagonal
matrices. It has dimension n. We define the orthogonal basis {ε1, . . . , εn}
of h∗ by εi(diag(a1, . . . , an, 0,−an, . . . ,−a1)) := ai. The positive roots are
then εi ± εj, i < j and εj , 1 ≤ j ≤ n. For n = 3, the matrices have the
following form:





















h1 x12 x13 x14 x15 x16 0
y21 h2 x23 x24 x25 0 −x15

y31 y32 h3 x34 0 −x24 −x34

y41 y42 y43 0 −x34 −x24 −x14

y51 y52 0 −y43 −h3 −x23 −x13

y61 0 −y52 −y42 −y32 −h2 −x12

0 −y61 −y51 −y41 −y31 −y21 −h1





















Similarly as before, the matrices with xij = 1 for some i, j and 0 on other
positions are generators of positive root spaces and matrices with yij = 1
for some i, j and 0 elsewhere are generators of negative root spaces. In
the upper left square, xij corresponds to roots εi − εj. In the upper right
square, xij is a generator of the root spaces corresponding to εi + ε2n+2−j

and in the middle-column, xi,n+1 generate the root space for εi. Generators
of negative root spaces are again just transposed generators of positive root
spaces. In the εj-basis, fundamental weights are $j = [1, . . . , 1, 0, . . . , 0]

where the last 1 is on the j-th position for j ≤ n − 1 and $n = 1
2 [1, . . . , 1].

A weight µ = [a1, . . . , an] is dominant exactly if a1 ≥ a2 ≥ . . . ≥ an−1 ≥
an ≥ 0 and strictly dominant if strict inequalities holds. The weight µ is
integral, if the ai’s are all integers or all half-integers. The lowest form is
δ = 1

2 [2n − 1, . . . , 3, 1].

2.2. Parabolic subalgebras and grading. For the triple (g, h,Φ+) where
g is semisimple, h a Cartan subalgebra and Φ+ the set of positive roots, we
define the Lie algebra n := ⊕φ∈Φ+gφ. In the orthogonal case, choosing h and

Φ+ as above, n consists of strictly upper triangular matrices in g. Further,
we define the Borel subalgebra b := h ⊕ n.

We call any subalgebra p of g a parabolic subalgebra, if it contains b (associ-
ated to some choice of (h,Φ+). In that case, h is also a Cartan subalgebra
of p and Φ+ is a set of positive roots for (p, h) as well (however, p usually
does not contain all negative root spaces of g). It was shown in [14] that
there is a 1− 1 correspondence between parabolic subalgebras of g (by fixed
h,Φ+) and subsets of ∆: to any Σ ⊂ ∆ we assign the parabolic Lie algebra
pΣ :=

∑

φ∈A g−φ⊕ b where A ⊂ Φ+ consists of those positive roots that can
be expressed as a sum of simple roots that are not in Σ. Each parabolic
subalgebra p is of this type. Further, there is a 1−1 correspondence between

9



parabolic subalgebras of g and gradings g = ⊕k
i=−kgi of g. Given Σ ⊂ ∆,

the set gi (i 6= 0) is defined to be ⊕φ∈Ai
gφ, where Ai contains elements

φ =
∑

αj∈∆ cjαj such that
∑

αj∈Σ cj = i, and g0 = h ⊕φ∈A0 gφ. Given a

grading ⊕jgj, the parabolic subalgebra is then p = ⊕j≥0gj.

The set of simple roots ∆ can be described by the Dynkin diagram: it is
a diagram where nodes are simple roots and edges indicate angles between
them, see, e.g. [30].

A parabolic subalgebra can be given by crossing the nodes representing
simple roots in Σ in the Dynkin diagram. For example, the Dynkin diagram
for so(2(k + n),C) with αk crossed (i.e. Σ = {αk})

◦ . . . ◦ × ◦ . . . ◦�◦
�◦

induces a gradation

(2.1) g =





g0 g1 g2

g−1 g0 g1

g−2 g−1 g0





where g0 = gl(k,C) ⊕ so(2n,C), g1 consists of a block of size k × n and its
negative transpose with respect to the anti-diagonal, and g2 is a block of
size k×k (antisymmetric with respect to the anti-diagonal). The associated
parabolic subalgebra is then p = g0 ⊕ g1 ⊕ g2. If k = 1, then g2 = 0 and g

is only 1-graded.

Similarly, in the odd orthogonal case, Σ = {α1} induces a 1-grading of g

and Σ = {αk} induces a 2-grading for k ≥ 2.

For each grading ⊕jgj of g, there is a unique element E ∈ g0 called grading
element defined by the property [E, gj ] = jgj for gj ∈ gj.

Lemma 2.2.1. Let g = so(2(n + k),C), p be the parabolic subalgebra cor-
responding to Σ = {αk} and n ≥ 1. Then the grading element associated to
(g, p) is

E = diag(1, . . . , 1, 0, . . . , 0,−1, . . . ,−1) =





1 0 0
0 0 0
0 0 −1





the diagonal blocks are of size k × k, n× n and k × k.

For g = so(2(k + n) + 1,C), Σ = {αk}, n ≥ 1 the grading element is

E = diag(1, . . . , 1, 0, . . . , 0,−1, . . . ,−1)

(there are k one’s and 2n + 1 zeroes in the expression).

If the parabolic subalgebra is the Borel subalgebra b, then the grading element
corresponding to (g, b) is

Eb = diag(. . . , 5/2, 3/2, 1/2,−1/2,−3/2,−5/2, . . .)
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in the even orthogonal case and

Eb = diag(. . . , 2, 1, 0,−1,−2, . . .)

in the odd orthogonal case.

Proof. In the even 2-graded case, consider the structure of the grading given
by (2.1) and we can verify the condition [E, gj ] = jgj by commuting the
(antisymmetric with respect to the anti-diagonal) matrices. The odd case is
similar. In the even Borel case, the root space Ei,j−E2(n+k)+1−j,2(n+k)+1−i ∈
gj−i for i + j ≤ 2(n + k), i 6= j and the equality [E, gj ] = jgj can be again
easily verified by commuting (Eij is a matrix with a 1 on position (i, j) and
zeros on other positions). �

It can be shown that g0 = gss0 ⊕ z where gss0 is semisimple and z is the
center of g0. Dimension of z is equal to the cardinality of Σ, so in case
Σ = {αk}, z is generated by the grading element. Clearly, h is a Cartan
subalgebra for g0, ∆ − Σ is a set of simple roots and {$j ; αj /∈ Σ} is a set
of fundamental weights for it. Any irreducible representation V of gss0 can
be extended to a representation of g0 letting z act by z · v = ν(z)v where
ν ∈ z∗ is arbitrary. Let µ be any weight of V. The number µ(E) is called
generalized conformal weight (because V is generated, as a g0-module, by
a highest weight vector and E is in the center of g0, this is independent
of the choice of µ). Further, any irreducible g0-module V can be extended
to an irreducible representation of the whole p, letting p+ =

∑

j>0 gj act
trivially. On the other hand, if V is an irreducible representation of p, the
action of p+ must be trivial on it (it follows from Engel’s theorem about
nilpotent Lie algebras), so, finite-dimensional irreducible representations of
p are completely described by the highest weight of V as a g0-module.

Let us denote by Pp the set of weights µ such that Hα(µ) ∈ Z for all
α ∈ ∆ − Σ and call it p-integral weights (or gss0 -integral). We say that a
weight µ is p-dominant (or gss0 -dominant) if Hα(µ) ≥ 0 for all α ∈ ∆ − Σ.
Similarly, we define a strictly p-dominant weight. We denote by P++

p the
set of p-integral and p-dominant weights. Note that Pp is not a lattice, but
it consists of dim(z)-dimensional planes in h∗. A weight is in P++

p exactly if
it is expressed as

∑

j cj$j so that cj is a nonnegative integer for each j such

that αj /∈ Σ. We see that there is a 1− 1 correspondence between P++
p and

the set of isomorphism classes of irreducible finite dimensional p-modules.
Clearly, P++ ⊂ P++

p .

In case so(l,C), we usually express the weights in the εj-basis defined in
2.1. Assume that g = so(2(k + n),C), Σ = {αk} and n ≥ 1. Then a
weight µ = [a1, . . . , ak|b1, . . . , bn] is p-dominant, if a1 ≥ a2 ≥ . . . ≥ ak and
b1 ≥ b2 ≥ . . . ≥ bn−1 ≥ |bn| and p-integral if ai − aj are all integers and
bj are either all integers, or all half-integers. Similarly, in the odd case g =
so(2(k+n)+1,C), Σ = {αk} and n ≥ 1, a weight µ = [a1, . . . , ak|b1, . . . , bn]
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is p-dominant if a1 ≥ . . . ≥ ak and b1 ≥ . . . ≥ bn ≥ 0 and p-integral, if
ai − aj ∈ Z and the bi’s are all integers or all half-integers.

From lemma 2.2.1 it follows that the grading element evaluation is

[a1, . . . , ak|b1, . . . , bn](E) = a1 + . . . + ak.

in even as well as in the odd case.

2.3. True and generalized Verma modules. The representations of any
Lie algebra g are in a natural correspondence with representations of the
associative algebra

U(g) := T (g)/I

where I is the ideal in the tensor algebra generated by all [x, y]−x⊗y−y⊗x.
It is called universal enveloping algebra. The filtration Tk(g) = ⊕k

i=0T
i(g)

projects to a filtration Uk(g) of U(g).

We see from the definition that U(g) is a g-module, if the action of g on U(g)
is the left multiplication, i.e. g · (g1 ⊗ . . .⊗gkmod I) = g⊗g1⊗ . . .⊗gkmod I
and, extending this action, a left U(g)-module. Considering multiplication
from the right, U(g) is a right U(g)-module and for any subalgebra g1 of g,
U(g) is a right U(g1)-module. The right and left actions obviously commute.

The PBW-theorem (see, e.g. [30]) states that for any basis v1, . . . , vn of g,
the set

{vi1 ⊗ vi2 ⊗ . . .⊗ vij mod I; i1 ≤ i2 ≤ . . . ≤ ij , j ∈ N}

is a basis of U(g) (as a vector space).

Assume that g is semisimple and (h,Φ+) is chosen. For any µ ∈ h∗, C can be
given the structure of a b-module, where the action of h is h · v = µ(h)v for
h ∈ h, v ∈ C and the nilpotent algebra n acts trivially. We will denote this
representation by Cµ. We see that Cµ is a left U(b)-module. Further, we
know that U(g) is a right U(b) module and left U(g)-module and that both
actions commute. So, we can define the Verma module to be the g-module

M(µ) := U(g) ⊗U(b) Cµ

If we choose {y1, . . . , yk, h1, . . . , hn, x1, . . . , xk} to be an ordered basis of g so
that yj are generators of the negative root spaces in g, hj generates h and xj
are generators of the positive root spaces in g, it follows easily from the PBW
theorem that, as a vector space (and as g−-module), M(µ) ' U(g−) ⊗ Cµ

where g− :=
∑

φ∈Φ+ g−φ. The tensor product is over the C, resp. R, if g is

a complex, resp. real, Lie algebra. M(µ) is a highest weight module with
highest weight µ and µ-weight vector 1 ⊗ 1. Simple commutation relations
imply that the weight of y1 . . . yk ⊗ 1 is µ − ∑

j root(yj), where root(yj) is
the root to which yj is the root space generator.
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The Verma modules are maximal in the sense that each highest weight
module with highest weight µ is isomorphic to a factor of the Verma module
M(µ), see e.g. [30, 21].

Let p be a parabolic subalgebra of g and µ ∈ P++
p . Then there is an

irreducible representation Vµ of p with highest weight µ and we define the
generalized Verma module

Mp(µ) := U(g) ⊗U(p) Vµ ' U(g−) ⊗ Vµ,

where g− = g−k ⊕ . . . ⊕ g−1 is the negative part of g in the grading corre-
sponding to p, see 2.2. The second tensor product, again, is over C resp. R
for a complex resp. real Lie algebra g. Sometimes we will write Mp(V) for
the generalized Verma module induced by a p-module V.

Mp(µ) is naturally a g-module by the left action of g on U(g). We call
Mp(µ) → Mp(λ) a homomorphism of generalized Verma modules, if it is a
g-homomorphism. If Vµ is a P -module, where P is a Lie group with Lie
algebra p, Mp(µ) is also a (g, P )-module, the action of p ∈ P being

y1 . . . yk ⊗ v 7→ Ad(p)(y1) . . .Ad(p)(yk) ⊗ (p · v).
Mp(µ) is a highest weight module with highest weight µ and µ-weight vector
1 ⊗ vµ, where vµ is the highest weight vector in Vµ. Let us denote the
generators of negative root spaces in g− by yj and the generators of negative
root spaces in g0 by Yk. It follows from the PBW theorem and the fact that
Vµ is generated by vµ that the vectors

(2.2) yi1 . . . yil ⊗ Yj1 . . . Yjsvµ

generates Mp(µ) and, if Yj1 . . . Yjsvµ is nonzero, then (2.2) is a weight vector
of the weight µ − ∑

u root(Yju) − ∑

v root(yiv). However, Yj1 . . . Yjsvµ may
be zero in Vµ, so the generalized Verma modules are in general “smaller”
then (true) Verma modules.

2.4. Invariant differential operators. Let G be a semisimple Lie group
and H a (closed) Lie subgroup. The homogeneous space G/H is a smooth
manifold and the projection π : G → G/H induces a principal fiber bundle
on G/H with structure group H, see, e.g. [39, 14, 34]. To each H-module V
we can associate a vector bundle V (G/H) := G×H V. The equivalence class
of [g, v] ∈ G × V in G ×H V will be denoted by [g, v]H and the projection
G×HV → G/H is given by [g, v]H 7→ gH. There is an isomorphism between
sections Γ(V (G/H)) and H-equivariant functions C∞(G,V)H , i.e. functions
f : G → V such that f(h−1v) = h · f(v) for each h ∈ H. This isomorphism
assigns to a section s ∈ Γ(V (G/H)) the function f so that f(g) is the unique
v ∈ V for that s(gH) = [g, v]H . On the other hand, given an equivariant
function f , we can define the section s by s(gH) = [g, f(g)]H and this
definition is independent of the choice of g.

The group G has a natural left action on the following spaces:
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• on G/H: g1 · gH = g1gH
• on V (G/H): g1 · [g, v]H = [g1g, v]H
• on Γ(V (G/H)): (g1 · s)(gH) = g1 · (s(g−1

1 gH))

• on C∞(G,V)H : (g1 · f)(g) = f(g−1
1 g)

It is easy to verify that the last two actions are compatible with the isomor-
phism Γ(V (G/H)) ' C∞(G,V)H described above.

Let V and W be representations of H and V (G/H) and W (G/H) the as-
sociated vector bundles. A map D : Γ(V (G/H)) → Γ(W (G/H)) is called
an operator. The operator D is called differential of order k, if the value
Ds(x) depends only on s(x) and derivations of s in x up to order k (this
makes sense, because in a neighborhood U of x, the bundle is trivialized to
U × V by some bundle map and the transitions between bundle maps are
C∞). An operator D is called invariant if it commutes with the action of G
on sections. We will deal only with linear invariant differential operators in
this work.

It is easy to see that an invariant operator D is completely determined by
the values Ds(0) on sections, where 0 = eH ∈ G/H is the image of the
identity element of G in G/H. If the operator is of order k, the values
Ds(0) depend only on the k-jet Jk0 s of sections in 0 and the operator is
determined by a H-homomorphism ϕD : Jk0 (V (G/H)) → W , where the
action of H on Jk0 (V (G/H)) is the action on representatives. The operator
acts by Ds(0) = ϕDJ

k
0 (s) and ϕD must be a H-homomorphism because D

is G-invariant and the action of H takes k-jets of sections in 0 to themselves.

The most trivial example is the Euclidean space Rn considered as a homo-
geneous space Euc(n)/SO(n). Let V = R be the trivial representation of
SO(n), then the sections Γ(V (G/H)) are just functions on Rn. Its 1-jets in 0
can be identified with R⊕ (Rn)∗⊗R ' R⊕ (Rn)∗ by f 7→ (f(0), df(0)). The
action of H on 1-jets in 0 implies that (Rn)∗ is the dual defining representa-
tion of SO(n) and we see that the only (nontrivial) H-homomorphisms from
J1

0 to W exists for W = (Rn)∗ and ϕ : R ⊕ (Rn)∗ → (Rn)∗ the projection
onto the second component. The vector bundle associated to (Rn)∗ is the
cotangent bundle and D is the differential.

Let g be the (semisimple) Lie algebra of G. We will call P a parabolic
subgroup of G if it is a Lie subgroup and its Lie algebra p is a parabolic
subalgebra of g. For a parabolic subalgebra p of g, P can be defined ex-
plicitly as the set {p ∈ G,Ad(p)(p) ⊂ p}. We know that each irreducible
finite dimensional representation of P is a representation of p and can be
characterized by its highest weight µ ∈ P++

p . We shall assume that G and
P are real Lie groups and consider smooth sections, not holomorphic. So,
the algebras (g, p) are real as well.
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The space Jk0 (V (G/P )) of sections can be identified with Jke (C∞(G,V))P ,
where e ∈ G is the identity element. It can be shown that this is dual, as
a P -module, to Uk(g)⊗U(p) V∗

λ (Uk(g) is the k-th filtration of U(g)) and the
duality is given by

(2.3) 〈Y1 . . . Yl ⊗U(p) A, j
k
e f〉 = A((LY1 . . . LYl

f)(e))

for l ≤ k, A ∈ V∗
λ, j

k
e f the k-jet of f in e, Yj ∈ g and LYj

the derivation
with respect to the left invariant vector fields induced by Yj.

An invariant differential operator of order k is determined by some P -
homomorphism ϕD : Jke (C∞(G,Vλ))

P → Vµ and, applying (2.3), the dual
map ϕ∗

D : V∗
µ → Uk(g)⊗U(p) V∗

λ. The right side is a P -submodule of Mp(V∗
λ).

Further, each P -homomorphism φ : V∗
µ → Mp(V∗

λ) can be extended to a
(g, P )-homomorphism Mp(V∗

µ) →Mp(V∗
λ) of generalized Verma modules by

y1 . . . yl⊗R v 7→ y1 . . . yl⊗R φ(v) for yj ∈ g−, the action of p on V∗
λ being the

infinitesimal action of P (we identified Mp(ν) ' U(g−) ⊗R Vν).

It follows that there is a duality between invariant linear differential op-
erators D : Γ(G ×P Vµ) → Γ(G ×P Vλ) of any finite order and (g, P )-
homomorphisms of generalized Verma modules Mp(V∗

µ) →Mp(V∗
λ) (see [14]

for details).

Let µ, λ ∈ P++
p and assume that Vµ and Vλ are P -modules, so that the

action of p is the infinitesimal action (for example, if P is simply connected,
this is true for all µ, λ ∈ P++

p ). Then each g-homomorphism Mp(µ) →
Mp(λ) lifts to a (g, P )-homomorphism, defining the action of P in a natural
way by p · (y1 . . . yl ⊗R v) := Ad(y1) . . .Ad(yl) ⊗R p · v.

The following theorem is an important tool for determining the order of an
operator, dual to a homomorphism of generalized Verma modules.

Theorem 2.4.1. Let µ, λ be highest weights of some irreducible finite-
dimensional P -modules Vµ, Vλ and φ : Mp(µ) → Mp(λ) be a nonzero ho-
momorphism of generalized Verma modules. Let E be the grading element
for (g, p) and assume that (λ − µ)(E) ∈ {1, 2}. Then the corresponding
(dual) invariant differential operator Γ(G×P V∗

λ) → Γ(G×P V∗
µ) has degree

(λ− µ)(E).

Proof. Let vµ be the highest weight vector of Vµ. Then φ is completely
determined by φ(1 ⊗ vµ), the image of the highest weight vector in Mp(µ),
because generalized Verma modules are highest weight modules. Define
yj ∈ U(g−) and vj ∈ Vλ so that φ(1⊗vµ) =

∑

j yj⊗vj (this is possible since

Mp(λ) ' U(g−) ⊗ Vλ).
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Let k be the maximal integer such that yi ∈ Uk(g−) for some yi and let
0 6= g0 ∈ U(g0). Then φ maps 1 ⊗ g0 · vµ = g0 ⊗U(p) vµ to

∑

j

g0yj⊗U(p)vj =
∑

j

(yjg0+[g0, yj ])⊗U(p)vj =
∑

j

(yj⊗Rg0 ·vj+[g0, y]⊗Rvj)

because [g0, yj] ∈ U(g−) for g0 ∈ U(g0), yj ∈ U(g−) ([a, b] = ab − ba is the
commutator in the associative algebra U(g)). Simple commutation relations
show that, if yj ∈ Ul(g−) − Ul−1(g−), then [g0, yj ] ∈ Ul(g−) − Ul−1(g−) as
well. This implies that, if k is the smallest integer such that φ maps 1 ⊗ vµ
into Uk(g−)⊗Vµ, then φ maps 1⊗ g0 · vµ into Uk(g−)⊗Vµ as well (but not
to Uk−1(g−)⊗Vλ). Vµ is generated by vµ, so we proved that φ maps 1⊗Vµ

into Uk(g−) ⊗ Vµ.

In particular, for any v ∈ Vµ, φ(1 ⊗R v) =
∑

j ỹj ⊗R ṽj for some ṽj ∈ Vλ,

ỹj ∈ Uk(g−) and ỹi /∈ Uk−1(g−) for some i. Without loss of generality, we

can assume that ỹj = y
(j)
1 . . . y

(j)
l(j) for some y

(j)
u ∈ g−, l(j) ≤ k and l(i) = k.

Applying the duality (2.3), the differential operator D satisfies

v((Df)(0)) =
∑

j

ṽj(Ly(j)1
. . . L

y
(j)
l(j)

(f)(0)),

where L
y
(j)
u

are the left invariant vector fields generated by y
(j)
u ∈ g−. So,

the operator D dual to the homomorphism is of order k.

Let us suppose that the operator has order k, i.e. φ maps 1 ⊗ vµ into
Uk(g−) ⊗ Vλ but not into Uk−1(g−) ⊗ Vλ. Let {y1, . . . yn} be an ordered
basis of g− that consists of generators of negative root spaces in g−.

Let φ(1 ⊗ vµ) =
∑

j ỹj ⊗ vj and assume that all the vj’s are weight vectors

in Vλ and ỹj is a product of the yj’s (it follows from the PBW theorem that
such expression is always possible). Then all ỹj ⊗ vj are weight vectors and,
because their sum is a weight vector of weight µ, each ỹj ⊗ vj is a weight
vector of weight µ as well.

Because φ(1 ⊗ vµ) /∈ Uk−1(g−) ⊗ Vλ, there exists i such that ỹi = yi1 . . . yik
is a product of k elements. Let uj ∈ N be defined by yij ∈ g−uj

. The action
of the grading element on yi1 . . . yik ⊗ vi is

E · (yi1 . . . yik ⊗R vi) = Eyi1 . . . yik ⊗U(p) vi =

= (yi1E + [E, yi1 ])yi2 . . . yik ⊗U(p) vi = . . . =

= yi1 . . . yik(λ(E) − u1 − . . .− uk) ⊗R vi

But yi1 . . . yik ⊗vi is a weight vector of weight µ, so the left hand side equals
µ(E)(yi1 . . . yik ⊗R vi). It follows

(2.4) (λ− µ)(E) =
∑

j

uj ≥ k
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because uj ≥ 1 for all j. So, we see that (λ − µ)(E) is always an integer
larger or equal to the order of the operator.

It follows immediately that (λ − µ)(E) = 1 implies that the operator is of
first order. To finish the proof, it remains to show that for a first order
operator, (λ− µ)(E) is 1 (and not 2).

Assume that D is an operator of first order. This means that φ(1 ⊗ vµ) =
∑

j yj⊗ vj for yj ∈ U1(g−) and again, assume that yj are either constants or
generators of negative root spaces and vi are weight vectors. All the terms
yj ⊗ vj are of weight µ, and therefore,

µ(E)(yj ⊗ vj) = E(yj ⊗ vj) = (λ(E) − [E, yj ])(yj ⊗ vj)

so [E, yj ] = (µ− λ)(E) for all j and it follows that all the yj ’s are from the
same graded components of g. If yj ∈ g−1, so (λ − µ)(E) = 1 and we are
done. Assume, for contradiction, that yj ∈ g−k for k > 1.

Because
∑

j yj⊗vj ∈ g−k⊗Vλ, choosing a basis {ṽ1, . . . , ṽm} of Vλ,
∑

j yj⊗vj
can be uniquely expressed as

∑k
j=1 ỹj ⊗ ṽj for some ỹj ∈ g−k. Because it

is a homomorphic image of a highest weight vector in Mp(µ), it must be
annihilated by all positive root spaces in g, in particular, by any generator
x of a root space in g1:

x · (
∑

j

ỹj ⊗ ṽj) =
∑

j

xỹj ⊗U(p) ṽj = (ỹjx+ [x, ỹj ]) ⊗U(p) ṽj =

=
∑

j

ỹj ⊗U(p) x · ṽj + [x, ỹj] ⊗U(p) ṽj =
∑

j

[x, ỹj ] ⊗ ṽj = 0

because [x, ỹj ] ∈ g−k+1 ⊂ g− and x · ṽλ = 0. Because ṽj forms a basis of
Vµ, it follows that for each j, [x, ỹj] = 0 for all x ∈ g1. The grading must

fulfill that g−1 generates g− and it follows that g1 generates p+ =
∑k

i=1 gi.
The Jacobi identity implies that if ỹj commutes with g1, it commutes with
all the p+ as well. Let ỹj =

∑

i aiy−φi
where y−φi

is a generator of the
−φi-root space. Define x :=

∑

i aixφi
, where xφi

is a generator of the φ-
root space. We see that x ∈ gk and [x, ỹj] =

∑

i a
2
i [xφ, y−φ] 6= 0 because

[xφ, y−ψ] 6= 0 if and only if φ = ψ. So, we obtained a contradiction and
therefore yj ∈ g−1. �

We see that the degree of an operator of first or second order can be recog-
nized immediately by the weights µ, λ.

The operators of first order can be found easily. As we know, they are
determined by P -homomorphism J1

e (V (G/H)) → W, where V and W are
the P -modules inducing the associated vector bundles. As vector spaces,

J1
e (V (G/H)) ' V ⊕ (g∗− ⊗ V)
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if we assign to a any 1-jet in e of f ∈ C∞(G,V)P the pair (v, φ) ∈ V⊕(g∗−⊗V)
defined by v = f(e) and φ(X) = (ω−1Xf)(0) where ω is the Maurer-Cartan
form trivializing the tangent bundle TG.

The action of P on V⊕(g∗−⊗V) was computed explicitly in [40] and it follows
that the action of G0 (as a subgroup of P) on J1

e ' V⊕ (g∗−⊗V) is the usual
action on the sum and product of G0-modules. The tensor product g∗− ⊗ V
decomposes, as a G0-module, into a sum of irreducibleG0-modules F1⊕. . .⊕
Fk so that all irreducible modules in the decomposition have multiplicity one,
see [41]. Therefore, any homomorphism g∗− ⊗ V to an irreducible module F
is a projection onto one of these irreducible components. So, if none of the
F ′
js is isomorphic to V, then there is a direct G0-module decomposition

J1
e (V (G/P )) ' V ⊕ F1 ⊕ . . . ⊕ Fk

and each first order operator from Γ(V (G/H)) to somewhere is determined
by the projection to some Fj (but the opposite statement is not true, the
projections need not to be P -homomorphisms in general).

We will usually consider complex representations of the (real) Lie group P .
If C is the trivial representation, Γ(C(G/P )) is the space of smooth functions
on G/P , so J1

e ' C⊕g∗−⊗RC ' C⊕(p+)c, where (p+)c is the complexification

of the positive part p+ = ⊕k≥1gk. In this case, J1
e ' C ⊕ (p+)c also as P -

module (if the action of P is the adjoint action), so there exists a differential
operator of first order determined by C⊕ (p+)c → (p+)c and it is the unique
G-invariant first order operator acting on functions on G/P . The vector
bundle associated to the complexified adjoint representation (p+)c of P is
the complex cotangent space T ∗(G/P )c and the operator is (up to multiple)
the De Rham differential d, because we know that g · df = d(g · f) for
all diffeomorphisms g, especially for all g ∈ G (it is easy to see that the
action of g on a section is the pullback of the differential form or function
in this case). In the language of generalized Verma modules, the De Rham
differential is dual to a homomorphism Mp((g/p)

c) → Mp(C), where g/p is
the representation of p dual to p+.

2.5. Dirac operator and Clifford algebras. Fix a (positive definite)
metric on Rn, resp. Cn. The real, resp. complex, Clifford algebra Cliff(n,R),
resp. Cliff(n,C), is defined to be the associative algebra generated by 1 and
Rn, resp. Cn, with the relations ei · ej = −ej · ei for i 6= j and ei · ei = −1, ej
being an orthonormal basis of Rn, resp. Cn. The spin group Spin(n), resp.
Spin(n,C) is the multiplicative subgroup generated by all vi ·vj , where vi, vj
are unit vectors. It has a natural action on Rn (resp. Cn) defined by

(v1 · . . . · v2n) · v := v1 · . . . · v2n · v · v2n · . . . · v1 ∈ Cliff

and it is easy to check that the result is again a vector. This action is a rota-
tion for any x ∈ Spin(n) and the vector space Rn, resp. Cn, with this action
is the fundamental defining representation of Spin(n), resp. Spin(n,C). It
can be shown that Spin(n), resp. Spin(n,C), is the unique connected and
simply connected Lie group with Lie algebra so(n), resp. so(n,C) (however,
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if we represent elements in so(n,C) as matrices like in section 2.1, one has to
take the defining condition of Cliff v1 ·v2+v2 ·v1 = 2β(v1, v2) =

∑

vi1v
n+1−i
2 ).

If n is odd, the fundamental spinor representation S of Spin(n,C) can be
realized as a minimal left ideal in Cliff(n,C). If n is even, there exists a
unique minimal left ideal S in Cliff(n,C) that decomposes, as a Spin(n,C)-
module, into two irreducible modules S+ and S− that are the fundamental
spinor so(n,C)-modules with highest weights $n/2−1 and $n/2. These two
representations of so(n,C) are either self-dual (if n/2 is even) or dual to each
other (if n/2 is odd). In both cases (odd and even), S is called the space of
spinors. By restriction, S (resp. S+, S−) are complex representations of the
real Lie group Spin(n) as well. The action of Rn ⊂ Cliff(n,R) ⊂ Cliff(n,C)
on S ⊂ Cliff(n,C) given by left multiplication in Cliff(n,C) is called Clifford
multiplication.

The Dirac operator is defined via Clifford multiplication to be

D : C∞(Rn, S) → C∞(Rn, S), f 7→
∑

j

ej · ∂jf

and is independent of the choice of the orthonormal basis ej.
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3. Homomorphisms of generalized Verma modules

3.1. True Verma module homomorphism. Let W be the Weyl group
of g assuming a fixed choice of h. We define the affine action of W on h to
be w · µ := w(µ + δ) − δ. Usually, we will denote by dot (w · λ) the affine
action and the usual action of W without dot (wλ). The theorem of Harish-
Chandra says that a homomorphism of Verma modules M(µ) → M(λ)
can be nonzero only if µ and λ are on the same affine orbit of W , i.e.
µ = w · λ for some w ∈ W . It is well known (see, e.g. [21, pp. 251]) that
dim(Hom(M(µ),M(λ))) ≤ 1 and that each homomorphism M(µ) → M(λ)
is injective. So, there exists a nonzero homomorphism M(µ) →M(λ) if and
only if M(µ) is isomorphic to a unique submodule of M(λ) isomorphic to
M(µ). We will write simply M(µ) ⊂M(λ) in that case.

We can define the Bruhat ordering on the Weyl group by the relation w ≤ w′,
if there exists a sequence w = w0, w1, . . . , wk = w′ so that wj = sγj

wj−1 for
some positive roots γj and the length l(wj) > l(wj−1). We call Hasse graph
the graph whose vertices are elements of W and there is an arrow w → w′ if
and only if w′ = sγw for some γ and l(w′) = l(w) + 1. It can be shown ([21,
pp. 265]) that for any w ∈ W and γ ∈ Φ either w ≤ sγw or sγw ≤ w, i.e.
the Hasse graph is the minimal partial ordered set of the Bruhat ordering.

Lemma 3.1.1. Let λ̃ ∈ P++, then w ≤ w′ if and only if w′(λ̃+δ) ≤ w(λ̃+δ)

Proof. See, e.g. [36, pp. 117], or [22, pp. 79]. �

Lemma 3.1.2. Let w′ = sγw for some positive root γ and λ be a strictly
dominant weight. Then l(w′) > l(w) if and only if (wλ)(Hγ) > 0 (Hγ is the
γ-coroot).

Proof. Because λ is strictly dominant, it is in the interior of the fundamental
Weyl chamber and wλ is in the interior of another Weyl chamber. Therefore,
sγ(wλ) = wλ − (wλ)(Hγ)γ 6= wλ and (wλ)(Hγ) 6= 0. For λ ∈ P++ + δ, it
follows from the previous lemma that w′ ≥ w if and only if w′λ = wλ −
λ(Hγ)γ ≤ wλ, so wλ(Hγ) is a nonnegative integer. The function f(µ) =
µ(Hγ) defined on the interior of the Weyl chamber containing wP++ is a
continuous nonzero function with positive values on integral weights, so it
has positive values for all µ = wλ, where λ is strictly dominant. �

The following theorem, proved by Bernstein-Gelfand-Gelfand and by Verma
([6, 44]), describes the homomorphisms of Verma modules in terms of their
highest weights:

Theorem 3.1.3. Let µ, λ ∈ h∗ (not necessarily integral). There exists a
nonzero homomorphism of Verma modules M(µ) → M(λ) if and only if
there exists weights λ = λ0, λ1, . . . , λk = µ so that λi+1 = sβi

· λi for some
positive roots βi and (λi + δ)(Hβi

) are nonnegative integers for all i.
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Corollary 3.1.4. Let λ̃ ∈ P++. Then M(w′ · λ̃) ⊂ M(w · λ̃) if and only if
w ≤ w′.

Corollary 3.1.5. For λ̃ ∈ P++, the maximal (proper) submodule of M(λ̃)

is
∑

α∈∆M(sα · λ̃) ⊂M(λ̃).

The following lemma is a useful tool for comparing length of two elements
in W :

Lemma 3.1.6. Let M(µ) ⊂ M(λ), µ = sγ · λ for some positive root γ and
suppose that λ 6= µ. Let Eb be the grading element associated to (g, b). Then
(λ− µ)(Eb) ∈ N.

Proof. Let ⊕jgj be the grading associated to (g, b) and let Xγ be the γ-
root space generator. In this grading, all the positive root spaces are in
b+, so Xγ ∈ gi for some i > 0. The defining equation for Eb implies
[Eb,Xγ ] = iXγ = γ(Eb)Xγ , so γ(Eb) = i. We obtain

µ(Eb) = (sγ(λ+ δ) − δ)(Eb) = (λ+ δ − (λ+ δ)(Hγ)γ − δ)(Eb) =

= λ(Eb) − i(λ+ δ)(Hγ)

We know from Theorem 3.1.3 that (λ + δ)(Hγ) is a nonnegative integer. If
(λ+ δ)(Hγ) = 0, then λ = µ contradicts the assumption. Therefore, both i
and (λ+ δ)(Hγ) are positive integers and (λ− µ)(Eb) ∈ N. �

So, to construct the Hasse graph, we can find the Weyl group orbit of δ and
for any two elements µ, λ on it such that w′δ = sγwδ, we can determine
whether w′δ ≥ wδ (i.e. w ≤ w′) or wδ ≥ w′δ (i.e. w′ ≤ w). In such a way,
we construct the Bruhat ordering.

The following theorem describes the Jordan-Hölder series for Verma mod-
ules:

Theorem 3.1.7. Let 0 ⊂ A ⊂ B ⊂ M(λ) be g-submodules and let B/A =
L(µ) be an irreducible module with highest weight µ. Then M(µ) ⊂M(λ).

Proof. See, [21, pp. 262]. �

Corollary 3.1.8. Let Vµ, resp. Vλ, be highest weight g-modules with highest
weights µ, resp. λ, and let Vµ be a submodule of Vλ. Then M(µ) ⊂M(λ).

Proof. Let I be the ideal in M(λ) so that M(λ)/I ' Vλ and let π :
M(λ) → M(λ)/I be the projection. Identifying Vµ with a submodule
of M(λ)/I, define B := π−1(Vµ). Then 0 ⊂ I ⊂ B ⊂ M(λ) is a se-
quence of g-submodules with B/I ' Vµ. Because Vµ is a highest weight
module, take J to be the maximal non-trivial submodule of B/I so that
(B/I)/J ' L(µ) is irreducible with highest weight µ. Take A := π−1(J).
Then L(µ) ' (B/I)/(A/I) ' (B/A). So, 0 ⊂ A ⊂ B ⊂ M(λ) is a sequence
of g-submodules and we can apply Theorem 3.1.7. �
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3.2. Parabolic Hasse graph. Let p be a parabolic subgroup of g, we de-
note by Wp the Weyl group of p. It is the subgroup of W generated by the
“uncrossed” simple roots, i.e. simple roots with root spaces contained in g0

in the associated grading, see section 2.2. Denote the set of these simple
roots by S, i.e. S = ∆ − Σ.

Let us denote by W p the subset of W consisting of those w ∈W so that wλ̃
is p-dominant for each g-dominant weight λ̃. It is shown in [7, pp. 40] that
any w ∈ W can be uniquely decomposed w = wpw

p where wp ∈ Wp and
wp ∈ W p and the length l(w) = l(wp) + l(wp). A special case of this is the
following lemma that we will use later:

Lemma 3.2.1. Let w ∈ W p, α ∈ S. Then sαw /∈ W p and l(sαw) =
l(w) + 1.

The following statement shows that the Bruhat ordering is reasonable de-
fined on W p:

Lemma 3.2.2. Let w,w′ ∈W p, and w ≤ w′ in the Bruhat ordering. Then
there is a path w → w1 → . . . → wk = w′ in the Hasse diagram so that all
the elements wj ∈W p.

Proof. [7, pp. 45] �

We define the parabolic Hasse graph to be the set W p of vertices with arrows
w → w′ if and only w → w′ in W . The lemma 3.2.2 says that the Bruhat
ordering on W induces the Bruhat ordering on W p.

The following lemma is a tool for comparing length of two elements in W p:

Lemma 3.2.3. Let E be the grading element for the pair (g, p) and let
w,w′ ∈ W p, w′ = sγw and l(w′) > l(w). Then wδ(E) and w′δ(E) are
integers or half-integers and wδ(E) − w′δ(E) ∈ N.

Proof. Let ⊕jgj be the grading associated to (g, p). It follows from lemma
3.2.1 that γ /∈ S, so the γ-root space generator Xγ ∈ gi for some i >
0 and this implies γ(E) = i ∈ N. We obtain w′δ(E) = (sγwδ)(E) =
(wδ − wδ(Hγ)γ)(E) = wδ(E) − iwδ(Hγ). Using lemma 3.1.2, we see that
wδ(Hγ) > 0. Recall that δ =

∑

j $j is integral and so is wδ for any w ∈W .

Therefore, wδ(Hγ) ∈ N and wδ(E) − w′δ(E) = iwδ(Hγ) ∈ N.

To show the half-integrality, recall that δ = 1/2
∑

β∈Φ+ β and wδ(E) =

1/2
∑

(wβ)(E). For any root β, wβ is a root as well and wβ(E) is integral.
�
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So, one way how to construct the parabolic Hasse graph is to find all p-
dominant weights on the Weyl orbit of δ and for any w′δ = sγwδ, one may
use the last lemma to determine whether w′ ≥ w or w ≥ w′.

3.3. Standard and nonstandard homomorphism. Let g be a semisim-
ple Lie algebra and p a parabolic subalgebra. Assume, as before, that
S = ∆ − Σ is the set of uncrossed nodes, i.e. S ⊂ ∆, α ∈ S ⇔ Yα ∈ p

where Yα is the generator of the (−α)-root space. We know from 2.3 that
for µ ∈ P++

p , Mp(µ) is a highest weight module with highest weight µ and
therefore

Mp(µ) = M(µ)/Kµ

for some submodule Kµ of M(µ).

It follows from 3.1.3 that for µ ∈ P++
p and α ∈ S, M(sα · µ) ⊂ M(µ) and

the following lemma makes sense:

Lemma 3.3.1. The kernel of the projection M(µ) → Mp(µ) is Kµ =
∑

α∈SM(sα · µ) (the sum of vector subspaces in M(µ)).

Proof. Let {yi} be a basis of g− and {Yj} be the set of generators of neg-
ative root spaces in g0. Because M(µ) → M(µ)/Kµ ' Mp(µ) is a g-
homomorphism that maps 1 ⊗ 1 to 1 ⊗ v, where v ∈ Vµ is the highest
weight vector in Vµ, it follows that the projection is given by

y1 . . . ykY1 . . . Yl ⊗ 1 7→ y1 . . . yk ⊗ (Y1 . . . Ylv)

The right side is zero if and only if Y1 . . . Ylv is zero in Vµ.

The p-module Vµ is an irreducible gss0 -module, so it is a factor of the Verma
module: Vµ ' Mgss

0
(µ)/K ′ where Mgss

0
(µ) is the (true) Verma module for

the Lie algebra gss0 and K ′ is a maximal submodule of Mgss
0

(µ). S is the
set of simple roots for gss0 , so it follows from corollary 3.1.5 that K ′ =
∑

α∈SMgss
0

(sα · µ). Using elementary representation theory, we obtain that

Mgss
0

(sα ·µ) is a submodule of Mgss
0

(µ) generated by Y
µ(Hα)+1
α ⊗ 1 where Yα

is the generator of the root space of root −α. The projection Mgss
0

(µ) → Vµ

is given by Y1 . . . Yl ⊗ 1 7→ Y1 . . . Ylv. Therefore, a vector Y1 . . . Ylv is zero in
Vµ if and only if Y1 . . . Yl ∈ U(g0) can be written down as a sum of vectors

of type Y ′
1 . . . Y

′
mY

µ(Hα)+1
α , summing over α ∈ S. So, as a g−-module, Kµ is

generated by the vectors Y
µ(Hα)+1
α ⊗ 1 what is the highest weight vector of

M(sα · µ) ⊂M(µ). �

Let µ, λ be p-dominant and M(µ) ⊂M(λ). It follows from lemma 3.2.1 that
for α ∈ S M(sα · µ) ⊂ M(µ) and M(sα · λ) ⊂ M(λ). This implies ([21, pp.
252]) that M(sα · µ) ⊂M(sα · λ) and, consequently, Kµ ⊂ Kλ (representing
both as submodules of M(λ)). Therefore, for any µ, λ ∈ P++

p and a homo-
morphism i : M(µ) → M(λ) there is a well defined factor homomorphism
of generalized Verma modules ĩ : Mp(µ) →Mp(λ).
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Definition 3.3.2. Generalized Verma module homomorphisms that are fac-
tors of true Verma module homomorphisms are called standard.

Standard homomorphisms are in general not injective, but a standard ho-
momorphism Mp(µ) →Mp(λ) is unique up to multiple.

Theorem 3.3.3. Let µ, λ ∈ P++
p , i : M(µ) → M(λ) be a homomorphism

of Verma modules. Then the standard homomorphism Mp(µ) → Mp(λ) is
zero if and only if there exists α ∈ S so that i(M(µ)) ⊂M(sα · λ).

Proof. If M(µ) ⊂M(sα ·λ) for some α ∈ S, it follows from lemma 3.3.1 that
the standard homomorphism is zero. On the other hand, suppose that the
standard homomorphism Mp(µ) → Mp(λ) is zero. Lemma 3.3.1 says that

M(µ) ⊂ ∑l
j=1M(sαj

·λ) where α1, . . . , αl are the simple roots in S. Choose i

to be so that M(µ) ⊂ ∑i
j=1M(sλj

·λ) =: B but M(µ) "
∑i−1

j=1M(sαj
·λ) =:

A. The module B/A is a highest weight module with highest weight sαi
· λ,

because M(sαi
·λ) is such. Let vµ be the generator of M(µ) in M(λ) (it is a

weight vector of weight µ) and let π : B → B/A be the projection. Because
M(µ) ⊂ B, M(µ) " A, π(vµ) 6= 0 in B/A and it generates some highest
weight module Vµ ⊂ B/A with highest weight µ. Applying corollary 3.1.8
we obtain M(µ) ⊂M(sαi

· λ). �

Theorem 3.3.4. Let λ̃+δ be strictly dominant, w,w′ ∈W p, w → w′ in the
parabolic Hasse graph for (g, p) and assume that w ·λ̃, w′ ·λ̃ ∈ P++

p . Further,

let M(w′ · λ̃) ⊂ M(w · λ̃). Then the standard map Mp(w
′ · λ̃) → Mp(w · λ̃)

is nonzero.

Remark 3.3.5. In [35], the theorem is given only for λ̃ ∈ P++ but the

proof works for non-integral λ̃ as well. Note, that for non-integral (and not

p-dominant) λ̃, w · λ̃ may still be p-dominant and p-integral.

Proof. Assume that the standard homomorphism is zero. Then it maps
M(w′ · λ̃) into Kw·λ̃ =

∑

α∈SM(sαw · λ̃)). Lemma 3.3.3 states that this

happens exactly if there exists α ∈ S so that M(w′ · λ̃) ⊂ M(sαw · λ̃). In
such case, it follows from Theorem 3.1.3 that there is sequence of submodules

M(sαw · λ̃) ⊃M(sγ1sαw · λ̃) ⊃ . . . ⊃M(sγj
. . . sγ1sαw · λ̃) = M(w′ · λ̃)

and (sγi−1 . . . sγ1sαw · λ̃)(Hγi
) ∈ N. It follows from lemma 3.1.2 that

sγj
. . . sγ1sαw ≥ sαw

in the Weyl group. Because λ̃ + δ is strictly dominant (not in the interior

of the fundamental Weyl chamber) the equality w1 · λ̃ = w2 · λ̃ implies
w1 = w2, especially w′ = sγj

. . . sγ1sαw. So, w′ ≥ sαw. Clearly, w′ 6= sαw
and so l(w′) > l(sαw). This contradicts l(w′) = l(w) + 1 = l(sαw) (lemma
3.2.1). �
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In most cases, the assumption M(w′ · λ̃) ⊂M(w · λ̃) is superfluous. For this

to be satisfied, it suffices to show (w · λ̃)(Hγ) ∈ N, where γ is the root so

that w′ = sγw. Suppose that w · λ̃ and w′ · λ̃ are both p-dominant. Then

for any α ∈ S (w′ · λ̃)(Hα) = (w · λ̃)(Hα) − (w · λ̃)(Hγ)γ(Hα) ∈ N. The

first term (w · λ̃)(Hα) is integral and to show that (w · λ̃)(Hγ) is integral as
well, it suffices to show that there exists α ∈ S such that γ(Hα) ∈ {−1, 0, 1}
(note that γ /∈ S because sγ /∈ Wp). In the orthogonal Lie algebras, this is
always satisfied except the case g = Bn, S = {αn}. Our cases of interest will
be mainly the algebras Bn and Dn with parabolic subalgebras determined
by Σ = {αk}, i.e. S = ∆ − {αk} (so, we should be careful in the case
g = B2,Σ = {α1}).

If λ̃ + δ is on the wall of the fundamental Weyl chamber, we say that the
Verma modules M(w · λ̃) have singular character. Unfortunately, Theorem
3.3.4 cannot be generalized to this case. We will give a counterexample
here. Let us consider g = B4, Σ = {α2}. We will represent elements of
the Weyl group w by the weight wδ. Let wδ = 1

2 [3,−1|7, 5] and w′δ =

(sγw)δ = 1
2 [1,−3|7, 5] (γ = [1, 1|0, 0]). The grading element evaluation is

wδ(E) = 3/2 − 1/2 = 1 and w′δ(E) = 1/2 − 3/2 = −1. They are both
strictly p-dominant, so w,w′ ∈W p. The grading element evaluation w̃δ(E)
cannot be 0 for any w̃ ∈W p in this case, so it follows from lemma 3.2.2 and
Theorem 3.2.3 that l(w′) = l(w) + 1. Let w′′ = 1

2 [−1,−3|7, 5]. We see that
w′′ = sβw

′ for β = [1, 0|0, 0] and similarly we can show that l(w′′) = l(w′)+1.
Choosing α = α1 = [1,−1|0, 0] and using lemma 3.2.1, we see that the full
Hasse graph of g contains the following square (η = [0, 1|0, 0]):

1
2 [−1,−3|7, 5] = w′′δ

βη

1
2 [−1, 3|7, 5] 1

2 [1,−3|7, 5] = w′δ

γα

1
2 [3,−1|7, 5] = wδ

Now let as choose a singular weight λ̃ + δ = [3, 2|1, 0]. Then w(λ̃ + δ) =

[1, 0|3, 2] and w′(λ̃+ δ) = [0,−1|3, 2] are both strictly p-dominant. But the

sβ fixes w′(λ̃+ δ) and so w′(λ̃+ δ) = w′′(λ̃+ δ):
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[0,−1|3, 2] = w′′(λ̃+ δ) = w′(λ̃+ δ)

βη

[0, 1|3, 2] [0,−1|3, 2] = w′(λ̃+ δ)

γα

[1, 0|3, 2] = w(λ̃+ δ)

Using Theorem 3.1.3 we see that there exists a homomorphism of true Verma
modules M(w′ · λ̃) → M(w · λ̃) (note that (w · λ̃)(Hγ) = 1). Similarly, we

see that M(w′ · λ̃) = M(w′′ · λ̃) ⊂M(sαw · λ̃) and, applying Theorem 3.3.3,

the standard homomorphism of generalized Verma modules Mp(w
′ · λ̃) →

Mp(w · λ̃) is zero.

However, there are indications that in such cases there still exists a homo-
morphism Mp(w

′ · λ̃) →Mp(w · λ̃) but it is not standard. We can state the
following conjecture, which holds in the known cases:

Conjecture 3.3.6. Let w → w′ in W p, M(w′ · λ̃) ⊂M(w · λ̃), w · λ̃, w′ · λ̃ ∈
P++

p . Then there exist a (standard or nonstandard) nonzero homomorphism

Mp(w
′ · λ̃) →Mp(w · λ̃).

3.4. BGG graph.

Definition 3.4.1. Let g be a semisimple Lie algebra, p a parabolic subalge-
bra, λ ∈ h∗. We will define the BGG graph for (g, p, λ) as an oriented graph,
where the vertices are p-dominant and p-integral weights on the affine Weyl
orbit of λ and there is an arrow µ→ ν if and only if the following conditions
are satisfied:

(1) There exists a nonzero homomorphism Mp(ν) →Mp(µ)
(2) If there exist nontrivial homomorphisms

Mp(ν) = Mp(ξ0) →Mp(ξ1) → . . .→Mp(ξj−1) →Mp(ξj) = Mp(µ)

then j = 1 (by nontrivial we mean that they are nonzero and ξi 6=
ξi+1).

We know from section 2.4 that an arrow µ→ ν in the BGG graph describes
an invariant differential operator acting between sections of associated vector
bundles, induced by representations dual to Vµ, Vν .

Theorem 3.4.2. If λ̃ ∈ P++ (in other words, λ̃+ δ is integral and strictly

dominant), then the BGG graph associated to (g, p, λ̃) is isomorphic, as a
graph, to the Hasse graph for (g, p).
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Proof. First, note that for λ̃ ∈ P++, λ̃+δ is in the interior of the fundamental
Weyl chamber and the map w ∈W p 7→ w · λ̃ is a bijection from W p onto the
set of p-dominant weights on the affine Weyl orbit of λ̃. All these weights
are integral. We will show that it is an isomorphism of the Hasse graph and
the BGG graph as well.

Let λ̃ ∈ P++ and w → w′ in the Hasse graph for (g, p). Then µ := w · λ̃
and ν := w′ · λ̃ are both p-dominant and theorem 3.3.4 states that there
is a nonzero standard homomorphism Mp(ν) → Mp(µ). Assume that there
exist nonzero nontrivial homomorphisms fi : Mp(ξi) → Mp(ξi+1) for i =
0, . . . , j − 1, ξ0 = ν, ξj = µ. Let vξi be the highest weight vector in Vξi .
Then 1 ⊗ vξi is the highest weight vector in Mp(ξi) and fi(1 ⊗ vξi) is a
weight vector in Mp(ξi+1) of weight ξi. Because Mp(ξi+1) is a highest weight
module, it is easy to see that each weight vector of weight β fulfills β ≤ ξi+1.

Especially, ξi ≤ ξi+1. Because λ̃ ∈ P++, there exist a unique wi such that

ξi = wi · λ̃. The inequality wi · λ̃ ≤ wi+1 · λ̃ implies wi ≥ wi+1 in the
Bruhat ordering (lemma 3.1.1). Because ξi 6= ξi+1, we get wi 6= wi+1 and
w′ > w1 > . . . > wj = w. The assumption w → w′ implies j = 1. So, both

conditions (1) and (2) are satisfied and there is an arrow w · λ̃ → w′ · λ̃ in
the BGG graph.

Assume, on the other side, that there is an arrow ν → µ in the BGG
graph. Let w,w′ ∈ W p be the unique elements so that µ = w · λ̃ and
ν = w′ · λ̃. Because there is a nonzero homomorphism Mp(ν) → Mp(µ),
we again observe that ν ≤ λ and using 3.1.1, we see that w ≤ w′. If
l(w′) = l(w) + 1, then w → w′ and we are done. Assume, for contradiction,
that l(w′) > l(w) + 1. We know from lemma 3.2.2 that there exist wj ∈W p

such that w = w0 → w1 → . . . wj = w′. Choosing the weighs ξi = wi · λ̃, we
have

M(ν) = M(ξ0) ( M(ξ1) ( . . . ( M(ξj) = M(µ),

j > 1. Theorem 3.3.4 implies that there are nonzero standard homomor-
phism of generalized Verma modules Mp(ξi) → Mp(ξi+1) for all i and we
obtain, from the definition of singular Hasse graph that j = 1 what contra-
dicts j > 1.

So, we proved that w → w′ in W p if and only if w · λ̃ → w′ · λ̃ in the BGG
graph. �

Definition 3.4.3. The singular Hasse graph for (g, p, λ) is a graph where
vertices are p-dominant and p-integral weights on the affine Weyl orbit of λ
and there is an arrow µ → ν if there exist w,w′ ∈ W p so that µ = w · λ̃,
ν = w′ · λ̃ and w → w′ in W p (λ̃+ δ is some g-dominant weight on the orbit
of λ+ δ).

In the regular case (λ̃ ∈ P++), the singular Hasse graph is clearly isomorphic
to the Hasse graph. Usually, we assume that λ has singular character (i.e. its
affine Weyl orbit does not contain any g-dominant weight) when we consider
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the singular Hasse graph. If λ̃ + δ is on the wall of the fundamental Weyl
chamber, then the weight µ on the affine orbit of λ does not determine a
unique w such that µ = w · λ̃. The conjecture 3.3.6 says that the singular
Hasse graph is a subgraph of the BGG graph.

We will give an example of singular Hasse and BGG graph computation that
will turn out to be important later. Let g = D4 = so(8,C) and Σ = {α1}
(in the language of Dynkin diagrams, p ' × ◦�◦

�◦, i.e. p consists of the

Cartan subalgebra and those root spaces, the determining roots of which
could be written as a linear combination of simple roots having nonnegative
coefficient in the first simple root α1).

Let us compute the Hasse graph for (g, p). If we represent a Weyl group
element w ∈ W p by the weight wδ, we know that W p consists exactly of
elements w ∈ W such that wδ is strictly p-dominant. In this case, δ =
[3|2, 1, 0] and a weight [a|b1, b2, b3] is strictly p-dominant if and only if b1 >
b2 > |b3|. It follows from lemma 2.2.1 that the grading element evaluation
is [a|b1, b2, b3](E) = a. We state that (if we identify w ∼ wδ) the regular
Hasse graph for (g, p) has the following form:

•[−3|2, 1, 0]

•[−2|3, 1, 0]

•[−1|3, 2, 0]

•[0|3, 2,−1]•[0|3, 2, 1]

•[1|3, 2, 0]

•[2|3, 1, 0]

•[3|2, 1, 0]

We see that each arrow in this graph corresponds to a root reflection.
Moreover, the grading element evaluation decreases by one in each arrow
wδ → w′δ in this graph, so it follows from lemma 3.2.3 that l(w′) = l(w)+1.
These are all strictly p-dominant weights on the Weyl orbit of δ, so we con-
structed the regular Hasse graph for (g, p).

For any λ̃ ∈ P++, the same graph with opposite arrows describes the struc-
ture of standard homomorphisms of generalized Verma modules on the affine
orbit of λ̃.
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Further, let as consider a weight λ̃ :=
0× 0◦�◦ −1

�◦ 0
= 1

2 [−1| − 1,−1, 1]. Then

λ̃+ δ =
1× 1◦�◦ 0

�◦ 1
= 1

2 [5|3, 1, 1] is on the wall of fundamental Weyl chamber,

so it has a singular affine orbit.

The W p-orbit of λ̃+ δ has the following form:

×1
2 [−5|3, 1,−1]

×1
2 [−3|5, 1,−1]

•

•

= 1
2 [−1|5, 3,−1]

•

•
= 1

2 [1|5, 3, 1]

×1
2 [3|5, 1, 1]

×1
2 [5|3, 1, 1]

The crosses × correspond to weights that are not strictly p-dominant, so, af-
ter subtracting δ, the weights are not p-dominant and there are no associated
generalized Verma modules for them. The nodes • are strictly p-dominant
and the encircled weights coincide in this case.

We see a general fact that the affine orbit of a singular weight λ̃ (i.e. λ̃+ δ
is on the wall of the fundamental Weyl chamber) is smaller than the regu-
lar one: some weights are “glued together” and some are not p-dominant.
In our case, the only p-dominant weights on the affine Weyl orbit of λ̃

are λ =
−3× 0◦�◦ 0

�◦ 1
= 1

2 [1|5, 3, 1] − δ = 1
2 [−5|1, 1, 1] and µ =

−4× 0◦�◦ 1

�◦ 0
=

1
2 [−1|5, 3,−1] − δ = 1

2 [−7|1, 1,−1]. We see immediately from the last dia-
gram that the singular Hasse graph is λ→ µ in this case.

We will show that the standard homomorphism Mp(µ) →Mp(λ) is nonzero.
If it is zero, then lemma 3.3.3 says thatM(µ) ⊂M(sα·λ) for some α ∈ S. So,
there is a sequence M(µ) = M(µ0) ⊂M(µ1) ⊂ . . . ⊂M(µk) = M(sα · λ) ⊂
M(λ), the weights µj are increasing and connected by affine root reflections.

Let j be the largest number such that µ0 + δ, . . . , µj + δ have −1
2 on the first

position. So, µ0 + δ, . . . , µj + δ contain a sign-permutation of 1
2{5, 3, 1} on

the 2–4 positions. If j > 0, M(µ) = M(wp · µj) for wp ∈ Wp and µj + δ =
w−1
p (µ+δ). For the p-dominant weight µ+δ, µ+δ ≥ w−1

p (µ+δ) = µj+δ for
any wp ∈ Wp, but this contradicts the condition µ ≤ µj . Therefore, j = 0
and (µ1 + δ)(E) = −1

2 + k for some k ∈ N (lemma 3.2.3). The inequality
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µk+δ ≥ µ1+δ implies 1
2 = (µk+δ)(E) ≥ (µ1+δ)(E) = −1

2 +k. This implies

k = 1 and (µ1+δ)(E) = 1
2 . Therefore, µ1+δ has 1

2 on the first position. The

only possible root reflection sγ such that sγ(
1
2 [−1|5, 3,−1]) = 1

2 [1|something]
is clearly γ = [1, 0, 0, 1] and sγ(µ + δ) = µ1 + δ = λ + δ. This contradicts
M(µ1) ⊂M(sα · λ).

We showed that the standard map Mp(µ) →Mp(λ) is nonzero and the BGG
graph for (g, p, λ) is λ→ µ as well.
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4. Dirac operator in orthogonal parabolic geometry

4.1. Singular orbit of a particular weight. We will generalize the ex-
ample given at the end of chapter 3.

Lemma 4.1.1. Let g = Dn+1 = so(2n + 2,C), n ≥ 2 and let p be the par-

abolic subalgebra corresponding to Σ = {α1}, i.e. p = × ◦ . . . ◦�◦
�◦.

Then choosing

λ =
1

2
[−2n+ 1|1, 1, . . . , 1] and µ =

1

2
[−2n− 1|1, 1, . . . , 1,−1],

or, in the language of Dynkin diagrams,

λ =
−n× 0◦ . . .

0◦�◦ 0

�◦ 1
, µ =

−n−1× 0◦ . . .
0◦�◦ 1

�◦ 0
,

there exists a unique (up to a multiple) nonzero standard homomorphisms
of generalized Verma modules

Mp(µ) →Mp(λ)

and the BGG graph for (g, p, λ) is λ→ µ.

Similarly, for the weights

λ′ =
1

2
[−2n+ 1|1, 1, . . . , 1,−1] and µ′ =

1

2
[−2n − 1|1, 1, . . . , 1, 1],

there also exists a unique (up to multiple) nonzero homomorphisms of gen-
eralized Verma modules

Mp(µ
′) →Mp(λ

′)

and the BGG graph is λ′ → µ′.

Proof. First, we find all strictly p-dominant weights on the Weyl orbit of
λ+ δ = 1

2 [−2n + 1|1, . . . , 1] + [n|n− 1. . . . , 1, 0] = 1
2 [1|2n − 1, . . . , 3, 1]. The

condition of strict p-dominance implies that the weights must be of the
form [a|b1, . . . , bn], where b1 > . . . > bn−1 > |bn| and {a, b1, . . . , bn} is a
sign-permutation of {2n−1, . . . , 3, 1, 1} with an even number of minuses, so
λ+ δ = 1

2 [1|2n− 1, . . . , 3, 1] and µ+ δ = 1
2 [−1|2n− 1, . . . , 3,−1] are the only

possibilities.

We see that µ = sγλ = λ − γ for γ = [1, 0 . . . , 0, 1] and we know from
theorem 3.1.3 that for true Verma modules, M(µ) ⊂ M(λ). Suppose that
the standard map Mp(µ) → Mp(λ) is zero, so there exists α ∈ S so that
M(µ) ⊂ M(sα · λ). So, there is a sequence M(µ) = M(µ0) ⊂ M(µ1) ⊂
. . . ⊂ M(µk) = M(sα · λ) ⊂ M(λ), the weights µj are increasing and
connected by affine root reflections. Let j be the largest number such
that (µ0 + δ)(E) = −1

2 , . . . , (µj + δ)(E) = −1
2 . So, µ0 + δ, . . . , µj + δ

are of the form 1
2 [−1|b1, . . . , bn], where {b1, . . . , bn} is a sign-permutation

of {2n − 1, . . . , 3,−1}. It follows that these weights are on the Wp-orbit of
µ. But µ is p-dominant, so all the other weights on its Wp-orbit are smaller.
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Therefore, j = 0. Further, (µ1 + δ)(E) must be 1
2 , because (λ + δ)(E) is 1

2
and the weights µj are increasing with increasing j. The only root reflection
which maps 1

2 [1|2n − 1, . . . , 3, 1] to 1
2 [−1|b1, . . . , bn] is clearly the reflection

sγ and µ1 = λ. We obtained

M(µ1) ( M(sα · λ) ( M(λ) = M(µ1)

which is a contradiction. Therefore, the standard homomorphism Mp(µ) →
Mp(λ) is nonzero.

The proof for λ′, µ′ is similar. �

Lemma 4.1.2. Let g = Bn+1 = so(2n+ 3,C), n ≥ 1 and p be the parabolic
subalgebra corresponding to Σ = {α1}, p = × ◦ . . . ◦ > ◦ . Then
choosing

λ = [−n|1
2
, . . . ,

1

2
] and µ =

1

2
[−n− 1|1

2
, . . . ,

1

2
],

or, in the language of Dynkin diagrams,

λ =
−n− 1

2× 0◦ . . .
0◦ > 1◦ , µ =

−n− 3
2× 0◦ . . .

0◦ > 1◦ ,
there exists a unique (up to a multiple) nonzero standard homomorphisms
of generalized Verma modules

Mp(µ) →Mp(λ)

and the BGG graph for (g, p, λ) is λ→ µ.

Proof. In this case, δ = 1
2 [2n+1, . . . , 3, 1] and the weight λ+δ = [12 |n, . . . , 2, 1]

is on the orbit of λ̃ + δ = [n|n − 1, . . . , 2, 1, 1
2 ] that is regular but not in-

tegral. A weight [a|b1, . . . , bk] is strictly p-dominant and p-integral if and
only if b1 > . . . > bn > 0 and the bi’s are all integers or all half-integers.
The only strictly p-dominant and p-integral weights on its orbit are λ + δ
and µ + δ = [−1

2 |n, . . . , 2, 1]. They are connected by reflection with re-

spect to the root ε1. There is a unique w taking λ̃ + δ to λ + δ, namely
wδ = 1

2 [1|2n − 1, . . . , 5, 3] and a unique w′ taking λ̃ + δ to µ + δ, namely

w′δ = 1
2 [−1|2n − 1, . . . , 5, 3]. The grading element evaluation differs by

1 and w′ = sε1w, so it follows from lemma 3.2.3 that there is an arrow
w → w′ in the regular Hasse graph for (g, p). Because µ = λ − ε1, it
follows from Theorem 3.1.3 that M(µ) ⊂ M(λ). All the conditions of The-
orem 3.3.4 are satisfied, so there exists a nonzero standard homomorphism
Mp(µ) →Mp(λ). �

4.2. The real version. Let us now suppose that g = so(n + 1, 1; R) is the
real Lie algebra consisting of matrices invariant with respect to the quadratic
form x0xn+1 +

∑n
j=1 x

2
j and p is the (real) parabolic subalgebra killing a

chosen line in the null-cone. In matrices, elements of g are represented as




R g1 0
g−1 so(n) g1

0 g−1 R




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The negative part g−1 ' Rn is the fundamental defining representation of
so(n) ⊂ g0 via the adjoint action and g0 = so(n) ⊕ R.

We assume that g is naturally embedded into its complexification gc =
so(n+2,C) and that the Cartan subalgebra, positive roots and fundamental
weights of the complexification are given like before. The complexification
of p is exactly the parabolic subalgebra corresponding to

× ◦ . . . ◦�◦
�◦

in case n is even and
× ◦ . . . ◦ > ◦

in case n is odd.

Let µ, λ be elements of hc from lemma 4.1.1 or 4.1.2, Vλ, resp. Vµ, be
representation of pc with highest weight λ, resp. µ. Via restriction, they are
(complex) representations of the real form p as well.

As vector spaces, the generalized Verma modules for real Lie algebras and
complex inducing representation are isomorphic to the generalized Verma
modules for the complex Lie algebras:

(4.1) Mpc(µ) := U(gc) ⊗U(pc) Vµ ' U(g) ⊗U(p) Vµ =: Mp(µ).

The first product is over the complex universal enveloping algebra U(p) (that
is a factor of the complex tensor algebra) and the second is over the real
universal enveloping algebra U(p).

As vector spaces,

Mpc(µ) ' U(gc−) ⊗C Vµ ' U(g−) ⊗R Vµ 'Mp(µ)

and the middle isomorphism is given by

((y1 ⊗ c1)(y2 ⊗ c2) . . . (yk ⊗ ck)) ⊗ v 7→ (y1y2 . . . yk) ⊗ (c1c2 . . . ck)v

for yj ∈ g−, cj ∈ C and v ∈ Vµ.

This vector space homomorphism is compatible with the action of g ⊂ gc on
both spaces, i.e. it is a g-isomorphism. The same is true for any pc-dominant
and pc-integral weight µ′, in particular Mpc(λ) 'Mp(λ).

Because we know from the previous section that there exists a unique (up to
multiple) gc-homomorphism Mpc(µ) → Mpc(λ), it follows that there exists
a unique (up to multiple) nonzero homomorphism of the real generalized
Verma modules Mp(µ) →Mp(λ) in this case as well.

4.3. Description of the differential operator. Let g, p be as in the last
section, G = Spin(n + 1, 1) the real Lie group with Lie algebra g, P the
parabolic subgroup of G fixing a line in the null-cone so that the Lie algebra
of P is p. Let Vλ and Vµ be representations of pc as in lemma 4.1.1 (in
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case n is even) or lemma 4.1.2 (in case n is odd). By restriction, they are
complex representations of the real Lie algebra p and of the real Lie group
P as well (P is simply connected). The duality between homomorphisms
of generalized Verma modules and invariant differential operators yields a
nonzero invariant differential operator D : Γ(G×P V∗

λ) → Γ(G×V∗
µ) acting

between the spaces of smooth sections.

Lemma 4.3.1. The operator D is of first order.

Proof. We know from section 2.2 that for a weight λ = [a|b1, . . . , bl] the
evaluation on the grading element is λ(E) = a. Using Theorem 2.4.1 and
the definition of µ, λ yields the order to be

(
1

2
[2k + 1| . . . , 3, 1] − 1

2
[2k − 1| . . . , 3,−1])(E) =

2k + 1

2
− 2k − 1

2
= 1

in the even case n = 2k and

([
1

2
|2n− 1, . . . , 2, 1] − [−1

2
|2n− 1, . . . , 2, 1])(E) =

1

2
− (−1

2
) = 1

in the odd case. �

To describe the operator D, we will embed the vector space g− into G/P by
the exponential

i : g− → G/P, y 7→ exp(y)P.

It is known that i is injective and the image i(g−) is an open dense subspace
in G/P .

We will identify g− with its image under i. To any section s ∈ Γ(G ×P V)
such that s(gP ) = [g, v]P we can assign a V-valued function f on g− defined
by

(4.2) f : g− → V, y 7→ v, where s(i(y)) = [exp(y), v]P .

On the other hand, to any such function with compact support we can assign
the corresponding section s by s(exp(y)P ) = [exp(y), f(y)]P for y ∈ g− and
s = 0 on G/P − exp(g−)P .

The space g− is endowed with a basis




0 0 0
ej 0 0

0 −eTj 0





where ej = (0, . . . , 0, 1, 0, . . . , 0)T is the j-th vector of the standard basis of
Rn.

In the even case, the Vλ and Vµ, as a representation of gss0 = so(n), are the
fundamental spinor representation S+ and S−. Assume that S = S+ ⊕ S−

is realized as a subspace of the Clifford algebra Cliff(n,C), so that S is
a minimal left ideal and S+ and S− are its so(n,C)-invariant subspaces.
In case n is odd, Vµ ' Vλ ' S as a gss0 -module, where S is the unique
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fundamental spinor representation of so(n,C), again realized as a minimal
left ideal in Cliff(n,C). In both cases, the Clifford multiplication Rn⊗S → S
is well defined.

Let us denote by Vλ∗ the spinor bundle G ×P (V∗
λ ⊕ V∗

λ′) in case n is even
(see lemma 4.1.1 for definition of λ, λ′) or G×P V∗

λ in case n is odd (see 4.1.2
for the definition of λ in this case). Similarly, define Vµ∗ to be the vector
bundle G×P (V∗

µ⊕V∗
µ′) for n even and G×P V∗

µ for n odd. We can consider

the operator D as acting between Γ(Vλ∗) and Γ(Vµ∗). To each section s of
Vλ∗ , resp. Vµ∗ , we assign a function f : g− → S defined by (4.2).

Theorem 4.3.2. Let s ∈ Γ(Vλ∗) and s′ ∈ Γ(Vµ∗) are sections and f, f ′ :
g− → S the spinor valued functions corresponding to s and s′ under the
above identification. Assume that s′ = Ds. Then f ′ =

∑

j ej · ∂jf , ej being
the standard basis of Rn.

Remark. Therefore, we call the operator D “Dirac operator”.

Proof. Recall that g0 ' so(n) ⊕ R and the group G0 corresponding to g0

contains Spin(n). Let us choose g ∈ Spin(n) ⊂ G0 ⊂ P ⊂ G and y ∈ g−.
The identity g exp(y)g−1 = exp(Ad(g)y) yields g exp(y)P = exp(Ad(g)y)P
and therefore the action of Spin(n) on g− (identified with a subset of G/P )
is the adjoint action. It is easy to check that g− with the adjoint action
of so(n) ⊂ g0 is the fundamental defining representation of so(n) and so
g− ' Rn is the fundamental defining representation of Spin(n) as well.

We know from construction that the operator D is G-invariant, it means it
commutes with the action of G on sections. The action of g ∈ G on s can
be described by

g · s(x) := g(s(g−1 · x)),
where on the right hand side, the actions of g are on G/P and on the spinor
bundle G×P S. So, if s is described by a function f on g− and g ∈ Spin(n),
the equation reads

(g · s)(exp(y)P ) = g([exp(Ad(g−1)(y))P, f(Ad(g−1)(y))]P ) =

= [g exp(Ad(g−1)(y))P, f(Ad(g−1)(y))]P =

= [g exp(Ad(g−1)(y))g−1, g(f(Ad(g−1)(y)))]P =

= [exp(y), g(f(Ad(g−1)(y)))]P

so we see that (g · f)(y) = g(f(g−1 · y)) is the usual action of Spin(n) on
spinor valued functions. So, D is invariant (acting on spinor valued functions
on g− ' Rn) with respect to the spin group (considering Rn and S as the
defining and spinor representations).

Further, choose g = exp(y0) for some y0 ∈ g−. Then exp(y0)(exp(y))P =
exp(y+ y0)P because g− is commutative. We see that the action of exp(y0)
on g− (identified with a subset of G/P ) is just y0-addition. Further, the
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action of exp(y0) on f is (exp(y0)(f))(y) = f(y−y0), because, if f represents
the section s,

(exp(y0)s)(exp(y)P ) = exp(y0)(s(exp(y − y0))) = exp(y0)[exp(y − y0), f(y − y0)]P =

= [exp(y), f(y − y0)]P .

This means that the operator D is invariant with respect to Spin(n) and
with respect to Rn (translation) as well.

The invariance with respect to Spin implies that Df(0) = π(
∑

j εj⊗ ∂f
∂xj

(0))

for some Spin(n)-homomorphism

π : (Rn)∗ ⊗ S → S

where {εj} is the dual basis to the standard basis {ej} of Rn and {xj} are
the coordinates on Rn with respect to the basis ej .

The invariance with respect to translations implies that for each y ∈ Rn

Df(y) = π(
∑

j εj ⊗
∂f(y)
∂xj

).

We know from [12] that such a homomorphism π is unique (up to multiple),
namely π(

∑

j εj⊗ vj) = ej ·vj ((·) is the Clifford multiplication), so D is the

Dirac operator D =
∑

j ej · ∂j . �

Note, that the operator D acts between sections of vector bundles associated
to representations

V∗
λ ⊕ V∗

λ′ '
n
2
−1× 0◦ . . .

0◦�◦ 1

�◦ 0
⊕

n
2
−1× 0◦ . . .

0◦�◦ 0

�◦ 1

and

V∗
µ ⊕ V∗

µ′ '
n
2×

0
◦ . . .

0
◦�◦ 0

�◦ 1
⊕

n
2×

0
◦ . . .

0
◦�◦ 1

�◦ 0

in the even case and between sections of vector bundles associated to

V∗
λ '

n
2
−1× 0◦ . . .

0◦ > 1◦ and V∗
µ =

n
2× 0◦ . . .

0◦ > 1◦
in the odd case (this can be derived easily using the definition of the weights
λ, µ in 4.1.1, resp. 4.1.2, considering that here, the rank is not n but n/2,
resp. n/2 − 1/2, and using the fact that the action of the center of g0 on
the dual representation V∗ is just the negative of its action on V).

Further, note that the bundle G → G/P can be reduced to the standard
spin structure Spin(n + 1) → Spin(n + 1)/Spin(n) on the sphere by choos-
ing a Weyl structure on G → G/P (see [15]) and factorizing the center of
G0. Under this reduction, the operator D : Γ(Spin(n + 1) ×Spin(n) S) →
Γ(Spin(n+ 1) ×Spin(n) S) is the Dirac operator on the sphere, associated to
the usual Euclidean metric, see [25] for details. The Dirac operator D can
be defined also on curved analogues of this and is still conformally invariant.

36



4.4. More Dirac operators. Consider now a pair of real Lie algebras (g, p)
described by the Dynkin diagram

◦ . . . ◦ ◦ × ◦ . . . ◦�◦
�◦

or, equivalently, g = Dk+n = so(2(k + n)), Σ = {αk}. Using the formalism
of chapter 2.1, the matrices in g are graded like this:





g0 g1 g2

g−1 g0 g1

g−2 g−1 g0





Theorem 4.4.1. Choosing

λ =
1

2
[−2n + 1, . . . ,−2n+ 1|1, . . . , 1]

and

µ =
1

2
[−2n+ 1, . . . ,−2n+ 1,−2n − 1|1, . . . , 1,−1],

or, in the language of Dynkin diagrams,

(4.3) λ =
0◦ . . .

0◦ −n× 0◦ . . .
0◦�◦ 0

�◦ 1

and

(4.4) µ =
0◦ . . .

0◦ 1◦ −n−1× 0◦ . . .
0◦�◦ 1

�◦ 0

there exists a unique (up to a multiple) nonzero standard homomorphisms
of generalized Verma modules

Mp(µ) →Mp(λ)

and the corresponding (dual) differential operator is of first order. Analogous
statement holds for the weights µ′ and λ′ having interchanged 0 and 1 over
the last positions in the Dynkin diagram.

Proof. Notice that λ + δ = 1
2 [2k − 1, . . . , 3, 1|2n − 1, . . . , 3, 1] and µ + δ =

1
2 [2k−1, . . . , 3,−1|2n−1, . . . , 3, 1]. Clearly, they are both strictly p-dominant
and µ = sγ ·λ = λ−γ for γ = [1, 0, . . . , 0, 1], so M(µ) ⊂M(λ). Suppose, for
contradiction, that the standard mapMp(µ) →Mp(λ) is zero. Again we find
a sequence of submodules M(µ) = M(µ0) ⊂ . . . ⊂M(sα ·λ). Similarly as in
the proof of 4.1.1, we can show that µ1(E) = µ0(E)+1 = λ(E). Let γ1 be the
reflection so that µ1+δ = sγ1(µ0+δ). Grading element evaluation is the sum
of the first k coordinates in the expression of the weights, so sγ1, applied to
1
2 [2k−1, . . . , 3,−1|2n−1, . . . , 3,−1] increases one of the first k coordinates by
one. If γ1 = γ, it follows µ1 = λ and we obtain a contradiction withM(µ1) ⊂
M(sα ·λ), similarly as in the proof of 4.1.1. The only other possibility is that
some 2j−1 will be replaced with 2j+1, i.e. µ1+δ = 1

2 [2k−1, . . . , 2j+1, 2j+
1, 2j − 3, . . . , 3,−1|2n − 1, . . . , 2j + 3, 2j − 1, 2j − 1, . . . , 3,−1]. This weight
should be strictly smaller than λ, but again, this is a contradiction, because
the weight difference µ1 − λ = [0, . . . , 0, 1, something] cannot be expressed
as a sum of negative roots (negative roots are just [. . . ,−1, . . . , 1 . . .] and
[. . . ,−1, . . . ,−1 . . .]). �

37



A similar theorem holds for the odd case: for g = Bk+n, Σ = {αk}, we can
choose λ = [−n, . . . ,−n|1/2, . . . , 1/2] and µ = [−n, . . . ,−n− 1|1/2 . . . , 1/2].
To prove the existence of a nonzero Mp(µ) → Mp(λ) , it suffices to use
Theorem 3.3.4 in this case (the proof is absolutely analogous to the proof of
lemma 4.1.2 and will be omitted).

4.5. Description of the operator. Let us choose a real form g = so(n+
k, k) of the Lie algebra from the previous section generating the simply
connected Lie group G = Spin(n+ k, k) that fixes the inner product

k
∑

i=1

xixn+2k+1−i +

n
∑

j=1

x2
k+j

(it has signature (n + k, k)). Let P be the parabolic subgroup and p its
Lie algebra, so that the complexification (gc, pc) is isomorphic to the pair
from the last section (g = Dk+n/2 in case n is even and Bk+(n−1)/2, if n is
odd). The reductive part is g0 = sl(k,R)⊕ so(n)⊕RE and, as a g0-module,
g−1 ' ((Rk)∗ ⊗ Rn), the product of dual resp. defining representations of
sl(k,R), resp. so(n). The g−2 component is commutative. We will consider
the case n is even, the odd case is analogous. Let µ, λ be weights like before
and consider Vµ and Vλ to be complex representations of the real Lie algebra
p (given by restriction of the complex representations of pc to the real form)
and of the Lie group P . From the expression of µ, λ in (4.4) and (4.3) we

see that, as a gss0 -module, Vµ ' Ck∗ ⊗ S− and Vλ = C⊗ S+ where Ck resp.
C are the defining resp. trivial representation of sl(k,R).

We know from the isomorphism (4.1) and Theorem 4.4.1 that there is a
nonzero homomorphism of generalized Verma modules Mp(µ) → Mp(λ) in
this case as well.

The corresponding differential operator acts between sections of dual repre-
sentation:

D : Γ(G×P (C ⊗ S−)) → Γ(G×P (Ck ⊗ S+)),

resp.

D : Γ(G×P (C ⊗ S+)) → Γ(G×P (Ck ⊗ S−)),

where we identified (S±)∗ ' S∓, resp. (S±)∗ ' S±, depending on the parity
of n/2 (see section 2.5). We will assume that V∗

λ ' S−, the other case is
similar.

Assume that s is a section of G×P (C⊗S−) and f the associated C⊗S− '
S−-valued function on g−, defined by (4.2). The coordinates on g−1 can
be chosen to be y11, . . . , y1n, . . . , yk1, . . . , ykn and on g−2 y1, . . . , yl. To the
section Ds we assign a function Df : g− → Ck ⊗S+ which can be naturally
identified with k S+-valued function D1(f), . . . ,Dk(f).

Assume that f is constant in the g−2 variables y1, . . . , yl, so, it can be
considered as a function of yi,j only. The same argument as in the proof
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of Theorem 4.3.2 shows that the action of g ∈ G0 on i(y) = exp(y)P for
y ∈ g−1 is i(y) 7→ i(Ad(g)y). We know that g−1 ' (Rk)∗⊗Rn as the adjoint
representation of G0 and we easily derive that the action of g ∈ Spin(n) on f
is (g · f)(y1, . . . , yk) = g(f(g−1 · y1, . . . , g

−1 · yk)) and the action of g ∈ SL(k)
is (g · f)(y1, . . . , yk) = f((y1, . . . , yk)g) (SL(k) “mixes” the variables and the
dual defining action of g−1 on (y1, . . . , yk) is (y1, . . . , yk)g).

Lemma 4.5.1. The function Di(f)(y1, . . . , yk) depends only on

f(y1, . . . , yi−1, y, yi+1, . . . , yk), y ∈ Rn

Proof. Due to the fact that D is a first order differential operators, the value

Di(f)(y1, . . . , yk)

depends only on f(y1, . . . , yk) and the derivatives ∂
∂yij

f(y1, . . . , yk), j =

1, . . . , n. It suffice to prove that D1(f)(y1, y2) does not depend on ∂
∂y2j

f

for k = 2, the general case follows easily. Let us choose g =

(

K 0
0 K−1

)

∈
SL(2,R) for some K 6= 1. The invariance of D implies

(4.5) (g · (Df))(y1, y2) = (D(g · f))(y1, y2)

The function (g · f)(y1, y2) = f((y1, y2)g) = f(Ky1,K
−1y2). The left hand

side of (4.5) is
(

K 0
0 K−1

)(

D1f(Ky1,K
−1y2)

D2f(Ky1,K−1y2)

)

=

(

K(D1f)(Ky1,K
−1y2)

K−1(D2f)(Ky1,K−1y2)

)

Because D is linear and first order, D1f(Ky1,K
−1y2) depends linearly on

f, ∂f∂y1 and ∂f
∂y2

:

D1f = Af +B
∂f

∂y1
+ C

∂f

∂y2

in the point (Ky1,K
−1y2). Comparing the left and right side of the first

component of (4.5), we obtain that

K(Af +B
∂f

∂y1
+ C

∂f

∂y2
) = f +KA

∂f

∂y1
+K−1C

∂f

∂y2

This holds for any f and we see that A = C = 0 and D1f(Ky1,K
−1y2)

depends only on ∂f
∂y1

. �

Theorem 4.5.2. The operator D, considered as acting on functions on g−1

(i.e. on functions being constant on g−2) has the following form:

Di(f) =
∑

j

ej · ∂i,jf

Therefore, we call D the “Dirac operator in k variables”.

Proof. Again, we can restrict to k = 2 for simplicity. From the previ-
ous lemma it follows that D1(f)(y1, y2) = D1(f̃)(y1, y2) where f̃(y′1, y

′
2) :=

f(y′1, y2) does not depend on the second variable and can be represented
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by a function ˜̃f of one (vector) variable y′1:
˜̃f(y′1) := f(y′1, y2). The group

Spin(n) ⊂ G0 acts on ˜̃f by

(g · ˜̃f(y′1)) = (gf̃ )(y′1, y2) = g(f̃ (g−1y′1, g
−1y2)) = g( ˜̃f(g−1y′1))

where Spin(n) acts on Rn by the fundamental representation. From the

previous lemma D1f̃(y′1, y
′
2) = D1f̃(y′1, y2) and so, it can be represented by

a function (D1
˜̃
f)(y′1) of one variable. So, D1 can be considered as acting

on functions
˜̃
f of one variable and the invariance of D with respect to g ∈

Spin(n) ⊂ G0 ⊂ G

g((Dif)(g−1y1, g
−1y2)) = Di(g · f)(y1, y2), i = 1, 2

implies that D1, acting on spinor valued functions in one variable y′1, is
Spin(n)-invariant as well.

Let y ∈ g−1 be a vector with entries in the first column, y = (ỹ1, 0). The
action of g = exp(y) on s is

(exp(y)s)(exp (y1, y2)P ) = exp(y)(s(exp(−y) exp (y1, y2)P )) =

exp(y)[exp((−ỹ1, 0) + (y1, y2) + y3)P, f((−ỹ1 + y1, y2) + y3)]P

where y3 ∈ g−2. Now we use the assumption that f does not depend on g−2

and f((−ỹ1 + y1, y2) + y3) = f(−ỹ1 + y1, y2). The last equation is equal to
[exp(y1, y2)P, f(−ỹ1+y1, y2)]P and if we represent the section s by a function
f , the action of g is just (g · f)(y1, y2) = f(−ỹ1 + y1, y2). But this means

that D1, acting on a function of one variable ˜̃f , is invariant with respect
to translations and Spin(n) group as well, so similarly as in the proof of
Theorem 4.3.2, we obtain that

D1(f)(y1, y2) = D1(f̃)(y1, y2) =
∑

j

ej∂1,j f̃(y1, y2) =
∑

j

ej∂1,jf(y1, y2)

Similarly for D2. �

Note that the operator D acts between sections of dual representations
V∗
λ,V

∗
µ, with highest weights

V∗
λ ' 0◦ . . .

0◦
n
2
−1× 0◦ . . .

0◦�◦ 1

�◦ 0

V∗
µ ' 1◦ 0◦. . . 0◦

n
2
−1× 0◦ . . .

0◦�◦ 0

�◦ 1

in the even case (the 0 and 1 on the last positions may be reversed, depending
on the parity of n/2) and

V∗
λ '

0
◦ . . .

0
◦

n
2
−1
×

0
◦ . . .

0
◦ >

1
◦

V∗
µ =

1◦ 0◦ . . .
0◦

n
2
−1× 0◦ . . .

0◦ > 1◦
in the odd case (note that the weight coordinate over the crossed node does
not change here).
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5. Singular orbit corresponding to k Dirac operators

5.1. Even dimension, k ≤ n. Let g = Dk+n = so(2(n + k),C), p its
parabolic subalgebra corresponding to

◦ . . . ◦ × ◦ . . . ◦�◦
�◦

where the k-th node is crossed (Σ = {αk}). We have seen in chapter
4 that there exists a nonzero homomorphism of generalized Verma mod-
ules Mp(µ) → Mp(λ) where µ + δ = 1

2 [. . . , 3,−1| . . . , 5, 3,−1] and λ + δ =
1
2 [. . . , 3, 1| . . . , 5, 3, 1]. We will investigate now the singular orbit of λ and
its singular Hasse graph in case k ≤ n.

Lemma 5.1.1. Let k = 2, n ≥ 2. Then the singular Hasse graph for (g, p, λ)
is

• 1
2 [−1,−3| . . . , 3, 1] − δ

• 1
2 [1,−3| . . . , 3,−1] − δ

• 1
2 [3,−1| . . . , 3,−1] − δ

• 1
2 [3, 1| . . . , 3, 1] − δ

Proof. The weights µ+δ, λ+δ are on the Weyl orbit of the g-dominant weight
λ̃ + δ = 1

2 [2n − 1, . . . , 7, 5, 3, 3, 1, 1] that is on the wall of the fundamental
Weyl chamber, so we see that they have singular character. If ν is on the
affine Weyl orbit of λ and p-dominant, it means that ν + δ is on the Weyl
orbit of λ+ δ and strictly p-dominant. In coordinates, ν+ δ consists of sign-
permutation of 1

2{. . . , 7, 5, 3, 3, 1, 1}. A weight [a1, a2|b1, . . . , bn] is strictly
p-dominant, iff a1 > a2 and b1 > . . . , bn−1 > |bn|. Therefore, ν + δ =
1
2 [a1, a2| . . . , 7, 5, 3,±1] where (a1, a2) is some decreasing sign-permutation
of (3, 1) and the number of negative coordinates is even. There are only 4
such possibilities:

1

2
[3, 1| . . . , 3, 1], 1

2
[3,−1] . . . , 3,−1],

1

2
[1,−3| . . . , 3,−1],

1

2
[−1,−3| . . . , 3, 1].

To show the existence of 1
2 [3, 1| . . . , 3, 1]−δ → 1

2 [3,−1| . . . , 3,−1]−δ, consider
w ∈ W p taking δ = [. . . , 2, 1, 0] to wδ = [2, 0| . . . , 4, 3, 1] and w′ taking δ to

w′δ = [2,−1| . . . , 4, 3, 0]. It is easy to see that w(λ̃ + δ) = 1
2 [3, 1| . . . , 3, 1],

w′(λ̃ + δ) = 1
2 [3,−1| . . . , 3,−1] and w′ = sγw for γ = [0, 1, 0, . . . , 0, 1]. We

know from lemma 3.2.2 that there exists wj ∈ W p such that w → w1 →
. . . wj = w′. Further, ifE is the grading element, we see that (w′δ−wδ)(E) =
(2+0)−(2−1) = 1 and it follows from lemma 3.2.3 that l(w′) = l(w)+1. So,
w → w′ in the Hasse graph and 1

2 [3, 1| . . . , 3, 1]− δ → 1
2 [3,−1| . . . , 3,−1]− δ

in the singular Hasse graph.
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To show the second arrow, let w ∈ W p be the element that takes δ =
[. . . , 3, 2, 1, 0] to [2,−1| . . . , 4, 3, 0] and w′ takes δ to [1,−2| . . . , 4, 3, 0]. We
see that w′ = sγw, where γ is the positive root [1, 1, 0, . . . , 0]. In this case,
wδ(E) = 1 and w′δ(E) = −1, so the difference is 2. But the grading element
evaluation w′′δ(E) cannot be zero for any w′′ ∈ W p in this case, because it
is the sum of 2 different integers. Therefore, w → w′ in the parabolic Hasse
graph and there is an arrow [3,−1| . . .] − δ → [1,−3| . . .]− δ in the singular
Hasse graph for (g, p, λ).

Similarly, one can show that there is an arrow 1
2 [1,−3| . . . , 3,−1] − δ →

1
2 [−1,−3| . . . , 3, 1] − δ by choosing w taking δ to [0,−2| . . . , 4, 3,−1] and w′

taking δ to [−1,−2| . . . , 4, 3, 0]. �

We know that for a generalized Verma module homomorphism Mp(µ) →
Mp(λ) the difference (λ − µ)(E) is the order of the dual differential oper-
ator, if it is one or two. Conjecture 3.3.6 implies that each arrow in the
singular Hasse graph corresponds to a nonzero invariant differential opera-
tor between sections of bundles associated to dual representations. In the
following pictures, we will draw in the singular Hasse diagrams q lines be-
tween λ and µ, if (λ−µ)(E) = q ∈ {1, 2}, i.e. the dual operator, if it exists,
corresponds to the operator of order q (Theorem 2.4.1). In particular, the
middle operator in our case is of second order, so we can draw the singular
Hasse graph

• • • •

in this case.

Theorem 5.1.2. Let (g, p, λ) be like at the beginning of this section, assume
k ≥ 3, n ≥ k and let Sk,n be the singular Hasse graph associated to it. Then
Sk,n contains two disjoint subgraphs S1 and S2, both isomorphic to Sk−1,n.

It follows that S1 contains S1,1 and S1,2, both copies of Sk−2,n. Similarly,
S2 contains S2,1 and S2,2. Let φ1, (φ2) : Sk−2,n → S1,2 (S2,1) be the iso-
morphisms, respectively. Then each element φ1(µ) of S1,2 is connected to
the corresponding element φ2(µ) in S2,1 by an arrow, that corresponds to a
second order differential operator.

This describes all the singular Hasse graph of (g, p, λ).

Graphically, the Sk,n has the following fractal-shape:
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S2,2

S2,1 S1,2

S1,1

Definition 5.1.3. From the lemma 5.1.1 and Theorem 5.1.2 it follows in
case k ≤ n, the shape of the graph Sk,n depends only on k. Therefore, we
can denote this graph by Sk. We also define S0 to be a one-point graph.

These pictures show Sk for k = 3, 4 (the arrows goes from up to down and
from right to left):

•

•

•

•

•

•

•

•

k = 3

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

k = 4

Proof. Let us denote gk,n = so(2(n+k)), pk,n the parabolic subalgebra from
the beginning of this section, and similarly, δk,n = [n+ k − 1, . . . , 1, 0],

λ̃k,n + δk,n =
1

2
[2n− 1, 2n− 3, . . . , 2k− 1, 2k− 1, 2k− 3, 2k− 3, . . . , 3, 3, 1, 1]

elements of h∗k,n, the (k + n)-dimensional Cartan subalgebra.

We find all the weights ν so that ν + δ is on the Weyl orbit of 1
2 [2k −

1, . . . , 3, 1|2n − 1, . . . , 3, 1] and strictly p-dominant. The condition k ≤ n
implies that ν + δ = 1

2 [. . . |2n − 1, . . . , 5, 3,±1] and on the first k positions

there is a strictly decreasing sign-permutation of 1
2{2k − 1, . . . , 5, 3, 1}. Let
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S1 be the set of weights of the type 1
2 [2k− 1, . . . |2n− 1, . . . ,±1] and S2 the

set of the weights 1
2 [. . . ,−(2k− 1)|2n− 1, . . . ,±1]. Clearly, Sk,n is a disjoint

union of S1 and S2.

We define a map i : Sk−1,n → S1,

1

2
[a1, . . . , ak−1| . . . , 3,±1]− δk−1,n 7→ 1

2
[2k− 1, a1, . . . , ak−1| . . . , 3,±1]− δk,n

We will show that it is a graph isomorphism. First, note that it is a
bijection on the set of vertices because any decreasing sign-permutation
1
2(a1, . . . , ak−1) of 1

2{2k − 3, . . . , 3, 1} is strictly decreasing if and only if
1
2(2k − 1, a1, . . . , ak−1) is strictly decreasing.

Suppose that there is an arrow

1

2
[a1, . . . , ak−1|b1, . . . , bn] − δ → 1

2
[a′1, . . . , a

′
k−1|b′1, . . . , b′n]

in the singular Hasse graph for (gk−1,n, pk−1,n, λ̃k−1,n). The first weight,
1
2 [a|b] = w(λ̃k−1,n + δk−1,n) and the second weight 1

2 [a′|b′] = w′(λ̃k−1,n +
δk−1,n) for some w → w′. Let wδ = [x1, . . . , xk−1|y1, . . . , yn] and w′δ =
[x′1, . . . , x

′
k−1|y′1, . . . , y′n]. Note that all xi and x′j are strictly smaller then

2(k − 1), because

w(λ̃k−1+δk−1) = w
1

2
[2(n+k)−3, . . . , 2k+1, 2k−1, 2k−3, 2k−3, . . . , 3, 3, 1, 1]

contains a number smaller or equal than 2k − 3 on the first position (which
is at a position less than 2(k − 1) from the right).

Let i(w), i(w′) be elements ofW p
k,n satisfying i(w)δk,n = [2k−1, x1, . . . , xk−1| . . .]

and i(w′)δk,n = [2k − 1, x′1, . . . , x
′
k−1| . . .]. The dots . . . don’t mean yj’s but

something uniquely determined by the first k coordinates (the first k coordi-
nates determine uniquely the last n coordinates on the W p-orbit of δk,n). We
will show that there is an arrow i(w) → i(w′) in W p. Clearly, if w′ = sγw,
then i(w′) = sγ′i(w) for the root γ′ = [0, γ].

Further, we claim that the grading element evaluation (wδ − w′δ)(Ek−1,n)
is 1 or 2. We will prove this by induction: for the case k = 2 it holds, as we
saw in the proof of lemma 5.1.1 and we will show by induction that it holds
in general.

Because i(w)δk,n(Ek,n) = (2k − 1) + wδk−1,n(Ek−1,n), we see that

(i(w)δk,n − i(w′)δk,n)(Ek,n)

is 1 or 2 in this case as well. We see that i(w) ≤ i(w′) and it follows
from lemma 3.2.3 that l(i(w′)) − l(i(w)) ≤ 2. But the length difference
cannot be 2, because i(w) and i(w′) are connected by a root reflection, so
the length difference must be an odd number. Therefore, it must be one and
i(w) → i(w′) in W p. It is easy to see that

(i(w))(λ̃k,n + δk,n) − δk,n = i(w(λ̃k−1,n + δk−1,n) − δ)
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(i(w′))(λ̃k,n + δk,n) − δk,n = i(w′(λ̃k−1,n + δk−1,n) − δ)

so there is an arrow 1
2 [2k − 1, a|b] − δ → 1

2 [2k − 1, a′|b′] − δ in the singular
Hasse graph and the map i : Sk−1,n → Sk,n preserves the arrows.

On the other hand, let 1
2 [2k − 1, a1, . . . , ak−1|b1, . . . , bn] − δk,n → 1

2 [2k −
1, a′1, . . . , a

′
k−1|b′1, . . . , b′n] − δk,n be an arrow in S1. The weights are repre-

sented by Weyl group elements w,w′ so that w → w′ and 1
2 [2k − 1, a|b] =

w(λ̃k,n + δk,n) and 1
2 [2k − 1, a′|b′] = w′(λ̃k,n + δk,n). It follows that wδ =

[x1, . . . , xk|y1, . . . , yn], where x1 is either 2k − 1 or 2k − 2 and x2, . . . , xk
are smaller. Similarly, w′δ = [x′1, . . . , x

′
k|y′1, . . . , y′n] and x1 = x′1 (because

they are connected by a root reflection that does not fix w(λ̃ + δ)). We
define ι(w) = [x2, . . . , xk| . . .] and ι(w′) = [x′2, . . . , x

′
k| . . .] to be elements in

W p
k−1,n, where the last n coordinates are again uniquely determined. It is

easy to check that ι(w) → ι(w′) in W p
k−1,n and that ι(w)(λ̃k−1,n + δk−1,n) =

[a2, . . . , ak|b1, . . . , bn] and ι(w′)(λ̃k−1,n+δk−1,n) = [a′2, . . . , a
′
k|b′1, . . . , b′n]. So,

there is an arrow 1
2 [a|b]− δ → 1

2 [a′|b′]− δ in Sk−1,n if and only if there is an

arrow 1
2 [2k − 1, a|b] − δ → 1

2 [2k − 1, a′|b′] − δ in S1.

Similarly, we define the map j : Sk−1,n → S2 by 1
2 [a1, . . . , ak−1|b1, . . . , bn] −

δk−1,n 7→ 1
2 [a1, . . . , ak−1,−(2k − 1)|b1, . . . , bn] − δk,n and we can check that

it maps arrows to arrows.

It remains to determine, which elements of S1 are connected with arrows
to elements of S2. If a weight 1

2 [2k − 1, . . . | . . .] is connected by some

root reflection sγ to 1
2 [. . . ,−(2k − 1)| . . .] so the only possible root is γ =

[1, 0, . . . , 0, 1|0, . . . , 0]. Simple combinatorics implies that the only possibil-
ity for the root reflection to exist is µ + δ = 1

2 [2k − 3, a2, . . . , ak−1,−(2k −
1)| . . .] = sγ

1
2 [2k − 1, a2, . . . , ak−1,−(2k − 3)| . . .] = sγ(λ + δ). The first

weight is in S2,1 and the second in S1,2. To show that there is an ar-
row λ → µ, consider w ∈ W p taking δ to [2k − 2, a2, . . . , ak−1,−(2k −
3)|2n − 2, 2n − 4, 2n − 6, . . . , 2k − 1, 2k − 4, . . . , 4, 2, 0] and w′ ∈ W p taking
δ to [2k − 3, a2, . . . , ak−1,−(2k − 2)|2n − 2, 2n − 4, 2n − 6, . . . , 2k − 1, 2k −
4, . . . , 4, 2, 0], where (a2, . . . , ak−1) is decreasing so that w(λ̃ + δ) = λ + δ

and w′(λ̃+ δ) = µ+ δ. (For example, the weight 1
2 [5, 1,−3|5, 3,−1] is repre-

sented with wδ = [4, 1,−3|5, 2, 0] and 1
2 [3, 1,−5|5, 3,−1] is represented with

w′δ = [3, 1,−4|5, 2, 0]) Now w′ = sγw implies w ≤ w′ or w′ ≤ w. But for E
the grading element, wδ(E) = 2k− 2+a2 + . . .+ak−1− (2k− 3) =

∑

aj +1
and w′δ(E) =

∑

aj − 1, so w ≤ w′. The difference of the grading element
evaluation is 2, so the length difference is at most 2, but it must be odd,
because w′ = sγw and therefore w → w′ in W p. So, there is an arrow

w · λ̃→ w′ · λ̃ in the singular Hasse graph.

We see that (λ−µ)(E) = 2 and this also proves the assumption that all the
arrows λ → µ fulfill (λ − µ)(E) ≤ 2. If there exists the homomorphism of
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the generalized Verma modules, the corresponding dual differential operator
is of order 2, therefore we draw 2 lines in the picture.

Because we saw in lemma 5.1.1 that the form of the graph S2,n does not
depend on n, so Sk,n ' Sk,n′ for n, n′ ≥ k as well. �

Theorem 5.1.4. All the arrows µ→ ν in the singular Hasse graph from the
previous theorem such that (µ− ν)(E) = 1 are in the BGG graph and there
is a standard homomorphism Mp(ν) → Mp(µ). If λ → µ in the previous
theorem and (λ − µ)(E) = 2 (2 lines in the picture), the standard homo-
morphism Mp(µ) →Mp(λ) is zero. So, under the assumption of conjecture
3.3.6, the homomorphisms corresponding to second order operators are all
nonstandard.

Proof. We will prove the first part of the theorem by induction. In case k = 2
we have seen in Theorem 4.4.1 that there exists a standard homomorphism
[3, 1| . . . , 3, 1] − δ → [3,−1| . . . , 3,−1]. Similarly, we could show that there
exist a standard homomorphism [1,−3| . . . , 3,−1]−δ → [−1,−3| . . . , 3, 1]−δ.

The BGG graph has the same set of vertices as the singular Hasse graph,
so we can define the sets Sk,n, S

1, S2 the same way as in Theorem 5.1.2 and
we define the maps i : Sk−1,n → S1 and j : Sk−1,n → S2 by

i : [a1, . . . , ak−1|b1, . . . , bn] − δk−1,n 7→ [2k − 1, a1, . . . , ak−1|b1, . . . , bn] − δk,n

j : [a1, . . . , ak−1|b1, . . . , bn]−δk−1,n 7→ [a1, . . . , ak−1,−(2k−1)|b1, . . . , bn]−δk,n

We will show that there exists a nonzero standard homomorphism of true
Verma modules Mbk−1,n

(α) → Mbk−1,n
(β) (α, β ∈ Sk−1,n) if and only if

there exists a nonzero standard homomorphism of true Verma modules
Mbk,n

(i(α)) → Mbk,n
(i(β)). To see this, note that it follows from Theorem

3.1.3 that for integral α, β ∈ h∗k−1,n there is a nonzero homomorphisms of

true Verma modules M(α) →M(β) if and only if there exist root reflections
γi so that

β + δ ≥ sγ1(β + δ) ≥ sγ2sγ1(β + δ) ≥ . . . ≥ α+ δ

But this is exactly if

i(β) + δ ≥ sĩ(γ1)(i(β) + δ) ≥ sĩ(γ2)sĩ(γ1)(i(β) + δ) ≥ . . . ≥ (i(α) + δ)

where ĩ : hk−1,n ↪→ hk,n is defined by [γ] 7→ [0, γ], especially αi ∈ ∆k−1,n 7→
αi+1 ∈ ∆k,n. So, nonzero homomorphism M(α) → M(β) implies nonzero
homomorphism M(i(α)) → M(i(β)). On the other hand, if M(i(α)) →
M(i(β)) is nonzero, there exists γ̃j , so that

i(β) + δ ≥ sγ̃1(i(β) + δ) ≥ sγ̃2sγ̃1(i(β) + δ) ≥ . . . ≥ i(α) + δ.

All the γ̃i fix the first coordinate (2k − 1)/2, because the first coordinate
in the root expression cannot increase, if the weights are decreasing, but
the first coordinate of i(α) + δ and i(β) + δ are both equal to (2k − 1)/2.

46



Therefore, all the γ̃j have pre-images γj in hk−1,n so that ĩ(γj) = γ̃j . It
follows that

β + δ ≥ sγ1(β + δ) ≥ sγ2sγ1(β + δ) ≥ . . . ≥ (α+ δ)

and there exists a nonzero map M(α) → M(β). So, there exists a nonzero
homomorphism M(α) → M(β) if and only if there exists a nonzero homo-
morphism M(i(α)) →M(i(β)).

We will prove the following statement: there exists a nonzero standard ho-
momorphism

Mpk−1,n
(α) →Mpk−1,n

(β)

for α, β ∈ Sk−1,n if and only if there exists a nonzero standard homomor-
phism

Mpk,n
(i(α)) →Mpk,n

(i(β))

It follows from Theorem 3.3.3 that the standard homomorphism

Mpk−1,n
(α) →Mpk−1,n

(β)

is zero if and only if M(α) ⊂M(sαj
·β) for some parabolic simple root αj 6=

αk−1. If this is the case, then M(i(α)) ⊂ M(sαj+1 · i(β)) follows from the
previous paragraph and the map Mp(i(α)) → Mp(i(β)) is zero as well. On
the other hand, ifMp(i(α)) →Mp(i(β)) is zero, thenM(i(α)) ⊂M(sαi

·i(β))
for some parabolic simple root αi 6= αk. If i = 1, then M(i(α)) ⊂ M(sα1 ·
i(β)) implies i(α) + δ ≤ sα1(i(β) + δ). But i(α) + δ contains (2k − 1)/2 on
the first position and sα1(iβ) + δ) contains a number strictly smaller then
(2k − 1)/2 on the first position, what is a contradiction. Therefore, i > 1
and that implies M(α) ⊂ M(sαi−1 · β), so the map Mp(α) →Mp(β) is zero
as well.

Similarly, we can show that the map j : Sk−1,n → S2 given by is a graph
isomorphism.

To complete the proof, we have to show that the standard homomorphism

Mp(
1

2
[2k − 1, a2, . . . , ak−1,−(2k − 3)|2n − 1, . . . , 3,±1] − δ) →

→Mp(
1

2
[2k − 3, a2, . . . , ak−1,−(2k − 1)|2n − 1, . . . , 3,±1] − δ)

is zero (this are exactly the arrows represented by 2 lines in the singular
Hasse graph, see theorem 5.1.2).

In case k = 2, we observe that

1

2
[3,−1| . . . , 3,−1] ≥ sα

1

2
[3,−1| . . . , 3,−1] =

1

2
[3,−1| . . . , 1,−3] ≥

≥ 1

2
[1,−1| . . . , 3,−3] ≥ 1

2
[1,−3| . . . , 3,−1]

The first reflection is with respect to the parabolic simple root α = [0, . . . , 1, 1],
the second interchanges 1 and 3, the reflection being with respect to γ1 =
[1, 0, . . . , 0,−1, 0] and the last interchanges −1 and −3, the reflection being
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with respect to the root γ2 = [0, 1, 0 . . . , 0,−1]. So, it follows from Theorem
3.1.3 that M(1

2 [1,−3| . . .]− δ) ⊂M(sα · (1
2 [3,−1| . . . , 3,−1]− δ)) and we see

from Theorem 3.3.3 that the standard homomorphism Mp(
1
2 [1,−3| . . .] −

δ) →Mp(
1
2 [3,−1| . . .] − δ) is zero.

Similarly, for k ≥ 2, we observe that

1

2
[2k − 1, a2, . . . , ak−1,−(2k − 3)|2n − 1, . . . , 3,±1] ≥

≥ 1

2
[2k − 1, a2, . . . , ak−1,−(2k − 3)|2n − 1, . . . , 2k − 3, 2k − 1, . . . , 3,±1]

≥ 1

2
[2k − 3, a2, . . . , ak−1,−(2k − 3)|2n − 1, . . . , 2k − 1, 2k − 1, . . . , 3,±1]

≥ 1

2
[2k − 3, a2, . . . , ak−1,−(2k − 1)|2n − 1, . . . , 2k − 1, 2k − 3, . . . , 3,±1]

The first reflection is with respect to the simple root α = [0, . . . , 0, 1,−1, 0 . . .]
interchanging 2k − 1 and 2k − 3 on the (n + 2)-nd and (n+ 3)-th position,
the second reflection interchanges the 2k − 1 on the first position with the
2k − 3 on the (n + 2)-th position, and the last reflection sign-interchanges
the −(2k−3) on the k-th position and the 2k−1 on the (n+2)-nd position.
It is easy to check that

M(
1

2
[2k−3, . . . ,−(2k−1)| . . .]−δ) ⊂M(sα ·(

1

2
[2k−1, . . . ,−(2k−3)| . . .]−δ))

and it follows from 3.3.3 that the standard homomorphism is zero.

�

Remark 5.1.5. Note, however, that for k > n the singular orbits is larger
as the one described in the theorem. We will show this in more details in
section 5.2.

Remark 5.1.6. If we choose the weight λ + δ = 1
2 [. . . , 3, 1| . . . , 5, 3,−1]

(corresponding to the other spinor representation), the singular Hasse graph
associated to it has the same structure and there is no real difference in the
proof.

5.2. Even dimension, k > n. Let gk,n = so(2(n + k),C)), p the parabolic
subalgebra corresponding to the k-th node crossed and let λ be as in section
5.1. We saw that the shape of the singular Hasse graph associated to (g, p, λ)
does not depend on n for n ≥ k and all the weights ν on the affine Weyl
orbit of λ are of the form ν + δ = 1

2 [. . . |2n− 1, . . . , 5, 3,±1]. In case n < k,
there exists other p-dominant weights on the affine Weyl orbit of λ and the
singular Hasse graph is larger. We will illustrate it on the simplest example:

Example 5.2.1. Let k = 3, n = 2. Then the singular Hasse graph has to
following form:
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•

•

•

•

•

•

•

•
•

•

•

•

1
2 [3, 1,−1|5,−3]

1
2 [1,−1,−3|5, 3]

1
2 [3, 1,−3|5,−1]

1
2 [3,−1,−3|5, 1]

1
2 [5, 1,−3|3,−1]

1
2 [5,−1,−3|3, 1]

In this diagram, we should subtract δ from each of the weights to obtain the
singular Hasse graph for (g, p, λ).

We see that there are four “new” strictly p-dominant weights of type

1

2
[. . . |5,±1] and

1

2
[. . . |5,±3]

on the Weyl orbit of λ + δ. Each of the new arrows corresponds clearly
to a root reflection. To see that each of the new arrows is in the singu-
lar Hasse graph, consider, for example, the arrow (1

2 [5, 1,−3|3,−1] − δ) →
(1
2 [3, 1,−3|5,−1] − δ). Let λ̃+ δ = 1

2 [5, 3, 3, 1, 1] be the dominant weight on
the orbit of λ+δ. Choose w,w′ be elements of W p that take δ = [4, 3, 2, 1, 0]
to wδ = [4, 2,−1|3 − 0] and w′δ = [3, 2,−1|4,−0]. Because w′ = sγw
for γ = [1, 0, 0,−1, 0] and (wδ − w′δ)(E) = 1 (E is the grading element),

it follow w → w′ in W p. The weights w(λ̃ + δ) = 1
2 [5, 1,−3|3,−1] and

w′(λ̃+ δ) = 1
2 [3, 1,−3|5,−1]. The other arrows in the above diagram can be

shown in an analogous way.

Moreover, we claim that all these new arrows are in the BGG graph as well,
representing standard homomorphisms of generalized Verma modules. To
show, for example, that there is a nonzero standard homomorphism

Mp(
1

2
[3, 1,−3|5,−1] − δ) →Mp(

1

2
[5, 1,−3|3,−1] − δ)

assume that it is zero, then there is a chain of weights

1

2
[3, 1,−3|5,−1] = µ0 ≤ µ1 ≤ . . . ≤ µj = sα

1

2
[5, 1,−3|3,−1]

for some parabolic simple root α 6= α3, connected by root reflections.
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Because µ0 is p-dominant and the only elements fixing µ0(E) are from Wp,
it follows that µ1(E) = µ0(E) + 1. If µ1 = 1

2 [3, 1,−1| . . .], µ1 would be
p-dominant and to leave the Wp-orbit of this weight, one would have to
increase the grading element evaluation once more, which is not possible.
If µ1 = 1

2 [5, 1,−3| . . .], the only possibility is µ1 = 1
2 [5, 1,−3|3,−1] which is

larger than any sα
1
2 [5, 1,−3|3,−1]. In any case, we get a contradiction.

Let us denote by Sk,n the singular Hasse graph associated to (g, p, λ) in
general. We will show that it has similar structure as the picture above
if n = k − 1. The weights of type 1

2 [. . . |2n − 1, . . . , 3,±1] and the arrows
between them are a copy of the graph Sk from definition 5.1.3. We can define
the subgraphs S1,1, S1,2, S2,1 and S2,2 similarly as in Theorem 5.1.2. For
example, S1,2 consists of weights 1

2 [2k − 1, . . . ,−(2k − 3)|2n− 1, . . . , 3,±1].

We denote by K the subgraph of Sk,n consisting of weights not in S1, S2.

Theorem 5.2.2. Let n = k − 1, n ≥ 2. The subgraph K of Sk,n contains

a copy of Sk−2 that consists of weights 1
2 [2k − 3, . . . ,−(2k − 3)|2k − 1, 2k −

5, 2k − 7, . . . , 3,±1] (Remember that 2k − 3 = 2n − 1). We denote this
subgraph by Kk−2. The graph isomorphisms ψ : Sk−2 → Kk−2 is given by

(
1

2
[a1, . . . , ak−2| . . . , 3,±1] − δk−2,n) 7→

7→ (
1

2
[2k − 3, a1, . . . , ak−2,−(2k − 3)|2k − 1, 2k − 5, . . . , 3,±1] − δk,n)

({a1, . . . , ak−2} is a decreasing sign-permutation of 1
2{(2k − 5), . . . , 3, 1}).

Let φ1 (φ2) : Sk−2 → S1,2 (S2,1) be the isomorphism from Theorem 5.1.2,
respectively. Then for each µ ∈ Sk−2, there is an arrow φ(µ) → ψ(µ) and
an arrow ψ(µ) → φ2(µ) in Sk,n. Graphically, it is described by the following
picture:

S2,2

S2,1 S1,2

S1,1

Kk−2

The arrows connecting Kk−2 with S correspond to operators of first order.

Again, we can divide Kk−2 into two parts K1
k−2 and K2

k−2, each isomorphic

to Sk−3 as a graph. Then there are two copies K
(1)
k−3 and K

(2)
k−3 of Sk−3 in

K −Kk−2 connected to Kk−2 in a natural way:
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K2
k−2

K1
k−2

K
(1)
k−3

K
(2)
k−3

. . .

. . .
. . .

. . .

The arrows connecting K
(i)
k−3 with Kj

k−2 correspond to first order differential

operators. In a similar way, K
(i)
k−3 is connected with K

(i)(1)
k−4 and K

(i)(2)
k−4 , each

being isomorphic to Sk−4. So we can continue until we come to S0, which is
a one-point graph. This describes all the arrows and vertices in the singular
Hasse graph.

All the arrows µ → ν such that (µ − ν)(E) = 1 are in the BGG graph as
well and there exists a nonzero standard homomorphism Mp(ν) →Mp(µ) in
such case.

Proof. The technique of the proof is similar to the proofs of Theorem 5.1.2
and example 5.2.1. We will just outline the basic steps.

First, note that if a weight ν on the affine Weyl orbit of λ is p-dominant, so
ν+ δ is of the form 1

2 [. . . |b1, . . . , bn] where (b1, . . . , bn) is strictly decreasing.
We can prove in the same way as in Theorem 5.1.2 that the weights of type
(b1, . . . , bn) = (2n−1, . . . , 3,±1) and arrows between them are a copy of Sk.
Let us denote by Kk−2 the set of weights of type (b1, . . . , bn) = (2n+1, 2n−
3, . . .). The map ψ is a graph isomorphism Sk−2 ' Kk−2. We will omit the
subtraction of δ in the expression of the following weights. An element of
K1
k−2 is of the form 1

2 [2k−3, 2k−5, c1 , . . . , ck−3,−(2k−3)|2k−1, 2k−5, . . .]

and it is connected with root reflection to 1
2 [2k−3, 2k−5, c1 , . . . , ck−3,−(2k−

5)|2k− 1, 2k− 3, 2k− 7, . . .]. These are exactly elements of K
(1)
k−3. Similarly,

an element of K2
k−2 is of the form 1

2 [2k − 3, c1, . . . , ck−3,−(2k − 5),−(2k −
3)|2k − 1, 2k − 5, . . .] and it is connected with root reflection to 1

2 [2k −
5, c1, . . . , ck−3,−(2k−5),−(2k−3)|2k−1, 2k−3, 2k−7, . . .]. This are exactly

elements of K
(2)
k−3. We can continue similarly and see that elements of K

(i)(j)
k−4

are weights of the form 1
2 [. . . |2k−1, 2k−3, 2k−5, 2k−9, . . . , 3,±1]. Finally,

K
(i1)...(ik−2)
0 are weights of the form 1

2 [. . . |2k − 1, 2k − 3, . . . , 7, 5,±3]. �
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For general k > n, the situation is even more complicated.

5.3. Odd dimension. Let g = Bk+n = so(2(n + k) + 1,C), p its parabolic
subalgebra corresponding to

◦ . . . ◦ × ◦ . . . ◦ > ◦
where the k-th node is crossed (Σ = {αk}). We have seen in chapter 4
that there exists a nonzero homomorphism of generalized Verma modules
Mp(µ) → Mp(λ) where µ + δ = [. . . , 3/2,−1/2| . . . , 3, 2, 1] and λ + δ =
[. . . , 3/2, 1/2| . . . , 3, 2, 1]. We will show that the BGG graph associated to
(g, p, λ) is isomorphic to the singular Hasse graph Sk,n from Theorem 5.1.2.
On the other hand, the singular Hasse graph does not contain all the arrows
in this case. Moreover, the BGG graph does not depend on n at all (for a
fixed k). We will start with the simplest case k = 2.

Lemma 5.3.1. Let k = 2. Then there exist three nonzero generalized Verma
module homomorphisms on the affine orbit of λ described by the following
diagram (the middle homomorphism corresponds to an operator of second
order):

• [−1/2,−3/2| . . . , 2, 1] − δ = ξ

• [1/2,−3/2| . . . , 2, 1] − δ = ν

• [3/2,−1/2| . . . , 2, 1] − δ = µ

• [3/2, 1/2| . . . , 2, 1] − δ = λ

Proof. The existence of the homomorphism Mp(µ) → Mp(λ) was shown in
chapter 4.

We see that [1/2,−3/2| . . . , 2, 1] and [3/2,−1/2| . . . , 2, 1] are connected by
root reflection sγ , where γ = [1, 1|0, . . . , 0] and [3/2,−1/2| . . . , 2, 1](Hγ ) =
3/2 − 1/2 = 1 is a nonnegative integer. It follows from Theorem 3.1.3 that
there is a true Verma module homomorphism i : M(ν) → M(µ). We will
show that the standard map of the generalized Verma modules is nonzero.

The weight λ+ δ = [3/2, 1/2| . . . , 2, 1] is on the Weyl orbit of the dominant

(but non-integral) weight λ̃ + δ = [. . . , 2, 3/2, 1, 1/2]. This weight is non-

singular, so there exist unique elements w,w′ ∈ W so that w · λ̃ = µ and
w′ · λ̃ = ν. In this case, δ = 1

2 [. . . , 7, 5, 3, 1] and it is easy to check that wδ =
1
2 [5,−1| . . . , 11, 9, 7, 3] and w′δ = 1

2 [1,−5| . . . , 11, 9, 7, 3]. Because w′ = sγw
and the evaluation on the grading element is (wδ−w′δ)(E) = (5/2− 1/2)−
(1/2 − 5/2) = 4, we see that w ≤ w′ and either w → w′ or w → w1 →
w2 → w′ in the (Borel) Hasse graph (there must be an odd number of
root reflections, if their composition is a root reflection and it cannot be 5,
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because the difference of the grading element evaluation is 4). If w → w′, we
can use Theorem 3.3.4 and we are done. Assume that w → w1 → w2 → w′

and that the standard map Mp(ν) → Mp(µ) is zero. Theorem 3.3.3 says
that

(5.1) M(ν) ⊂M(sα · µ)

for some parabolic simple root α 6= αk. We know that for p-dominant µ,
M(sα · µ) ( M(µ). The weight sα(µ+ δ) is one of the following types:

(1) [−1/2, 3/2| . . . , 3, 2, 1] if α = α1

(2) [3/2,−1/2|n, n − 1, . . . , l − 1, l, . . . , 2, 1] is α = αi, 1 < i < n+ k
(3) [3/2,−1/2| . . . , 3, 2,−1] if α = αn+k

First we show that α 6= α1. If α = α1, (5.1) implies ν + δ ≤ sα1(µ+ δ), i.e.
[1/2,−3/2| . . . , 2, 1] ≤ [−1/2, 3/2| . . . , 2, 1]. Subtracting the second weight
from the first we get [1,−3|0, . . . , 0], which cannot be obtained as a sum of
negative roots, because none of them has a positive coefficient on the first
position.

Now assume that sα(µ+ δ) is of type (2). Because

M(w′ · λ̃) = M(ν) ( M(sα · µ) ( M(µ) = M(w · λ̃),

l(w′) − l(w) = 3 and ν + δ is not connected with sα(µ + δ) with any root
reflection, it follows from Theorem 3.1.3 that there must be β1, β2 so that

(5.2) M(ν) ( M(sβ1 · ν) = M(sβ2sα · µ) ( M(sα · µ).

Note, that the weights are sα(µ + δ) = [3/2,−1/2| . . . , l − 1, l, . . . , 2, 1] and
ν+β = sβ1sβ2sα(µ+δ) = [1/2,−3/2| . . . , 2, 1]. In coordinates, sβj

cannot be
a (sign)-transposition interchanging an integer and a half-integer, because
of the conditions sα(µ + δ)(Hβ2) ∈ N and sβ2sα(µ + δ)(Hβ1) ∈ N. So,
exactly one of these reflections interchanges (3/2,−1/2) to (1/2,−3/2) and
the other one interchanges (n, n−1, . . . , l−1, l, . . . , 2, 1) to (n, n−1 . . . , l, l−
1, . . . , 2, 1). So either sβ2sα(µ+ δ) = [1/2,−3/2| . . . , l− 1, l . . .] or sβ2sα(µ+
δ) = [3/2,−1/2| . . . , l, l − 1, . . .]. In the first case, sβ2sα(µ + δ) = sα(ν +
δ) < (ν + δ) (ν is p-dominant) which contradicts (5.2). In the second case,
sβ2sα(µ+ δ) = µ+ δ > sα(µ+ δ) which also contradicts (5.2). So sα(µ+ δ)
cannot be of type (2).

Similarly, we can show that sα(µ+ δ) cannot be of type (3). But this means
that (5.1) does not hold and the standard map Mp(ν) →Mp(µ) is nonzero.

Finally, to show that there is a nonzero standard homomorphisms M(ξ) →
M(ν), note that ν + δ = w(λ̃ + δ) and ξ + δ = w′(λ̃ + δ) where wδ =
1
2 [1,−5| . . .] and w′δ = 1

2 [−1,−5| . . .]. Evaluating wδ and w′δ on the grading
element, we see that the difference is 1 and w → w′ (lemma 3.2.3). Finally,
ν − ξ = [1, 0, . . . , 0] is an integral multiple of a root, so M(ξ) ⊂ M(ν).
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Applying Theorem 3.3.4, we see that the standard homomorphism Mp(ξ) →
Mp(ν) is nonzero as well. �

Note, however, that in the case k = n = 2, there are other strictly p-
dominant weights on the orbit of λ+ δ. Namely, the weights

[2, 1|3/2, 1/2], [2,−1|3/2, 1/2], [1,−2|3/2, 1/2] and [−1,−2|3/2, 1/2].
Neither of them is connected with a root reflection to any weight from the
last theorem. It is easy to see that they are connected with standard ho-
momorphism analogous as the weight in the last theorem. So, in that case,
the BGG graph consists of 2 connected parts, each of them being a copy
of S2 (cf. Theorem 5.1.2). However, the homomorphisms of generalized
Verma modules appearing in the other component correspond to differen-
tial operators that are all of second order (because, intechanging 1 with a
−1 decreases the grading element evaluation by 2, so we can use Theorem
2.4.1).

Remark 5.3.2. The singular Hasse graph, however, does not contain the
arrow µ→ ν.

Proof. For λ̃ + δ = [. . . , 3, 2, 3/2, 1, 1/2], there is a unique w resp. w′

taking λ̃ + δ to µ + δ resp. ν + δ. As we saw in the proof of 5.3.1,
wδ = 1

2 [5,−1| . . . , 7, 3] and w′δ = 1
2 [1,−5| . . . , 7, 3]. The length difference

l(w′) − l(w) is not 1, because (identifying w ↔ wδ for w ∈W p)

1

2
[5,−1| . . . , 7, 3] → 1

2
[3,−1| . . . , 7, 5] → 1

2
[1,−3| . . . , 7, 5] →

→ 1

2
[1,−5| . . . , 7,−3]

�

Theorem 5.3.3. The BGG graph from lemma 5.3.1 is a complex.

Proof. We want to show that the standard homomorphism Mp(ν) →Mp(λ)
is zero. This can be see from the following sequence of weights connected
by reflections:

[1/2,−3/2| . . . , 2, 1] ≤ 1

2
[1/2, 3/2| . . . , 2, 1] = sα1[3/2, 1/2| . . . , 2, 1]

Similarly, the standard homomorphism Mp(ξ) →Mp(µ) is zero because

[−1/2,−3/2| . . . , 2, 1] ≤ [−1/2, 3/2| . . . , 2, 1] = sα1 [3/2,−1/2| . . . , 2, 1]
�

The situation in k > 2 is analogous:

Theorem 5.3.4. For any k, n ≥ 2, k 6= n, the graph Sk from Theorem 5.1.2
describes the BGG graph associated to (g, p, λ). The double-arrows describe
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homomorphisms, whose corresponding invariant differential operators are of
second order.

All homomorphism in the graph are standard.

However, the arrows corresponding to second order operators are not in the
singular Hasse graph.

In case k = n, the orbit has two connected components. One of them is a
copy of Sk and the other one is similar except that all of its homomorphisms
correspond to second order differential operators.

Proof. Let λ̃+ δ = [. . . , 5/2, 2, 3/2, 1, 1/2] be the g-dominant weight so that
λ+δ is on its Weyl orbit. Recall that there are n integers and k half-integers
in the expression of λ̃+ δ. Assume that k 6= n.

The condition on a weight ν + δ = [a1, . . . , ak|b1, . . . , bn] to be strictly p-
dominant and p-integral is a1 > . . . > ak, b1 > . . . > bn > 0, ai − aj ∈
Z, bi − bj ∈ Z and the bi’s are all integers or all half-integers. Simple
combinatorics implies that, if ν is on the affine orbit of λ and k 6= n, the
only possibility is ν + δ = [a1, . . . , ak|n, n− 1, . . . , 2, 1], where (a1, . . . , ak) is
some strictly decreasing sign-permutation of ((2k − 1)/2, . . . , 3/2, 1/2).

Let Sk,n be the BGG graph for (g, p, λ). In the same way as in Theorem 5.1.2
we can define S1 to be the subgraph consisting of weights [(2k−1)/2, . . . | . . .]
and S2 the subgraph consisting of weights [. . . ,−(2k − 1)/2| . . .]. Clearly,
the set of all vertices in the BGG graph is a disjoint union of vertices in S1

and vertices in S2. Similarly, we can define S1,1, S1,2 and S2,1, S2,2.

We shall show that the map i : Sk−1,n → S1 given by ([a1, . . . , ak−1| . . .] −
δ) 7→ ([(2k−1)/2, a1, . . . , ak−1| . . .]− δ) is a graph isomorphism. The weight
[a1, . . . , ak−1| . . .] is strictly pk−1,n-dominant and pk−1,n-integral if and only
if [(2k − 1)/2, a1, . . . , ak−1| . . .] is strictly pk,n-dominant and pk,n-integral.
Therefore, i is a bijection on vertices.

Similarly as in the proof of Theorem 5.1.2, it can be shown that there is
a nonzero standard homomorphism Mpk−1,n

(β1) → Mpk−1,n
(β2) if and only

if there is a nonzero standard homomorphism Mpk,n
(i(β1)) → Mpk,n

(i(β2)).

Therefore, i : Sk−1,n → S1 is a graph isomorphism.

Similarly, the map j : Sk−1,n → S2 given by

([a1, . . . , ak−1| . . .] − δ) 7→ ([a1, . . . , ak−1,−(2k − 1)/2| . . .] − δ)

is a graph isomorphism.
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We will show now that all the arrows connecting elements of S1,2 with ele-
ments of S2,1 in Sk (defined analogously as in 5.1.3) are in the BGG graph
for (g, p, λ).

Let us denote µ+ δ = [(2k− 1)/2, a2, . . . , ak−1,−(2k− 3)/2| . . .] and ν+ δ =
[(2k − 3)/2, a2, . . . , ak−1,−(2k − 1)/2| . . .]. We will show that there is an
arrow µ → ν in the BGG graph. First, we show that there is a standard
homomorphism Mp(ν) → Mp(µ). For true Verma modules, M(ν) ⊂ M(µ),
because ν + δ = sγ(µ+ δ) and ν = µ− γ for γ = [1, 0 . . . , 0, 1|0, . . . , 0].

Let w ∈ W be the Weyl group element that takes δ = 1
2 [. . . , 5, 3, 1] to

1
2 [4k− 3, b2, . . . , bk−1,−(4k− 7)| . . .] where (b2, . . . , bk−1) is some decreasing

sign-permutation of ((4k − 11)/2, . . . , 5/2, 1/2) and w′ takes δ to 1
2 [4k −

7, b2, . . . , bk−1,−(4k−3)| . . .] so that w(λ̃+ δ) = µ+ δ and w′(λ̃+ δ) = ν+ δ.
The difference of the grading element evaluation is (wδ − w′δ)(E) = 4 and,
similarly as in the proof of lemma 5.3.1, either w → w′ or w → w1 → w2 →
w′. If w → w′, we apply Theorem 3.3.4 and see that there is an arrow
µ → ν. Let w → w1 → w2 → w′ and assume, for the sake of contradiction,
that the standard map Mp(w

′ · λ̃) →Mp(w · λ̃) is zero. Therefore,

(5.3) M(ν) = M(w′ · λ̃) ⊂M(sαw · λ̃) = M(sα · µ)

for some α ∈ S.

The weight sα(µ+ δ) is one of the following types:

(1) [a2, (2k − 1)/2, . . . | . . . , 3, 2, 1] if α = α1

(2) [(2k − 1)/2, . . . , al, al−1, . . . ,−(2k − 3)/2| . . .]
(3) [(2k − 1)/2, . . . ,−(2k − 3)/2, ak−1| . . .]
(4) [(2k − 1)/2, . . . ,−(2k − 3)/2|n, n − 1, . . . , l − 1, l, . . . , 2, 1]
(5) [(2k − 1)/2, . . . ,−(2k − 3)/2| . . . , 3, 2,−1] if α = αn+k

First we show that it is not of type (1). If α = α1, (5.3) implies ν + δ ≤
sα1(µ+ δ), i.e.

[(2k − 3)/2, a2, . . . ,−(2k − 1)/2| . . .] ≤ [a2, (2k − 1)/2, . . . ,−(2k − 3)/2| . . .]

where a2 ≤ (2k − 5)/2. Subtracting the first weight from the second we get
[a2 − (2k − 3)/2, . . .] which cannot be obtained as a sum of positive roots,
because it contains a negative number on the first position.

Now assume that sα(µ+ δ) is of type (2) − (5). Because

M(w′ · λ̃) = M(ν) ( M(sα · µ) ( M(µ) = M(w · λ̃),

l(w′) − l(w) = 3 and ν + δ is not connected to sα(µ + δ) with any root
reflection, it follows from Theorem 3.1.3 that there must be β1, β2 so that

(5.4) M(ν) ( M(sβ1 · ν) = M(sβ2sα · µ) ( M(sα · µ)

56



Similarly as in the proof of lemma 5.3.1, we will show that α cannot be of
type (2) − (5) leading to a contradiction. Let α be of type (2), i.e.

sα(µ+ δ) = [(2k − 1)/2, . . . , al, al−1, . . . ,−(2k − 3)/2| . . .],
ν + δ = [(2k − 3)/2, . . . , al−1, al, . . . ,−(2k − 1)/2)| . . .].

The root reflections sβ1 and sβ2 cannot interchange an integer with a half-
integer, because of the integrality conditions sα(µ+δ)(Hβ2) ∈ N and sβ2sα(µ+
δ)(Hβ1) ∈ N. There are two possibilities: either sβ2 interchanges al with al−1

and sβ1 interchanges ((2k−1)/2,−(2k−3)/2) with ((2k−3)/2,−(2k−1)/2)
on the particular positions, or sβ2 interchanges ((2k−1)/2,−(2k−3)/2) with
((2k−3)/2,−(2k−1)/2) and sβ1 interchanges al with al−1. In the first case,
β2 = α and (5.4) implies M(µ) ( M(sα · µ), which contradicts the fact that
M(sα ·µ) ( M(µ) for a parabolic simple root α and µ ∈ P++

p . In the second
case, β1 = α and (5.4) implies M(ν) ( M(sα · ν), which also contradicts
M(sα · ν) ( M(ν).

Let α be of type (3), i.e.

sα(µ+ δ) = [(2k − 1)/2, . . . ,−(2k − 3)/2, ak−1| . . .],
ν + δ = [(2k − 3)/2, . . . , ak−1,−(2k − 1)/2)| . . .]

If either β1 = α or β2 = α, we get contradiction similarly as in case (2).
But there is no other possibility, because the ak−1 on the k-th position has
to move somehow to the (k− 1)-th position: if β2 would fix it, then β1 = α,
if β2 would take it to the (k − 1)-th position, then β2 = α and if β2 would
take it (possibly with a minus sign) to the l-th position for l 6= k, k − 1, 1,
then β2 has to (sign-) interchange the l-th and (k− 1)-th position, so sβ1sβ2

would fix the (2k − 1)/2 on the first position, which is impossible. The
last possibility is l = 1: this would mean that β2 takes ak−1 to the first
position (possibly with a minus sign), but ak−1 < (2k − 3)/2 would imply
that sβ2sα(µ+ δ) has a smaller number on the first position as ν + δ which
contradicts ν + δ ≤ sβ2sα(µ+ δ).

In case (4), we have

sα(µ+ δ) = [(2k − 1)/2, . . . ,−(2k − 3)/2|n, . . . , l − 1, l, . . . , 2, 1]

ν + δ = [(2k − 3)/2, . . . ,−(2k − 1)/2)|n, . . . , l, l − 1, . . . , 2, 1]

Because the reflections with respect to β1, β2 cannot interchange an integer
and a half-integer, it follows that one of them interchanges l with l − 1, so
either β1 = α or β2 = α and we get a contradiction as in case (2). The same
happens in case (5).

In either case, we get a contradiction, so the standard map Mp(ν) →Mp(µ)
is nonzero.

We will show that the condition (2) from the definition of the BGG graph
(3.4.1) is satisfied as well. Let us suppose that there exists nontrivial homo-
morphisms

Mp(ν) = Mp(ξ0) →Mp(ξ1) → . . .→Mp(ξj) = Mp(µ)
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for j > 1. The weights ξi are increasing and p-dominant p-integral, so
ξi− ξi−1 cannot be written down as a sum of positive roots in g0: therefore,
the grading element evaluation ξi(E) is strictly increasing. The difference
(µ− ν)(E) = 2, so it follows j = 2 and

ν + δ ≤ ξ1 + δ = ν + δ + γ1 ≤ ν + δ + γ1 + γ2 = µ+ δ

for some γ1, γ2 ∈ g1 (grading element evaluation on roots from g1 is 1). But
γ1 ∈ g1 implies that γ1 is of the form

[0, . . . , 1, . . . , 0|0, . . . ,±1, 0 . . . , 0],

and so the γ1-addition changes

[a1, . . . , ak|b1, . . . , bn]
to

[a1, . . . , al + 1, . . . |b1, . . . , bl′ − 1, . . . , bn],

but this cannot be strictly p-dominant and p-integral when (b1, . . . , bn) =
(n, . . . , 2, 1). So, there is really an arrow µ → ν in the BGG graph and
we leave to the reader to check that there are no other arrows in the BGG
graph.

For k = n, there are other p-integral and strictly p-dominant weights on
the orbit of λ: the weights of type [a1, . . . , ak|(2k−1)/2, . . . , 3/2, 1/2] where
(a1, . . . , ak) is some strictly decreasing sign-permutation of (k, k − 1, . . . , 1).
We could again, define S′1 as a set of weights [k, . . . | . . .] − δ and S′2 as a
set of weights [. . . ,−k| . . .] − δ and show that there are arrows

([k, . . . ,−(k − 1)| . . .] − δ) → ([k − 1, . . . ,−k] − δ),

similarly as in the first part of the proof. However, the order of the dual
operators is always 2 in this case, because changing 1 to −1 decreeses the
grading element evaluation by 2. �
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6. Calculus of extremal vectors

6.1. Computation of extremal vectors. We saw in the last chapter that
in the even orthogonal case, the singular Hasse graph contains arrows that
may correspond to nonstandard homomorphisms and the dual operators
are of second order. One way to prove that existence of a nonstandard
homomorphism Mp(µ) →Mp(λ) is to compute the so called extremal vector.
It is a vector v ∈ Mp(λ) of weight µ such that X · v = 0 for any positive
root space generator X in g. If we find such a vector, the homomorphism
can be defined by 1⊗ vµ 7→ v (1⊗ vµ is the highest weight vector in Mp(µ))
and consequently

y1 . . . yk ⊗ Y1 . . . Ylvµ 7→ y1 . . . ykY1 . . . Ylv

where yi are generators of some negative root spaces in g−, Yj are generators
of some negative root spaces in g0 and the right hand side of the last equation
is the result of the action of y1 . . . ykY1 . . . Yl on v in Mp(λ).

Consider the Lie algebra g = D4 = so(8,C), p the parabolic subalgebra
determined by Σ = {α1} (first node crossed in the Dynkin diagram), and
the weights λ = 1

2 [−5|1, 1, 1] and µ = 1
2 [−7|1, 1,−1] (this is a special case

of lemma 4.1.1). We will compute the extremal vector corresponding to
Mp(µ) →Mp(λ) .

Let us represent the elements of so(8,C) as matrices antisymmetric with
respect to the anti-diagonal, as in section 2.1.

Let yi,j resp. Yi,j be a matrix Ei,j−E9−j,9−i so that yi,j ∈ g− and Yi,j ∈ g0−

(Ei,j is a matrix having 1 in i-th row and j-th column and 0 on other places).
These are exactly the generators of negative root spaces in g. Similarly,
we denote the generators of positive root spaces by xi,j and Xi,j and the
generators of the Cartan subalgebra by hi = Ei,i − E9−i,9−i:

(6.1)

























h1 x12 x13 x14 x15 x16 x17 0
y21 h2 X23 X24 X25 X26 0 −x17

y31 Y32 h3 X34 X35 0 −X26 −x16

y41 Y42 Y43 h4 0 −X35 −X25 −x15

y51 Y52 Y53 0 −h4 −X34 −X24 −x14

y61 Y62 0 −Y53 −Y43 −h3 −X23 −x13

y71 0 −Y62 −Y52 −Y42 −Y32 −h2 −x12

0 −y71 −y61 −y51 −y41 −y31 −y21 −h1

























Lemma 6.1.1. There is exactly one vector (up to multiple) in Mp(λ) of
weight µ that is extremal, i.e. annihilated by all positive root spaces in g,
namely the vector

y5,1 ⊗ vλ − y31 ⊗ Y53vλ − y21 ⊗ Y52vλ
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(under the identification Mp(λ) ' U(g−) ⊗ Vλ).

Proof. We know from 2.3 that the vector

(6.2) yi1,j1 . . . yin,jn ⊗ Yk1,l1 . . . Ykm,lmvλ

is a weight vector with weight λ− ∑

k root (yik,jk) −
∑

k′ root (Yik′ ,jk′ ) (if it
is nonzero). The difference µ−λ = [−1|0, 0,−1] in our case, so the µ-weight
space in Mp(λ) is generated by vectors of type (6.2), where the sum

∑

k

root (yik,jk) +
∑

k′

root (Yik′ ,jk′ ) = [−1|0, 0,−1].

There are only 4 possibilities how to obtain [−1|0, 0,−1] as a sum of negative
roots in g:

• [−1|0, 0,−1] itself – corresponds to y51, so the weight vector is y51⊗vλ
• [0| − 1, 0,−1] + [−1|1, 0, 0] – weight vector y21 ⊗ Y52vλ
• [0|0,−1,−1] + [−1|0, 1, 0] – weight vector y31 ⊗ Y53vλ
• [0|0,−1,−1]+[0|−1, 1, 0]+[−1|1, 0, 0, ] – weight vector y21⊗Y53Y32vλ.

The last vector is zero because λ = 1
2 [−5|1, 1, 1], Y32 is the negative root

space of the root β = [0,−1, 1, 0] and the copy of sl(2,C) in g generated by
Hβ,X23, Y32 acts trivial on vλ, because Hβ(vλ) = λ(Hβ)vλ = λ(h2 −h3)(1−
1)vλ = 0 and therefore, this submodule generated by vλ is an irreducible
sl(2,C)-module with highest weight 0, so it is trivial. From the same reason,
Y43vλ = Y42vλ = 0. On the other hand, Y52vλ 6= 0 and Y53vλ 6= 0, because
this root spaces correspond to the coroot h1 + h3 resp. h2 + h3 and the
action of λ on these coroots is nonzero.

We have identified a 3-dimensional µ-weight space in Mp(λ) and are looking
for a vector in this space that is extremal, i.e. annihilated by all positive
root spaces in g. The action of the positive root spaces can be computed
using just the commutation relations in U(g) and the fact that we know the
action of p on vλ.

In fact, it suffices to find a vector in this weight space that is annihilated
by x12,X23,X34,X35,X26 and x17, because the other positive root spaces
generators can be obtained by commuting those. We compute the action of
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x12 on the three vectors:

x12(y51 ⊗ vλ) = y51x12 ⊗ vλ + [x12, y51] ⊗ vλ =

y51 ⊗ x12vλ + [x12, y51] ⊗ vλ = 0 + (−Y52) ⊗ vλ

= 1 ⊗ (−Y52vλ),

x12(y21 ⊗ Y52vλ) = y21x12 ⊗ Y52vλ + [x12, y21] ⊗ Y52vλ =

= y21 ⊗ x12Y52vλ + (h1 − h2) ⊗ Y52vλ = y21 ⊗ Y52x12vλ +

+y21 ⊗ [x12, Y52]vλ + 1 ⊗ (h1 − h2)Y52vλ = 0 + 0 +

+1 ⊗ Y52(h1 − h2)vλ + 1 ⊗ [h1 − h2, Y52] =

= 1 ⊗ (−5

2
− 1

2
)vλ + 1 ⊗ Y52vλ = −2 ⊗ Y52vλ,

x12(y31 ⊗ Y53vλ) = y31 ⊗ x12Y53vλ + [x12, y31] ⊗ Y53vλ =

= y31 ⊗ Y53x12vλ + y31 ⊗ [x12, Y53]vλ + (−Y32) ⊗ Y53vλ =

= 0 + 0 − 1 ⊗ Y32Y53vλ = −Y53Y32vλ − [Y32, Y53]vλ =

= 0 − 1 ⊗ (−Y52)vλ = 1 ⊗ Y52vλ,

where ⊗ means product over U(p).

Similarly, we compute the action of the other positive root spaces on each
of the 3 nonzero vectors of weight µ. We can write the result into a table of
actions on vectors:

action vector
v1 = y51 ⊗ vλ v2 = y21 ⊗ Y52vλ v3 = y31 ⊗ Y53vλ

x12 1 ⊗ (−Y52vλ) −2 ⊗ Y52vλ 1 ⊗ Y52vλ
X23 0 −y21 ⊗ Y53vλ y21 ⊗ Y53vλ
X34 0 0 y21 ⊗ Y34vλ = 0
X35 y31 ⊗ vλ y21 ⊗ Y32vλ = 0 y31 ⊗ vλ
X26 0 0 0
x17 0 0 0

We want to find some combination av1+bv2+cv3 of the vectors v1, v2, v3 such
that the actions on this are zero. We see from the table that a−2b+c = 0, b =
c and a = −c, so the solution is one-dimensional (a, b, c) ∈ 〈(1,−1,−1)〉. �

We know from 4.1.1 that there exist a standard homomorphism Mp(µ) →
Mp(λ) , but now we see that it is the only one (up to multiple), and there
is no nonstandard homomorphism Mp(µ) →Mp(λ) .

In a similar way, we could compute that taking λ′ = 1
2 [−5|1, 1,−1] and

µ′ = 1
2 [−7|1, 1, 1] there exists a unique homomorphism Mp(µ

′) → Mp(λ
′)
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and the extremal vector is

y41 ⊗ vλ′ − y31 ⊗ Y43vλ′ − y21 ⊗ Y42vλ′ .

This example can be generalized:

Lemma 6.1.2. Let g = Dn+k and Σ = {αk}, λ+δ = [2k−1, . . . , 3, 1| . . . , 3, 1]
and µ + δ = [2k − 1, . . . , 3,−1| . . . , 3,−1], as in 4.4.1. Let us represent el-
ements of g as matrices, the same way as in 2.1. Then the Verma module
homomorphism Mp(µ) →Mp(λ) is unique (up to multiple) and is described
by the extremal vector

yk+n+1,k ⊗ vλ − yk+n−1,k ⊗ Yk+n+1,k+n−1vλ −(6.3)

−yk+n−2,k ⊗ Yk+n+1,k+n−2vλ − . . . − yk+1,k ⊗ Yk+n+1,k+1vλ.

Similarly, for λ′ + δ = [2k − 1, . . . , 3, 1| . . . , 3,−1] and µ′ + δ = [2k −
1, . . . , 3,−1| . . . , 3, 1], the extremal vector is

yk+n,k ⊗ vλ − yk+n−1,k ⊗ Yk+n,k+n−1vλ − yk+n−2,k ⊗ Yk+n,k+n−2vλ − . . .

. . .− yk+1,k ⊗ Yk+n,2vλ.

Proof. The technique of the proof is essentially the same as in the previous
lemma. The weight difference µ − λ = [0, . . . ,−1|0, . . . ,−1] which can be
obtained either directly (it is the root so that its root space generator is
yk+n+1,k), or as a sum

[0, . . . ,−1|, . . . , 1, 0, . . . , 0] + [. . . | . . . ,−1, . . . ,−1].

The weight vector corresponding to this decomposition is

yk+j,k ⊗ Yk+n+1,k+jvλ.

Other decompositions of type (. . .+[0, . . . , 0| . . . ,−1, . . . , 1 . . .]) do not occur,
because the root space generator associated to this root is Yk+l,k+m for l < m

and Yk+l,k+mvλ = 0, because λ(hk+l − hk+m) = 1
2 − 1

2 = 0 and we can use
the same argument as in the proof of lemma 6.1.1.

Writing down the actions of the positive root spaces on this weight vec-
tors, we obtain that the only weight vector annihilated by them is the vec-
tor from the lemma. It suffices to take the action of X12,X23, . . . ,Xk−1,k,
xk,k+1, Xk+1,k+2, . . ., Xk+n−1,k+n, Xk+n−1,k+n+1,. . ., Xk+1,k+2n−1, xk,k+2n,
. . . , x1,2k+2n−1. Recall that

λ =
1

2
[−(2n − 1), . . . ,−(2n − 1)|1, 1, . . . , 1].
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We compute the action of X12 on the summands of (6.3) in case k > 1:

X12(yk+n+1,k ⊗U(p) vλ) = yk+n+1,k ⊗U(p)) X12vλ +

+[X12, yk+n+1,k] ⊗U(p) vλ = 0,

X12(yk+j,k ⊗ Yk+n+1,k+jvλ) = yk+j,kX12 ⊗U(p) Yk+n+1,k+jvλ +

+[X12, yk+j,k] ⊗U(p) vλ = yk+j,k ⊗U(p) Yk+n+1,k+jX12vλ +

+yk+j,k ⊗U(p) [X12, Yk+n+1,k+j]vλ + 0 = 0,

for j = 1, . . . , n − 1, because the commutators are zero. Similarly, the
action of X23, . . . ,Xk−1,k are zero on all the vectors we consider. For
xk,k+1, however (if k = 1, we start here), there are nonzero commuta-
tors [xk,k+1, yk+n+1,k] = −Yk+n+1,k+1, [xk,k+1, yk+j,k] = −Yk+j,k+1 for j =
2, . . . , n− 1 and [xk,k+1, yk+1,k] = hk − hk+1. Note that λ(hk − hk+1) = −n.
We obtain

xk,k+1(yk+n+1,k ⊗U(p) vλ) = −1 ⊗ Yk+n+1,k+1vλ,

xk,k+1(yk+j,k ⊗U(p) Yk+n+1,k+jvλ) = −1 ⊗ Yk+j,k+1Yk+n+1,k+jvλ =

= −1 ⊗ (Yk+n+1,k+jYk+j,k+1vλ + [Yk+j,k+1, Yk+n+1,k+j]vλ) =

= 1 ⊗ Yk+n+1,k+1vλ,

for j = 2, . . . , n− 1, because Yk+j,k+1vλ = 0. Finally,

xk,k+1(yk+1,k ⊗ Yk+n+1,k+1) = (hk − hk+1) ⊗U(p) Yk+n+1,k+1vλ =

= 1 ⊗ (Yk+n+1,k+1(hk − hk+1) + [hk − hk+1, Yk+n+1,k+1])vλ =

= 1 ⊗ (−n+ 1)Yk+n+1,k+1)vλ = (−n+ 1) ⊗ Yk+n+1,k+1vλ.

We see that the action of xk,k+1 on the vector from the lemma is

1 ⊗ Yk+n+1,k+1(−1 − (n− 2) + n− 1) = 0.

Further, the action of Xk+i,k+i+1 for some fixed i ∈ {1, . . . , n − 1} is zero
on yk+n+1,k⊗U(p)vλ and the only nonzero terms come from the commutators
[Xk+i,k+i+1, yk+i+1,k] = yk+i,k for 1 ≤ i ≤ n−2 and [Xk+i,k+i+1, Yk+n+1,k+i] =
−Yk+n+1,k+i+1. We obtain:

Xk+i,k+i+1(yk+i+1,k ⊗ Yk+n+1,k+i+1vλ) = yk+i,k ⊗ Yk+n+1,k+i+1vλ

and

Xk+i,k+i+1(yk+i,k ⊗ Yk+n+1,k+ivλ) = −yk+i,k ⊗ Yk+n+1,k+i+1vλ.

Therefore, the coefficient of the term yk+i,k ⊗ Yk+n+1,k+ivλ in the extremal
vector is the same as the coefficient of the term yk+i+1,k ⊗ Yk+n+1,k+i+1vλ.
This already implies the extremal vector from the lemma and the reader can
check that the action of the other positive root spaces is zero as well. �

Lemma 6.1.3. Let g = D4, Σ = {α2} and λ+ δ = 1
2 [3,−1|3,−1], µ+ δ =

1
2 [1,−3|3,−1] are the weights representing the double-arrow from lemma
5.1.1. Then there is a unique (up to multiple) nonzero nonstandard ho-
momorphism Mp(µ) →Mp(λ) , i.e. the arrow λ→ µ is in the BGG graph.
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Proof. We compute the extremal vector the same way as in the previous
lemmas. The matrices are 8 × 8 with the following gradation:

(6.4)

























h1 X12 x13 x14 x15 x16 x17 0
Y21 h2 x23 x24 x25 x26 0 −x17

y31 y32 h3 X34 X35 0 −x26 −x16

y41 y42 Y43 h4 0 −X35 −x25 −x15

y51 y52 Y53 0 −h4 −X34 −x24 −x14

y61 y62 0 −Y53 −Y43 −h3 −x23 −x13

y71 0 −y62 −y52 −y42 −y32 −h2 −X12

0 −y71 −y61 −y51 −y41 −y31 −Y21 −h1

























The computation is quite long and technical but the result is that the ex-
tremal vector is

vext = y51y42 ⊗ vλ + y52y42 ⊗ Y21vλ + y62y31 ⊗ vλ + y62y32 ⊗ Y21vλ +

+y52y31 ⊗ Y43vλ − y51y32 ⊗ Y43vλ.

For simplicity, we will write only y ∈ U(g) instead of y ⊗U(p) vλ for the
extremal vector. To make the expression of y more unique, we will write it
as a sum of elements of type yi1,j1 . . . yil,jlYu1,v1 . . . , yuk,vk

so that

((i1, j1), . . . , (il, jl)) and ((u1, v1), . . . , (uk, vk))

are ordered lexicographically. Of course, yx = 0 for any positive root space
generator x in this formalism, Y k may be zero for large k and yh = λ(h)y
for h ∈ h.

So, we write vext = y51y42 + . . .+(−y51y32Y43). The reader may easily verify
that all the summands have weights µ = λ + [−1,−1, |0, 0]. For example,
the first summand y51y42 corresponds to the decomposition [−1, 0|0,−1] +
[0,−1|0, 1] of [−1,−1, 0, 0, ].
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We will show that the action of X12 on this is zero.

X12y51y42 = y51x12y42 + [X12, y51]y42 = y51y42X12 + y51[X12, y42] − y52y42 =

= −y52y42,

X12y52y42Y21 = y52X12y42Y21 + [X12, y52] . . . = y52y42X12Y21 + y52[X12, y42] . . . =

= y52y42Y21X12 + y52y42[X12, Y21] = y52y42(h1 − h2) = y52y42,

(because λ =
1

2
[−3/2,−5/2|1/2,−1/2])

X12y62y31 = y62X12y31 = y62y31X12 + y62[X12, y31] = −y62y32,

X12y62y32Y21 = y62X12y32Y21 = y62y32X12Y21 = y62y32Y21X12 +

+y62y32[X12, Y21] = y62y32(h1 − h2) = y62y32,

X12y52y31Y43 = y52X12y31Y43 = y52y31X12Y43 + y52[X12, y31]Y43 =

= y52y31Y43X21 − y52y32Y43 = −y52y32Y43,

X12(−y51y32Y43) = −y51X12y32Y43 − [X12, y51]y32Y43 = −y51y32X12Y43 +

+y52y32Y43 = −y51y32Y43X21 + y52y32Y43 = y52y32Y43.

Summing up all the results, we get zero. The same can be checked for any
positive root space X and it is left to the reader. To prove the uniqueness
of vext, one has to write down the basis of the µ-weight space in Mp(λ) and
compute the actions of positive root spaces on them: solving this is very
technical but straightforward. �

This extremal vector represented by yext ∈ U(g) can be rewritten in an easier
way:

yext = (y51 − y31Y53)(y42 − y32Y43) + (y52 − y32Y53)(y42 − y32Y43)Y21 − y71.

To check that it is the same, multiply the brackets, use commutation rela-
tions in g and the facts that yY53 = 0 (because Y53vλ = 0).

The vectors in the bracket look very similar to those from lemma 6.1.1 and
6.1.2. The following theorem says that this holds in general.

Theorem 6.1.4. Let g = D2+n, Σ = {α2}, λ + δ = 1
2 [3,−1| . . . , 3,−1]

and µ+ δ = [1,−3| . . . , 3,−1]. Then there exists a nonzero homomorphism
Mp(µ) →Mp(λ) and the extremal vector is

(6.5) yext = D+
1 D

−
2 +D+

2 D
−
2 Y21 − y2n+3,1

(y2n+3,1 is the generator of the root space in g−2), where

(6.6) D+
i = yn+3,i − yn+1,iYn+3,n+1 − yn,iYn+3,n − . . .− y3,iYn+3,3

and

(6.7) D−
i = yn+2,i − yn+1,iYn+2,n+1 − yn,iYn+2,n − . . .− y3,iYn+2,3
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for i = 1, 2.

Remark 6.1.5. Note that D+
2 resp. D−

2 is the extremal vectors from The-
orem 6.1.2 describing the homomorphism dual to the Dirac operator.

Proof. We will verify that the extremal vector from the theorem is annihi-
lated by the action of positive root space generators. This is sufficient to ver-
ify for X12, x23,Xi,i+1 (3 ≤ i ≤ n+1), Xn+2−j,n+2+j (1 ≤ j ≤ n−1), x2,2n+2

and x1,2n+3 (draw a matrix similar to (6.4) with g0 ' gl(2,C) ⊕ so(2n,C)
for general n).

















h1 X12 x13 . . . x1,n+2 x1,n+3 . . . x1,2n+2 x1,2n+3 0
Y21 h2 x23 . . . x2,n+2 x2,n+3 . . . x2,2n+2 0 −x1,2n+3

y31 y32 h3 . . . X3,n+2 X3,n+3 . . . 0 −x2,2n+2 −x1,2n+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
yn+2,1 yn+2,2 Yn+2,3 . . . hn+2 0 . . . −X3,n+3 −x2,n+3 −x1,n+3

yn+3,1 yn+3,2 Yn+3,3 . . . 0 −hn+2 . . . −X3,n+2 −x2,n+2 −x1,n+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y2n+2,1 y2n+2,2 0 . . . −Yn+1,3 −Yn,3 . . . −h3 −x2,3 −x1,3

y2n+3,1 0 −y2n+2,2 . . . −yn+3,2 −yn+2,2 . . . −y32 −h2 −X12

0 −y2n+3,1 −y2n+2,1 . . . −yn+3,1 −yn+2,1 . . . −y31 −Y21 −h1

















The weight λ = 1
2 [−2n−1

2 ,−2n+1
2 |12 , . . . , 1

2 ,−1
2 ] implies that Yn+3,jvλ = 0 for

3 ≤ j ≤ n+ 1 and Yj,kvλ = 0 for j ≤ n+ 1.

First we show that the extremal vector in question is annihilated by the
positive root spaces in g0.

(a) The action of X12.

X12D
+
1 D

−
2 = D+

1 X12D
−
2 + [X12,D

+
1 ]D−

2 =

= D+
1 D

−
2 X12 +D+

1 [X12,D
−
2 ] + [X12,D

+
1 ]D−

2

The commutator [X12,D
−
2 ] is zero, because X12 commutes with each sum-

mand in the definition (6.7) of D−
2 . Further, [X12,D

+
1 ] = −D+

2 because
[X12, yn+3,1] = −yn+3,2 and

[X12, yn+2−k,1Yn+3,n+2−k] = −yn+2−k,2Yn+3,n+2−k

for 1 ≤ k ≤ n− 1. Therefore,

X12D
+
1 D

−
2 = −D+

2 D
−
2

Similarly,

X12D
+
2 D

−
2 Y21 = D+

2 D
−
2 [X12, Y12] = D+

2 D
−
2 ,

because [X12, Y12]vλ = (h1 − h2)vλ = vλ for

λ = [−2n− 1

2
,−2n + 1

2
|1
2
, . . . ,

1

2
,−1

2
].

So, X12(D
+
1 D

−
2 +D+

2 D
−
2 Y21) = 0. The space g−2 is one-dimensional, gener-

ated by y2n+3,1. The action of X12 is X12y2n+3,1 = [X12, y2n+3,1] = 0 so we
see that X12y = 0 for y defined by (6.5).
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(b) The action of Xi,i+1 for 3 ≤ i ≤ n. Again, we have

Xi,i+1D
+
1 D

−
2 = [Xi,i+1,D

+
1 ]D−

2 +D+
1 [Xi,i+1,D

−
2 ]

and

Xi,i+1D
+
2 D

−
2 Y21 = [Xi,i+1,D

+
2 ]D−

2 Y21 +D+
1 [Xi,i+1,D

−
2 ]Y21

We will show that all the commutators are zero. We have

[Xi,i+1,D
+
1 ] = [Xi,i+1, yn+3,1 − yn+1,1Yn+3,n+1 − . . .− y31Yn+3,3].

The only nonzero terms here are [Xi,i+1,−yi+1,1Yn+3,i+1] = −yi,1Yn+3,i+1

and [Xi,i+1,−yi,1Yn+3,i] = yi,1Yn+3,i+1 and they cancel each other. Similarly,

[Xi,i+1,D
+
2 ] = [Xi,i+1, yn+3,2 − yn+1,2Yn+3,n+1 − . . .− y32Yn+3,3] =

= −yi,2Yn+3,i+1 + yi,2Yn+3,i+1 = 0,

[Xi,i+1,D
−
1 ] = [Xi,i+1, yn+2,1 − yn+1,1Yn+2,n+1 − . . .− y31Yn+2,3] =

= −yi,1Yn+2,i+1 + yi,1Yn+2,i+1 = 0,

[Xi,i+1,D
−
2 ] = [Xi,i+1, yn+2,2 − yn+1,2Yn+2,n+1 − . . .− y32Yn+2,3] =

= −yi,2Yn+2,i+1 + yi,2Yn+2,i+1 = 0.

The action of Xi,i+1 on g−2 is Xi,i+1y2n+3 = 0 as well. So, we are done for
Xi,i+1, 3 ≤ i ≤ n.

(c) Action of Xn+1,n+2. We have

[Xn+1,n+2,D
+
1 ] = [Xn+1,n+2, yn+3,1 − yn+1,1Yn+3,n+1 − . . .− y31Yn+3,3] = 0,

because all the summands inD+
1 commute withXn,n+1. Similarly, [Xn+1,n+2,D

+
2 ] =

0. The other commutators are nontrivial:

[Xn+1,n+2,D
−
1 ] = [Xn+1,n+2, yn+2,1 − yn+1,1Yn+2,n+1 − . . .− y3,1Yn+2,3] =

= yn+1,1 − yn+1,1(hn+1 − hn+2) − yn,1Yn+1,n − . . .− y3,1Yn+1,3,

[Xn+1,n+2,D
−
2 ] = [Xn+1,n+2, yn+2,2 − yn+1,2Yn+2,n+1 − . . .− y3,2Yn+2,3] =

= yn+1,2 − yn+1,2(hn+1 − hn+2) − yn,2Yn+1,n − . . .− y3,2Yn+1,3.

We obtain:

Xn+1,n+2(D
+
1 D

−
2 +D+

2 D
−
2 Y21) = D+

1 [Xn+1,n+2,D
−
2 ] +D+

2 [Xn+1,n+2,D
−
2 ] =

= D+
1 (yn+1,2 − yn+1,2(hn+1 − hn+2) − yn,2Yn+1,n − . . .− y3,2Yn+1,3) +

+D+
2 (yn+1,2 − yn+1,2(hn+1 − hn+2) − yn,2Yn+1,n − . . . − y3,2Yn+1,3)Y21.

The first term is zero, because Yn+1,n+1−j has zero action on vλ for 1 ≤ j ≤
n − 2 (because the weight λ has 1

2 both on the n + 1 and (n + 1 − j)’th

position) and yn+1,2(1 − (hn+1 − hn+2))vλ = yn+1,2(1 − (1
2 − (−1

2 )))vλ = 0.
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For the second term,

(yn+1,2 − . . .− y3,2Yn+1,3)Y21 = Y21(yn+1,2 − . . . − y32Yn+1,3) +

+[Y21, (yn+1,2 − . . .− y32Yn+1,3)] = −(yn+1,1 − yn+1,1(hn+1 − hn+2) −
−yn,1Yn+1,n − . . . − y3,1Yn+1,3),

and this is zero from the same reason as above. For the g−2 term, Xn,n+1y2n+3,1 =
[Xn,n+1y2n+3] = 0 as well.

(d) Action of Xn+1,n+3. The commutators are

[Xn+1,n+3,D
+
1 ] = [Xn+1,n+3, yn+3,1 − yn+1,1Yn+3,n+1 − . . .− y31Yn+3,3] =

= yn+1,1 − yn+1,1(hn+1 + hn+2) − yn,1Yn+1,n − . . .− y3,1Yn+1,3,

[Xn+1,n+3,D
+
2 ] = [Xn+1,n+3, yn+3,2 − yn+1,2Yn+3,n+1 − . . .− y32Yn+3,3] =

= yn+1,2 − yn+1,2(hn+1 + hn+2) − yn,2Yn+1,n − . . .− y3,2Yn+1,3,

[Xn+1,n+3,D
−
1 ] = [Xn+1,n+3,D

−
2 ] = 0.

Therefore,

Xn+1,n+3(D
+
1 D

−
2 +D+

2 D
−
2 Y21) =

= [Xn+1,n+3,D
+
1 ]D−

2 + [Xn+1,n+3,D
+
2 ]D−

2 Y21.

The first term is zero, because

= (yn+1,1 − yn+1,1(hn+1 + hn+2) − yn,1Yn+1,n − . . .− y3,1Yn+1,3)D
−
2 =

= yn+1,1D
−
2 − yn+1,1D

−
2 (hn+1 + hn+2) − yn+1,1[(hn+1 + hn+2),D

−
2 ] −

−yn+1,1[Yn+1,n,D
−
2 ] − . . .− y3,1[Yn+1,3,D

−
2 ],

because the action of Yn+1,j on vλ is zero for 3 ≤ j ≤ n. It is easy to check
from (6.7) that the commutators

[Yn+1,j,D
−
2 ] = −yn+1,2Yn+2,j + yn+1,2Yn+2,j = 0

and (hn+1 + hn+2)vλ = (1
2 − 1

2)vλ = 0, so we obtain

Xn+1,n+3D
+
1 D

−
2 = yn+1,1(D

−
2 − [(hn+1 + hn+2),D

−
2 ]).

A bit effort yields that [hn+1 + hn+2,D
−
2 ] = D−

2 , so

Xn+1,n+3D
+
1 D

−
2 = 0.

Similarly, we can show that Xn+1,n+3D
−
2 D

+
2 Y21 = 0 and clearly,

[Xn+1,n+3, y2n+3,1] = 0,

so it has zero action on g−2 as well.
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(e) Action of Xn+2−j,n+2+j for 2 ≤ j ≤ n−1. In this case, the commutators
are

[Xn+2−j,n+2+j,D
+
1 ] = [Xn+2−j,n+2+j, yn+3,1 − yn+1,1Yn+3,n+1 − . . . − y31Yn+3,3]

= −yn+3−j,1[Xn+2−j,n+2+j, Yn+3,n+3−j] − yn+2−j,1[Xn+2−j,n+2+j, Yn+3,n+2−j] =

(the other commutators are zero)

= yn+3−j,1Xn+2−j,n+2 − yn+2−j,1Xn+3−j,n+2,

[Xn+2−j,n+2+j,D
+
2 ] = yn+3−j,2Xn+2−j,n+2 − yn+2−j,2Xn+3−j,n+2 (similarly),

[Xn+2−j,n+2+j,D
−
1 ] = yn+3−j,1Xn+2−j,n+3 − yn+2−j,1Xn+3−j,n+3,

[Xn+2−j,n+2+j,D
−
2 ] = yn+3−j,2Xn+2−j,n+3 − yn+2−j,2Xn+3−j,n+3.

Therefore,

Xn+2−j,n+2+j(D
+
1 D

−
2 ) = [Xn+2−j,n+2+j,D

+
1 ]D−

2 =

= yn+3−j,1Xn+2−j,n+2D
−
2 − yn+2−j,1Xn+3−j,n+2D

−
2 ,

To show that this is zero, observe that the weight λ = 1
2 [−(2n− 1),−(2n+

1)|1, . . . , 1,−1] differs from the weight λ′ = 1
2 [−(2n−1),−(2n−1)|1, . . . , 1,−1]

from lemma 6.1.2 only on the second position and we know from that lemma
that the positive root spaces X in g0 have zero action on D−

2 vλ′ ; a simple
check shows that the second position in λ is not used in the computations
in this case.

Similarly, we can show that Xn+2−j,n+2+jD
+
2 D

−
2 Y21 = 0 and

Xn+2−j,n+2+jy2n+3,1 = 0

as well.

(f) Now, we compute the action of x23, a root space generator from g1. The
commutators are

[x23,D
+
1 ] = [x23, yn+3,1 − yn+1,1Yn+3,n+1 − . . . − y31Yn+3,3] =

= −Y21Yn+3,3,

[x23,D
+
2 ] = [x23, yn+3,2 − yn+1,2Yn+3,n+1 − . . . − y32Yn+3,3] =

= −Yn+3,3 + Yn+1,3Yn+3,n+1 + . . . + Y43Yn+3,4 − (h2 − h3)Yn+3,3 =

= −Yn+3,3 + (Yn+3,n+1Yn+1,3 + [yn+1,3, Yn+3,n+1]) + . . . − (Yn+3,3(h2 − h3) +

+[(h2 − h3), Yn+3,3]) = −nYn+3,3 − Yn+3,3(h2 − h3) + Yn+3,n+1Yn+1,3 + . . .

. . . + Yn+3,4Y43.
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Similarly, we obtain

[x23,D
−
1 ] = −Y21Yn+2,3,

[x23,D
−
2 ] = −nYn+2,3 − Yn+2,3(h2 − h3) + Yn+2,n+1Yn+1,3 + . . .

. . .+ Yn+2,4Y43.

Let us now compute

(6.8) x23D
+
1 D

−
2 = [x23,D

+
1 ]D−

2 +D+
1 [x23,D

−
2 ].

The first term is

[x23,D
+
1 ]D−

2 = −Y21Yn+3,3D
−
2 = −Yn+3,3Y21D

−
2 = −Yn+3,3D

−
2 Y21 −

−Yn+3,3[Y21,D
−
2 ] = −Yn+3,3D

−
2 Y21 + Yn+3,3D

−
1 = −Yn+3,3D

−
2 Y21 +

+[Yn+3,3,D
−
1 ],

where we used the relations [Y21,D
−
2 ] = −D+

2 and Yn+3,3vλ = 0.

The second term is

D+
1 [x23,D

−
2 ] = D+

1 (−nYn+2,3 − Yn+2,3(h2 − h3) + Yn+2,n+1Yn+1,3 + . . .

. . .+ Yn+2,4Y43) = D+
1 Yn+2,3(−n− (−2n+ 1

2
− 1

2
)) = D+

1 Yn+2,3

(the other terms are zero because Yk,3vλ = 0 for 4 ≤ k ≤ n + 1). So, (6.8)
is computed to be

(6.9) −Yn+3,3D
−
2 Y21 + [Yn+3,3,D

−
1 ] +D+

1 Yn+2,3.

Further, we compute

(6.10) x23D
+
2 D

−
2 Y21 = [x23,D

+
2 ]D−

2 Y21 +D+
2 [x23,D

−
2 ]Y21

We will show that the second term is zero:

[x23,D
−
2 ]Y21 = (−nYn+2,3 − Yn+2,3(h2 − h3) + Yn+2,n+1Yn+1,3 + . . .

. . .+ Yn+2,4Y43)Y21 = −nYn+2,3Y21 − Yn+2,3Y21(h2 − h3) −

−Yn+2,3[Y21, h2 − h3] = Yn+2,3Y21(−n− (−2n+ 1

2
− 1

2
) − 1) = 0,

where we used that Y21 commutes with Yk,3 and Yk,3vλ = 0 again. The first
term in (6.10) is

[x23,D
+
2 ]D−

2 Y21 = (−nYn+3,3 − Yn+3,3(h2 − h3) + Yn+3,n+1Yn+1,3 + . . .

. . .+ Yn+3,4Y43)D
−
2 Y21 = −nYn+3,3D

−
2 Y21 − Yn+3,3D

−
2 (h2 − h3)Y21 −

−Yn+3,3[h2 − h3,D
−
2 ]Y21 + Yn+3,n+1Yn+1,3D

−
2 Y21 + . . .+ Yn+3,4Y43D

−
2 Y21.

The commutator

[Xk,3,D
−
2 ] = [Xk,3, yn+2,2 − yn+1,2Yn+2,n+1 − . . . − y32Yn+2,3] =

[Xk,3,−yk,2Yn+2,k] − [Xk,3, y32Yn+2,3] (the other terms are zero) =

= yk,2Yn+2,3 − yk,2Yn+2,3 = 0

for 4 ≤ k ≤ n+ 1. Therefore,

Yn+3,kYk,3D
−
2 Y21 = Yk,3D

−
2 Y21Yn+3,k = 0
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because Yn+3,kvλ = 0. Another few calculations show that the commutator

[h2 − h3,D
−
2 ] = −D−

2 .

We obtain

[x23,D
+
2 ]D−

2 Y21 = −nYn+3,3D
−
2 Y21 − Yn+3,3D

−
2 Y21(h2 − h3) −

−Yn+3,3D
−
2 [h2 − h3, Y21] + Yn+3,3D

−
2 Y21 =

= Yn+3,3D
−
2 Y21(−n− (−2n+ 1

2
− 1

2
) − 1 + 1) = Yn+3,3D

−
2 Y21.

So, (6.10) is equal to

(6.11) Yn+3,3D
−
2 Y21.

Summing up (6.9) and (6.11) we obtain

(6.12) x23(D
+
1 D

−
2 +D+

2 D
−
2 Y21) = [Yn+3,3,D

−
1 ] +D+

1 Yn+2,3.

The commutator is

[Yn+3,3,D
−
1 ] = [Yn+3,3, yn+2,1 − yn+1,1Yn+2,n+1 − . . . − y31Yn+2,3] =

= −y2n+2,1 − yn+2,1Yn+4,3 − yn,1Yn+5,3 − . . .− y41Y2n+1,3 −
−yn+3,1Yn+2,3

and

D+
1 Yn+2,3 = (yn+3,1 − yn+1,1Yn+3,n+1 − . . .− y31Yn+3,3)Yn+2,3 =

= yn+3,1Yn+2,3 − yn+1,1(Yn+2,3Yn+3,n+1 + [Yn+3,n+1, Yn+2,3]) − . . .

. . .− y41(Yn+2,3Yn+3,4 + [Yn+3,4, Yn+2,3]) − y31Yn+2,3Yn+3,3.

Because Yn+3,kvλ = 0 for 3 ≤ k ≤ n+ 1 and the commutators are

[Yn+3,k, Yn+2,3] = −Y2n+5−k,3

for 4 ≤ k ≤ n+ 1 and [Yn+3,3, Yn+2,3] = 0, we obtain

D+
1 Yn+2,3 = yn+3,1Yn+2,3 + yn+1,1Yn+4,3 + yn,1Yn+5,3 + . . . + y41Y2n+1,3.

Summing this with the above equation, we obtain that (6.12) is equal to
−y2n+2,1.

Further the action of x23 on y2n+3,1 is

x23y2n+3,1 = [x23, y2n+3,1] = −y2n+2,1.

We obtain the desired equality

x23(D
+
1 D

−
2 +D+

2 D
−
2 Y21 − y2n+3,1) = 0.
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(g) The action of x2,2n+2. We will skip the details for now. The commutators
are

[x2,2n+2,D
+
1 ] = y31Y2,n+2,

[x2,2n+2,D
+
2 ] = (n− 1)X3,n+2 − Yn+3,n+1X3,n+4 − Yn+3,nX3,n+5 − . . .−

−Yn+3,4X3,2n+1 − y32x2,n+2,

[x23,D
−
2 ] = (n− 1)X3,n+3 − Yn+2,n+1X3,n+4 − Yn+2,nX3,n+5 − . . .−

−Yn+2,4X3,2n+1 − y32x2,n+3.

Further, we obtain

(6.13) x2,2n+2D
−
1 D

+
2 = [x2,2n+2,D

+
1 ]D−

2 +D+
1 [x2,2n+2,D

−
2 ]

The second term is zero, because the commutator contains positive root
spaces on the end of each term, so (6.13) is

y31x2,n+2D
−
2 = y31[x2,n+2,D

−
2 ] = y31((h2 − hn+2) + (h3 − hn+2) − . . .

. . .− (hn+1 − hn+2)) = y31(−n+ (n− 1)) = −y31.

For the second part,

x2,2n+2D
+
2 D

−
2 Y21 = [x2,2n+2,D

+
2 ]D−

2 Y21 = (n− 1)X3,n+2 − Yn+3,n+1X3,n+4 −
−Yn+3,nX3,n+5 − . . .− Yn+3,4X3,2n+1 − y32x2,n+2.

The action of X3,n+2 and X3,n+k for 4 ≤ k ≤ n+ 1 on D−
2 Y21 can be easily

computed to be zero. Further,

[x2,n+2,D
−
2 ]Y21 = ((h2 − hn+2) + (h3 − hn+2) − . . .− (hn+1 − hn+2))Y21 =

= Y21((h2 − hn+2) + . . .+ (hn+1 − hn+2)) + Y21 = Y21(−1 + 1) = 0.

Finally,

x2,2n+2y2n+3,1 = [x2,2n+2, y2n+3,1] = −y31

and the action of x2,2n+2 on (6.5) is zero.

(h) The action of x1,2n+3. Because this is from g2, the action on 6.5 is

(6.14) [x1,2n+3,D
+
1 ]D−

2 + [x1,2n+3,D
+
2 ]D−

2 Y21 + [x1,2n+3,−y2n+3,1]

The last term is clearly h1 + h2 = −2n−1
2 − 2n+1

2 = −2n. For the first term,

[x1,2n+3,D
+
1 ] = x2,n+2 − x2,n+4Yn+3,n+1 − x2,n+5Yn+3,n . . .− x2,2n+2Yn+3,3

[x2,n+2,D
−
2 ] = (h2 − hn+2) + (h3 − hn+2) + . . .+ (hn+1 − hn+2) = −1

−x2,n+3+kYn+3,n+2−kD
−
2 =

∑

2≤j≤n+1,j 6=n+2−k

(hn+2−k + hj) +

+(hn+2−k − hn+2)
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for 1 ≤ k ≤ n− 1. Summing this and substituting for hj the coordinates of
λ, we obtain

x1,2n+3D
+
1 D

−
2 = −n.

For the second term of (6.14) we obtain

[x1,2n+3,D
+
2 ] = −x1,n+2 + x1,n+4Yn+3,n+1 + x1,n+5Yn+3,n . . .+ x1,2n+2Yn+3,3,

[−x1,n+2,D
−
2 ]Y21 = −X12Y21 = −[X12, Y21] = −1,

x1,n+3+kYn+3,n+2−kD
−
2 Y21 = −X12Y21 = −1

for 1 ≤ k ≤ n− 1. Summing this we obtain

x1,2n+3D
+
2 D

−
2 Y21 = −n.

We see that the action of x1,2n+3 on (6.5) is again (−n−n−(−2n)) = 0. �

We know from lemma 5.1.1 that the homomorphism Mp(µ) →Mp(λ) is not
standard. We showed that the BGG graph and the singular Hasse graph
coincide. Let us denote the weights in this graph by λ, µ, ν, ξ:

(6.15) • 1
2 [−1,−3| . . . , 3, 1] − δ = ξ

• 1
2 [1,−3| . . . , 3, 1] − δ = ν

• 1
2 [3,−1| . . . , 3, 1] − δ = µ

• 1
2 [3, 1| . . . , 3, 1] − δ = λ

Similarly as in the last theorem (it is, in fact much easier, but we omit the
computations), we could prove the following:

Theorem 6.1.6. The homomorphism Mp(ξ) → Mp(ν) is given by the ex-
tremal vector

D−
1 +D−

2 Y21

where D−
1 and D−

2 are again defined by (6.7).

Theorem 6.1.7. The BGG graph above is a complex.

Proof. Let λ, µ, ν, ξ be the weights as in the picture above. We will show

that the composition Mp(ν)
i→Mp(µ)

j→Mp(λ) is zero. This is zero exactly
if j ◦ i sends the highest weight vector in Mp(ν) to zero. Let α = 1 ⊗ vλ
be the highest weight vector in Mp(λ). We know that the map j sends the
highest weight vector 1 ⊗ vµ in Mp(µ) to yext ⊗U(p) vλ where yext = D+

2

(see Theorem 6.1.2). We will denote it, for simplicity, yextα. Because j is
a g-homomorphism, it sends ỹ ⊗U(p) vµ to ỹyextα for any ỹ ∈ U(g). The
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composition j ◦ i sends 1⊗ vν to ỹyextα, where ỹ is the extremal vector from
Theorem 6.1.4. Therefore, we need to show that

(D+
1 D

−
2 +D+

2 D
−
2 Y21 − y2n+3,1)D

+
2

has zero action on vλ. Recall now that λ = [. . . , |12 , . . . , 1
2 ] so now the action

of Yi,j on vλ is zero for i ≤ n+ 2. First, we compute the term D−
2 D

+
2 that

we will denote by ∆2. A few computations yield a very nice and symmetric
expression

∆2 = y2n+2,2y32 + y2n+1,2y42 + . . . yn+3,2yn+2,2

Moreover, assuming the weight λ′ = [. . . |12 , . . . , 1
2 ,−1

2 ] (corresponding to

the S− representation), we obtain the same expression ∆2 = D+
2 D

−
2 in that

case. Note that Y21vλ = 0, because λ(Hα1) = λ(h1 − h2) = 0. We compute

D+
1 D

−
2 D

+
2 +D+

2 D
−
2 Y21D

+
2 = D+

1 ∆2 +D+
2 D

−
2 [Y21,D

+
2 ] =

= D+
1 ∆2 −D+

2 D
−
2 D

+
1

For the second term, note that D+
1 vλ is a weight vector of weight

[−2n + 1

2
,−2n− 1

2
|1
2
, . . . ,

1

2
,−1

2
]

It is not p-dominant but, however, similarly as for µ, the action of Yn+3,k is

zero on such weight vectors and we easily compute that the action of D+
2 D

−
2

on such weight vectors is again equal to ∆2. Therefore, the equation above
is equal to

[D+
1 ,∆2] =

[

(yn+3,1 − yn+1,1Yn+3,n+1 − . . .− y3,1Yn+3,3), (y2n+2,3y32 + . . .

. . . + yn+3,2yn+2,2)
]

.

The commutators are

[yn+3,1,∆2] = [yn+3,1, yn+3,2yn+2,2] = yn+3,2y2n+3,1 = y2n+3,1yn+3,2,

[−yj,1Yn+3,j,∆2] = −yj,1[Yn+3,j,∆2] − [yj,1,∆2]Yn+3,j =

= −yj,1[Yn+3,j, yj,2y2n+5−j,2 + yn+3,2yn+2,2] − [yj,1, y2n+5−j,2]Yn+3,j =

(the other commutators are zero)

= −yj,1(yn+3,2y2n+5−j,2 − yn+3,2y2n+5−j,2) − y2n+3,1Yn+3,j =

= −y2n+3,1Yn+3,j

for 3 ≤ j ≤ n+ 1. So, we proved that

[D+
1 ,∆2] = y2n+3,1D

+
2 ,

and it follows that

(D+
1 D

−
2 +D+

2 D
−
2 Y21 − y2n+3,1)D

+
2 = 0.

We will show now that the composition Mp(ξ) → Mp(ν) → Mp(µ) is zero.
Using Theorem 6.1.6 we have to prove that the action of

(6.16) (D−
1 +D−

2 Y21)(D
+
1 D

−
2 +D+

2 D
−
2 Y21 − y2n+3,1)
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on vµ is zero. Note that the action of D+
2 D

−
2 on vµ is ∆2 and similarly,

D+
1 D

−
1 = y2n+2,1y31 + y2n+1,1y41 + . . . yn+3,1yn+2,1 =: ∆1.

We can easily check that if D−
1 D

+
1 acts on a weight vector with weight

[. . . |12 , . . . , 1
2 ] (the S+-representation of the so-part), then D−

1 D
+
1 = ∆1 as

well. We adjust (6.16):

(D−
1 +D−

2 Y21)(D
+
1 D

−
2 +D+

2 D
−
2 Y21) = D−

1 D
+
1 D

−
2 +D−

1 D
+
2 D

−
2 Y21 +

+D−
2 Y21D

+
1 D

−
2 +D−

2 Y21D
+
2 D

−
2 Y21 =

= ∆1D
−
2 +D−

1 ∆2Y21 +D−
2 D

+
1 Y21D

−
2 +D−

2 [Y21,D
+
1 ]D−

2 +

+D−
2 D

+
2 Y21D

−
2 Y21 +D−

2 [Y21,D
+
2 ]D−

2 Y21.

The commutators are [Y21,D
+
1 ] = 0, [Y21,D

+
2 ] = −D+

1 and [Y21,D
−
2 ] =

−D−
1 , so we have

. . . = ∆1D
−
2 +D−

1 ∆2Y21 +D−
2 D

+
1 D

−
2 Y21 +D−

2 D
+
1 [Y21,D

−
2 ] +

+D−
2 D

+
2 D

−
2 Y21Y21 −D−

2 D
+
2 D

−
1 Y21 −D−

2 D
+
1 D

−
2 Y21.

Further, note that Y21Y21vµ = 0 because, as a representation of the copy
of sl(2,C) generated by Hα1,X12, Y21, Vµ generates an irreducible repre-

sentation. But Hα1(vµ) = µ(h1 − h2) = −2n−1
2 − (−2n+1

2 ) = 1, so this

representation is 2-dimensional and Y 2
21vµ = 0. Continuing, we get

. . . = ∆1D
−
2 −D−

2 ∆1 + (D−
1 ∆2 − ∆2D

−
1 )Y21 =

= [∆1,D
−
2 ] + [D−

1 ,∆2]Y21

Some more computations yields that

[∆1,D
−
2 ] = y2n+3,1D

−
1 = D−

1 y2n+3,1 and [D−
1 ,∆2]Y21 =

= y2n+3,1D
−
2 Y21 = D−

2 Y21y2n+3,1

This proves that (6.16) acts trivial on vµ.

�

6.2. Translation of the extremal vector to an operator. Let us con-
sider the weights λ, µ, ν, ξ defined by (6.15). We will now revise the results of
4.5 (in case k = 2) and add some further comments on that. We start with a
complex Lie algebra so(C, β) of matrices 2(n+2)×2(n+2) fixing the scalar
product β(x, y) =

∑

j xjy2n+5−j. The homomorphism Mp(µ) → Mp(λ) is

described by the extremal vector D+
2 = yn+3,2−yn+1,2Yn+3,n+1 . . .−y32Yn+3,3

in our standard formalism. We choose another product

γ(x, y) = x1x2n+4 + x2x2n+3 +
2n+2
∑

j=3

x2
j ,

of signature (2n + 2, 2). We denote the Lie algebra of real matrices fixing
this scalar product by so(2(n+2), γ). Its complexification so(2(n+2), γ)c '
so(C, γ) is isomorphic to the complex Lie algebra so(C, β), because all com-
plex scalar products are conjugate. It is easy to check that the explicit
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isomorphism ϕ : so(C, β) → so(C, γ) is given, in matrices, by A 7→ C−1AC
where γ = CtβC and

C =



























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 1√
2

0 0 −i√
2

0 0

0 0 0 1√
2

−i√
2

0 0 0

0 0 0 1√
2

i√
2

0 0 0

0 0 1√
2

0 0 i√
2

0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



























for n = 2 and analogously for larger n. Let p be the real Lie subalgebra
of so(2(n + 2), γ) such that in the associated gradation g0 = gl(2,R) ⊕
so(2n). We showed in 4.2 that for a complex representation V of the complex
Lie algebra so(C, γ)c (being also a representation of the real Lie algebra
so(2(n + 2), γ) by restriction)

U(so(2(n + 2), γ)) ⊗U(p) V ' U(so(C, γ)) ⊗U(pc) V ' U(so(C, β)) ⊗U(p′) V,

where p′ = ϕ(pc) is the parabolic subalgebra of so(C, β) given by Σ = {α2}.
The homomorphism Mp(µ) → Mp(λ) maps the highest weight vector in
Mp(µ) to D+

2 ⊗U(p′) vλ = (y52 − y32Y53) ⊗U(p′) vλ in the case n = 2 (see
6.1.2). However, for the Verma modules induced by so(C, γ) the extremal

vector is D̃+
2 = (ϕ(y52)−ϕ(y32)ϕ(Y53))⊗U(p) vλ where ϕ is the isomorphism

so(C, β) → so(C, γ). We denote, for simplicity, ỹij := ϕ(yij) and will omit

the tilde in D̃±
i . We obtain

(6.17)

ỹ52 =
1
√

2























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 −i 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 i 0 0 0
0 0 0 0 0 0 0 0























ỹ32 =
1
√

2























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 −1 0 0 −i 0 0
0 0 0 0 0 0 0 0























Let g = so(2(n+2), γ) be the real Lie algebra and p its parabolic subalgebra,
inducing the gradation of g. We know that gss0 ' sl(2,R) ⊗ so(2n) and as
a gss0 -module, g−1 ' (R2)∗ ⊗ R2n. We can define natural coordinates on
g−1 denoted by y1,1, . . . , y1,2n, y2,1, . . . , y2,2n such that if {ε1, ε2} is a basis
of (R2)∗ dual to e1, e2 and ej is a basis of R2n so εj ⊗ ek has coordinates
yjk = 1 and ymn = 0 for m 6= j or n 6= k. In 4.5, we identified sections
of Spin(2(n + 2), γ) ×P S

± with spinor valued functions on g− and further
restricted to functions that are only functions on g−1. Let f : R4n → S− be
such a function and Df its image, where D is the differential operator dual
to the real Verma modules homomorphism. We showed that D = (D1,D2),
where Di is the Dirac operators

∑

j ej
∂
∂yij

. Let s+, resp. s−, be the highest

weight vector in S+ resp. S− as so(2n)-modules. As a gss0 -modules, V∗
λ ' S−

and V∗
µ ' C2 ⊗ S+ for n odd and V∗

λ ' S+ and V∗
µ ' C2 ⊗ S− if n is

even. We will assume the first case, the other one is similar. The module
Vµ ' (C2)∗ ⊗ S− has a highest weight vector ε2 ⊗ s−. Then we know from
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(2.3) and (6.17) that

(ε2 ⊗ s−)(Df(0)) =
1√
2

∂

∂y22
s+(f)|0 +

−i√
2

∂

∂y23
s+(f)|0 −

− 1√
2

∂

∂y21
(Ỹ53s

+)(f)|0 −
i√
2

∂

∂y24
(Ỹ53s

+)(f)|0.(6.18)

The left hand side is equal to s−((D2f)(0)) and the right hand side can be
interpreted as the action of D+

2 on s+(f). Formally,

s−((D2f)(0)) = D+
2 (s+)(f),

and for any u = Y1 . . . Yk a product of negative root spaces in so(2n)

(us−)((D2f)(0)) = (uD+
2 )(s+)(f)(6.19)

(such us− generate all S−). Similarly,

(Y21ε2 ⊗ s−)((Df)(0)) = (Y21D
+
2 )(s+)(f).

The left hand side is −ε1⊗s− (because the action of the negative root space
Y21 in sl(2,C) on ε2 is −ε1) and for the right hand side, note that Y21vλ = 0,
because all the sl(2,R) acts trivially on Vλ = C ⊗ S+. So, we obtain

(−ε1 ⊗ s−)((Df)(0)) = [Y21,D
+
2 ](s+)(f) = −D+

1 (s+)(f),

(because we know from the proof of Theorem 6.1.7 that [Y21,D
+
2 ] = −D+

1 )
and

(s−)((D1f)(0)) = D+
1 (s+)(f).

Both sides are equal to an equation that differs from (6.18) only by differ-
entiating ∂

∂y1j
instead of ∂

∂y2j
. Similarly as in (6.19), we obtain that for any

product u = Y1 . . . Yk of negative root spaces in so(2n),

(us−)((D1f)(0)) = (uD+
1 )(s+)(f).(6.20)

Informally, we can say that the action of D+
2 or D+

1 on f is the action of D1

or D2.

Similarly, if we start with representations Vλ′ = S− and Vµ′ = (C2)∗ ⊗ S+,

the D−
2 and D−

1 would act as D2 and D1.

Now consider the homomorphism Mp(ν) → Mp(µ). As gss0 -modules, Vν =
Vµ ' (R2)∗ ⊗ S−. Let us denote by D the operator dual to the Verma
module homomorphism Mp(ν) → Mp(µ) and again, restrict it to functions
on g−1. The extremal vector is D+

1 D
−
2 + D+

2 D
−
2 Y21 − ỹ2n+3,1 (see 6.1.4).

The highest weight vector in V∗
ν is again ε2 ⊗ s+ and the duality in (2.3)

yields

(ε2 ⊗ s−)(Dg)(0) = (D+
1 D

−
2 +D+

2 D
−
2 Y21)(ε2 ⊗ s−)(g),(6.21)

where on the right hand side, the symbols D±
i acts by differentiating, sim-

ilarly as in (6.18) and the derivations are evaluated in 0. Note that we
omitted the term ỹ2n+3,1, because it is from g−2 and we assume that the
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function f is constant in the g−2, so differentiating in this direction is trivial.
So, D acts between the spaces

D : C∞((R2)∗ ⊗ R2n,R2 ⊗ S+) → C∞((R2)∗ ⊗ R2n,R2 ⊗ S+).

We can again define the components D1,D2 of D so that

D :

(

g1
g2

)

7→
(D1(g1, g2)

D2(g1, g2)

)

,

where g1, g2 are functions on g−1. The left side of (6.21) says that it describes
the second component D2. The terms on the right are

D+
1 D

−
2 (ε2 ⊗ s−)(g) = D+

1 D
−
2 (s−g2),

and

D+
2 D

−
2 Y21(ε2 ⊗ s−)(g) = D+

2 D
−
2 (−ε1 ⊗ s−)(g) = −D+

2 D
−
2 (s−g1),

so (6.21) reads

s−(D2(g)(0)) = D+
1 D

−
2 (s−g2) −D+

2 D
−
2 (s−g1).

Let u = Y1 . . . Yk be some products of negative root spaces in so(2n). Then

(6.22) us−(D2(g)(0)) = uD+
1 D

−
2 (s−g2) − uD+

2 D
−
2 (s−g1).

We know already that D−
2 (s−gi)(0) = s+(D2gi(0)), where D2 is the Dirac

operator in variables y21, . . . , y2,2n. Because (2.3) holds not only in zero but
everywhere, we can easily show that D−

2 (s−gi) = s+(D2gi) everywhere. The
function gi is S+-valued, so D2gi is S−-valued and we know from (6.19) and
(6.20) that

uD+
j D

−
2 (s−gi) = uD+

j (s+(D2gi)) = us−(DjD2gi) (j = 1, 2).

Substituting the left hand side into (6.22) we get

us−(D2(g1, g2)) = us−(D1D2g2 −D2D2g1).

This holds for any u and the spinors us− generate all S−, so we obtain that
the second component of the operator D is the following combination of
Dirac operators:

D2(g1, g2) = D1D2g2 −D2D2g1.

To determine the first component, we apply the action of Y21 on (6.21):

(6.23) (−ε1 ⊗ s−)(Dg)(0) = Y21(D
+
1 D

−
2 +D+

2 D
−
2 Y21)(ε2 ⊗ s−)(g).

Recall the commutators [Y21,D
+
1 ] = 0, [Y21,D

+
2 ] = −D+

1 and [Y21,D
−
2 ] =

−D−
1 , so we compute

Y21(D
+
1 D

−
2 +D+

2 D
−
2 Y21)(ε2 ⊗ s−) = (D+

1 D
−
2 Y21 −D+

1 D
−
1 +D+

2 Y21D
−
2 Y21 −

−D+
1 D

−
2 Y21)(ε2 ⊗ s−) = (D+

1 D
−
2 Y21 −D+

1 D
−
1 −D+

2 D
−
1 Y21 −

−D+
1 D

−
2 Y21)(ε2 ⊗ s−) = (−D+

1 D
−
1 −D+

2 D
−
1 Y21)(ε2 ⊗ s−).

So, applying a similar argument as for D2, we see that

D1(g1, g2) = D1D1g2 −D2D1g1.
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We see that we have found a principle, how to translate extremal vector
expressions that are in terms of D±

i into operator. The method could be
summarized by this:

• The extremal vector describes the last component of the operator
• The symbols D+

j1
D−
j2
D+
j3
. . . are translated to the composition of

Dirac operators Dj1Dj2 . . . acting on g2
• The symbols D+

j1
D−
j2
D+
j3
. . . D±

jk
Y21 are translated to the composition

of Dirac operators Dj1Dj2 . . . acting on −g1

Now, we can easily determine the explicit form of the operator dual to
Mp(ξ) →Mp(ν). We know that Vξ ' C ⊗ S+, so the operator has only one
component in this case. In Theorem 6.1.6 we found the extremal vector to
be D−

1 +D−
2 Y21 so we see that the operator is described by

(

h1

h2

)

7→ D1g2 −D2g1.

The same sequence of differential operators was derived in [18] by algebraic
methods as a resolution of 2 Dirac operators. We showed, however, that
this operators are invariant with respect to the action of sl(2,R)× Spin(2n)
and even more, by choosing the proper generalized conformal weight, this
operators are even G-invariant, where the action of G includes translations
((g1(x, y), g2(x, y)) 7→ (g1(x + u, y + v), g2(x + u, y + v)) and all actions of
elements from P . This is an analogue of the invariance of the usual Dirac
operator not only with respect to Spin but also to all conformal transforma-
tions.

Note that we used the realization Vν ' (C2)∗ ⊗ S− as gss0 -module. But
(C2)∗ ' (C2) as sl(2,R)-modules, so we could use the identification Vν '
C2 ⊗ S− instead. The difference is that for e1, e2 being a basis of C2, e1 is
the highest weight vector and Y21e1 = e2 (not −e2). So, the operator D′

derived by this way would be D′
1 = D2 and D′

2 = −D1. The third operator
would be (h1, h2) 7→ D1h2 +D2h1.

Finally, let us remark that in case of the Dirac operator in k variables, the
first four vertices in the BGG graph representing the weights

λ+ δ =
1

2
[. . . , 5, 3, 1| . . . , 3, 1]

µ+ δ =
1

2
[. . . , 5, 3,−1| . . . , 3,−1]

ν + δ =
1

2
[. . . , 5, 1,−3| . . . , 3,−1]

ξ + δ =
1

2
[. . . , 5,−1,−3| . . . , 3, 1]
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are connected by arrows λ → µ, µ → ν and ν → ξ. The existence of a
nonzero homomorphism Mp(µ) → Mp(λ) and Mp(ξ) → Mp(ν) was shown
in Theorem 5.1.4 and the existence of a nonzero homomorphism Mp(ν) →
Mp(µ) can be shown by proving that the corresponding extremal vector is
D+
k−1D

−
k + D+

k D
−
k Yk,k−1 − y2n+k+1,k, similarly as in Theorem 6.1.4, where

D±
k and D±

k−1 are defined analogously as (6.6), (6.7). There is no difference

in the computations. As gss0 -modules, V∗
µ ' Ck ⊗ S+, but V∗

ν is some
more complicated representation of dimension l ∈ N. If we identify V∗

ν '
Cl ⊗ S+, then the second order operator D has l components. From the
above analysis, we can easily derive that if εl is the highest weight vector in
Vν ' (Cl)∗ (as sl(k,R)-module) then l-th component of the operator D is

Dl(g1, . . . , gk) = Dk−1Dkgk −DkDkgk−1

where Dk,Dk−1 are the Dirac operator in the k-th, resp. (k−1)’th, variable.

The composition Mp(ν) → Mp(µ) → Mp(λ) is still zero but Mp(ξ) →
Mp(ν) →Mp(µ) is nonzero for k > 2.

80



References

[1] Adams W. W., Berenstein C. A., Loustaunau P., Sabadini I., Struppa D. C., Regular

functions of several quaternionic variables and the Cauchy–Fueter complex, J. Geom.
Anal., 9, 1 (1999), 1–15.

[2] Adams W. W., Loustaunau P., Palamodov V. P., Struppa D. C., Hartogs’ phenom-

enon for polyregular functions and projective dimension of related modules over a

polynomial ring, Ann. Inst. Fourier, 47 (1997), 623–640.
[3] Atiyah M. F., Bott R., Patodi V. K., On the heat equation and the index theorem,

Invent. math. 19 (1973), 279–330.
[4] Baston R. J., Quaternionic Complexes, J. Geom. Phys. 8, 1–4 (1992), 29–52.
[5] Bernstein I.N., Gelfand I.M., Gelfand S.I., Differential Operators on the Base Affine

Space and a Study of g-Modules, Lie Groups and Their Representations, I. M. Gelfand,
Ed., Adam Hilger, London, 1975.

[6] Bernstein I.N., Gelfand I.M., Gelfand S.I., Structure of Representations that are gen-

erated by vectors of highest weight, Functional. Anal. Appl. 5 (1971).
[7] Bjorner, A., Brenti, F., Combinatorics of Coxeter groups, Springer, 2005.
[8] Boe B., Homomorphisms between generalized Verma modules, Trans. Amer. Math.

Soc. 288, no. 2 (1985), 791–799.
[9] Bracks, F., Delanghe R., Sommen F., Clifford analysis, Research notes in mathematics

76, Pitman, Boston, London, Melbourne, 1982.
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