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Problem formulation

Consider a system

Ax=0b

where A € R™*" is symmetric, positive definite.

@ A is large and sparse,
@ we do not need exact solution,

@ we are able to perform Av effectively (v is a vector) .

Without loss of generality,

]| = 1, 2o = 0.



The conjugate gradient method

input A, b

ro = b, po =10
for k=1,2,... do

T
5 T 1Tk—1
k=1 =
Pr_1Apr_1
T = Tg-1+ Vk—1Pk-1
T = Th—1— Vk—1ADpr_1
T’g?"k
Te—1Tk—1
Pk = T+ OpDPr—1

test quality of z

end for



Mathematical properties of CG

optimality property

The kth Krylov subspace,
Ki(A,b) = span{b, Ab,..., A*"1b} .
CG — Tk, Tk, Pk

@ residuals rg,...,rp_1 form an orthogonal basis of ICx(A,b),
@ vectors po, . ..,pr—1 form an A-orthogonal basis of Ky (A,b),
@ CG finds the solution of Ax = b in at most n steps.

@ The CG approximation xj, is optimal

|z — 2i][a = min lz —ylla-



A practically relevant question

How to measure quality of an approximation?

@ using residual information,
— normwise backward error,
— relative residual norm.
“Using of the residual vector r; as a measure of the “goodness” of
the estimate xj, is not reliable” [Hestenes & Stiefel 1952]

@ using error estimates,
— estimate of the A-norm of the error,
— estimate of the Euclidean norm of the error.
“The function (z — zx, A(x — x1)) can be used as a measure of the
“goodness” of xj; as an estimate of x." [Hestenes & Stiefel 1952]

The (relative) A-norm of the error plays an important role
in stopping criteria in many problems [Deuflhard 1994], [Arioli 2004],
[Jirdnek, Strakos, Vohralik 2006]



The Lanczos algorithm

Let A be symmetric, compute orthonormal basis of i (A,d)

input A, b
v = b/[b]|, 61 =0
Bo=0,v9=0 Ty
fork=1,2,... do ar fr
o = ngvk 8
w = Avp — apvp — Br-1Vk—1 _
B = [l o P

V1 = w/ﬁk Br—1 Qg

end for

Avg = Brvgs1 + vk + Br—1vk—1 -
The Lanczos algorithm can be represented by

AV, = ViTi+Broriel,  ViVi=1.



CG versus Lanczos

Let A be symmetric, positive definite
The CG approximation is the given by
xp = Vipyr where Tpuyr = ||b]ler,
and

k Tk

= (-1 .
vt = DM

CG generates LDL™ factorization of T}, = LkaL;‘g where
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CG versus Lanczos

Summary

@ Both algorithms generate an orthogonal basis of the Krylov
subspace i (A,b).

@ Lanczos generates an orthonormal basis vy, ..., v using
a three-term recurrence — T.

@ CG generates an orthogonal basis rg, ..., r,_1 using
a coupled two-term recurrence — LDL™ factorization of T}.

@ |t holds that
k Tk

= (—1)"——.
ver1 = D



Orthogonal vectors — orthogonal polynomials

@ residuals rg,...,r,_1 form an orthogonal basis of Kx(A,b),
@ “CG is a polynomial method”,

k—1
veEKp(AD) = v=> (Ab=q(A)
j=0

where ¢ is a polynomial of degree at most k& — 1.

@ Notation: 7 = qx(A)b, A = UAUT, b = Uw. Fori # j

0 = rTrj =0T gi(A)g;(A) = & gi(A)g;(A)w

7
N

= Y wia(Me)gi(Xe) = (Gir @ -
=1

@ CG implicitly constructs a sequence of orthogonal polynomials.
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Distribution function w(\)

N
A, b — <'7'>w,/\: <fvg>w,A = Zwtgf()‘l)g(/\ﬁ)'
(=1

Define the function w(\),
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Orthogonal polynomials and Gauss Quadrature

General theory

Quadrature formula
3
a0y = Yuif ) + Rl

Gauss Quadrature formula:
@ Maximal degree of exactness 2k — 1

@ Weights and nodes can be computed using orthogonal
polynomials (e.g. v; are the roots).

@ Orthogonal polynomial can be generated by a three-term
recurence. Coefficients — Jacobi matrix.

@ Gauss quadrature weight and nodes can be computed from
the corresponding Jacobi matrix.
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CG, Lanczos and Gauss quadrature

At any iteration step k, CG (implicitly) determines weights and
nodes of the k-point Gauss quadrature

n

| ) = 3w re®) + Ryl

i=1

T}, ... Jacobi matrix, Hl(k) ... eigenvalues of T, wqgk") ...scaled and
squared first components of the normalized eigenvectors of T.

f(\) = A7! . Lanczos-related quantities:
-1 o -1 -1
(T” )1,1 - (T’f )1,1+Rk[)\ I

CG-related quantities

k—1

lzla = D lirsll® + o — i -
j=0
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CG, Orthogonal polynomials, and Quadrature

Overview

CG, Lanczos,
algorithms

Gauss Quadrature
nodes, weights

(™).,

(E25

k—1

J=0

Orthogonal polynomials
Jacobi matrices

(Tit),, + Rl

> il + Nl — e la -
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So why we need quadrature approach?

More general quadrature formulas

k m
f CFdu) = S wif () £ > @, 0) + Rl
: i=1 j=1

the weights [w;]F_;, [w;]72, and the nodes [v;]¥_, are unknowns,
[ﬁj]g”zl are prescribed outside the open integration interval.

m = 1. Gauss-Radau quadrature. Algebraically: Given pu = vy,
find &11 so that p is an eigenvalue of the extended matrix

o1 B
N B
L1 = e B
Br-1 o B
Br Qg1

Quadrature for f(\) = A~! is given by (T;Zil)l 1
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Quadrature formulas

Golub - Meurant - Strako$ approach

Quadrature formulas for f(\) = A~! take the form

(T’Il)m - (lel)l,l + R’(fG)’
(1), - (37),, + R

and R,&m > 0 while R,({R) < 0 if p < Amin- Equivalently

Izl = 7 + o —ala,

~ R
lzli = 7 + RS,

where 7, = (T,;l)m, T = (lel)l,l'

[Golub & Meurant 1994, 1997, 2010, Golub & Strako$ 1994]
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|dea of estimating the A-norm of the error

Consider two quadrature rules at steps k and k£ + d, d > 0,
lzla = 7 + oz —all,

lzl[A = Fera + Rita- (1)

Then
|z — 2k A = Totd— T + Ritd-

Gauss quadrature: 7%14;+d = R,(gcjr)d > 0 — lower bound,
Radau quadrature: ﬁkH = Rgﬁ)d < 0 — upper bound.

How to compute efficiently

Thid — Tk ?

19



Estimate based on Gauss quadrature rule

Evaluation

|z —2kllA = Thtd — Tk + 1T — Thtalld

We use a simple formula

k+d—1 k+d—1
Thtd — Tk = Z (Tj41 —7j) = Z Aj.
j=k j=k

The quantity
Aj = (Tj_il>1,1 B (Tj_1>1,1

can be computed by an algorithm by Golub and Meurant, or simply
using the formula
2
Aj = llrsl~-

21



Estimate based on Gauss-Radau quadrature rule

Given a node i < Apin,
_ R R
lz —aplh = Fava— 7 + RUD, R <0,

Reduction to the problem of computing
(1) -1 -1
A = Fa— = (Th),, — (T5),,

First, we need to determine a1 so that y is an eigenvalue of

[ a1 B |
b1
Tj1 = S Bl
Bi-1 oy B
I B |

()

Second, compute A" using the Golub-Meurant algorithm.
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Golub and Meurant approach

[Golub & Meurant 1994, 1997]

@ CG iteration — ~y;_1, O%.
@ Compute Lanczos coefficients ay, B.

@ Compute rank one modification of Ty41 — d,(fle.
@ Compute the differences

Ay = (lel)Ll*(T’;*ll)l,l

AY = (Tih),, - (1),

@ For k& > d, use formulas

k-1
lz—2p—ala = D Aj + llo—alla
j=k—d
k-1 B
|z — 2p_ala = X:AJ+A$)+7%)
j=k—d

for estimating.
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CGQL (Conjugate Gradients and Quadrature via Lanczos)

input A, b, xg, 1

=b- A.%'() Po=To
50—0 Y1=1Lca=158=0dy =1, a ~(M) = u,
for k. =1,..., until convergence do

CG-iteration (k)

1 & 5
o = Ol O

Ve—1  Vk—2 ’Y;? 1
/%—1 2%
dp, = o — . Ap—1 = |rol|
2
ap — dk“

2 2 B2¢2
AW l7o]|? Bk 2 = Pk%
i 0 k+1 2
i (Al — B2) 7

Estimates(k,d)

end for
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Meurant - Tichy approach

[Meurant & T. 2012]

CG iteration — y,_1, 0.
@ Avoid the explicit use of tridiagonal matrices.

CG provides LDLT factorization of T} 1.

@ We have shown how to update LDL” factorization of ’fkﬂ.

Quite complicated algebraic manipulations.

Aj_1 and A,i,“) can be computed using very simple formulas.

25



CGQ (Conjugate Gradients and Quadrature)

input A, b, xg, u,
ro = b — Azg, po = 10
A(()“) _ Hro||2y

w
for K =1,..., until convergence do
CG-iteration(k)

Apo1 = Yetlre-1l
Irell? (AL, — Aey)
v (AEJ‘_)I - Akfl) + [Irel?

Estimates(k,d)
end for
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Preconditioning

The CG-iterates are thought of being applied to
Az =b.
We consider symmetric preconditioning
A=LT'ALT, b=L"".
P = LL”, change of variables

—7-T4 — T 2 —1 T4 _ 1 -T~
zp=L""2,, . =L7%,, 2z =L "7, ppr=L""p;.

It holds that
12 — 2l = llv —axla
17:l* = e

One can compute the quadratures-based estimates of the A-norm
of the error using the PCG coefficients 41 _1 and inner products
zl'ry, (instead of using ||7x]?).

27



Preconditioning - PCGQ

input A, b, zg, P, p

T
ro =b— Axg, 20 = Pflro, Po = 20, Aé’u) =%

o
for k =1,...,n until convergence do
T
~ _ Z_1Tk—1
V-1 pl Apr_1

T = Tp—1 + Ye—1Pk—1
Tk = Tk—1 — Vk—1APK-1
2 = Pflrk

Sk _ Z]?T’k

T
Pr—1Tk—1

Pr =2k + Skpkq

Ap1 = Ak—12f_17k-1
zfrg (A;E;’i)l — Akfl)
I (A(”) - A ) + 27
k—1 k-1 ETk

A]&H) —

Estimates(k,d)
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Practically relevant questions

The estimation is based on formulas

k4+d—1

|z —azela = D Aj + llz —zepalla
=k
k4+d—1

le—allh = > Aj+AP, + RV
j=k

(w)

We are able to compute A; and Aj almost for free.

Practically relevant questions:
@ What happens in finite precision arithmetic ?
@ How to choose d?
@ How to choose p 7
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Finite precision arithmetic

CG behavior

Orthogonality is lost, convergence is delayed!
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Identities need not hold in finite precision arithmetic!
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Rounding error analysis

@ Lower bound formula [Strakes & T. 2002, 2005]: The equality

k+d—1
le—zela = D Aj + [lz— 2rpalla
=k

holds (up to a small inaccuracy) also in finite precision
arithmetic for computed vectors and coefficients.

@ Upper bound formula: There is no rounding error analysis of
the formula

kt-d—1 » "
o — zp||a = Z Aj+ 0+ Ry
ji=k
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The choice of d - Experiment 1

Strakos matrix, n = 48, Ay = 0.1, A, = 1000, p=0.9, d=4

CGQ - strakos48

10° T

10°
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107

107

10

10+

12|

10

10%E

exact error
Gauss lower bound
107 | | | |
0 20 40 60 80 100 120
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The choice of d - Experiment 2

R. Kouhia: Cylindrical shell (Matrix Market), matrix s3dkt3m2

PCG, k(A) =3.62¢ + 11, n=190499, d =200, cholinc(A,0).

-~ true residual norm

“““ normwise backward error

£l - - A-norm of the error

— estimate
;

T I
0 500 1000 1500 2000 2500 3000
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The choice of d

k+d—1
lz —zrla = D> Aj + o —zrrala
j=k
We get a tight lower bound if

lz — zkla > [l — zhialla -

How to detect a reasonable decrease of the A-norm od the error?

Theoretically, one could use the upper bound,

(w)
|z — zpalla Ay g

< tol.
lz —2la — ST A,

But, can we trust the upper bound?
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The choice of i, upper bound, exact arithmetic

Strakos matrix, n = 48, Ay = 0.1, A, = 1000, p=0.9, d=1

CGQ - strakos48

10 T T T
10° | s
107E : ]
107F s
exact error

e Upper bound, p=0.5 )\1

= Upper bound, u=>\1*0.9999
107 T T T I I I I I I

0 5 10 15 20 25 30 35 40 45 50
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The choice of i, upper bound, finite precision arithmetic

Strakos matrix, n = 48, Ay = 0.1, A, = 1000, p=0.9, d=1

) CGQ - strakos48
10 T

exact error
10 e Upper bound, p=0.5 )\1

Upper bound, |.1=)\1
T

1 1 1 1
0 20 40 60 80 100 120
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The choice of i, upper bound, finite precision arithmetic

besstk04 (Matrix Market), n =132, d =1

o CGQ - besstk04
10 T T

exact error
e Upper bound, p=0.5 )\1

Upper bound, |.1=)\1

10~ T T 1 1 1 1
0 100 200 300 400 500 600 700
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Numerical troubles with the upper bound

Given pu, we look for ay1 (explicitly or implicitly) so that u is an
eigenvalue of the extended matrix

ar B
N pr
Ty = o B,
Br—1  ar B
i Br Qg1 |

To find such a a1, we need to solve the system
(Tr — pDy = ex .
If 1 is close to the smallest eigenvalue of T}, we can get into

numerical troubles!
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Conclusions and questions

@ The upper bound as well as the lower bound on the A-norm
of the error can be computed in a simple way.

@ Unfortunately, the computation of the upper bound is

not always numerically stable.

@ u is far from Ay — overestimation,
e i is close to Ay — numerical troubles.

@ The estimation of the A-norm of the error should be based
on the numerical stable lower bound.

@ How to detect a reasonable decrease of the A-norm of the
error? (How to choose d adaptively?).

@ Is there any way how to involve the upper bound?
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