u-DDT

eractions

An introduction to Abstract Algebraic Logic $${\rm Parts}\ IV$$

Conjunction

Tommaso Moraschini

Institute of Computer Science of the Czech Academy of Sciences

June 29, 2017

1/21

Frege hiearchy

Definition

Let \vdash be a logic.

Frege hierarchy

1. \vdash is fully selfextensional, when for every algebra **A** and every connective f,

if
$$\operatorname{Fg}_{\vdash}^{\mathcal{A}}(a_i) = \operatorname{Fg}_{\vdash}^{\mathcal{A}}(b_i)$$
, then $\operatorname{Fg}_{\vdash}^{\mathcal{A}}(f(\vec{a})) = \operatorname{Fg}_{\vdash}^{\mathcal{A}}(f(\vec{b}))$.

2. \vdash is fully Fregean, when for every algebra A, every connective f and every set $F \subseteq A$,

if $\operatorname{Fg}_{\vdash}^{\mathcal{A}}(F, a_i) = \operatorname{Fg}_{\vdash}^{\mathcal{A}}(F, b_i)$, then $\operatorname{Fg}_{\vdash}^{\mathcal{A}}(F, f(\vec{a})) = \operatorname{Fg}_{\vdash}^{\mathcal{A}}(F, f(\vec{b}))$.

Remark: selfextensionality (Fregeanity) amounts to full selfextensionality (resp. full Fregeanity) restricted to the case where A = Fm.

Frege hiearchy

Definition

Let \vdash be a logic.

1. \vdash is selfextensional when for every *n*-ary connective *f*,

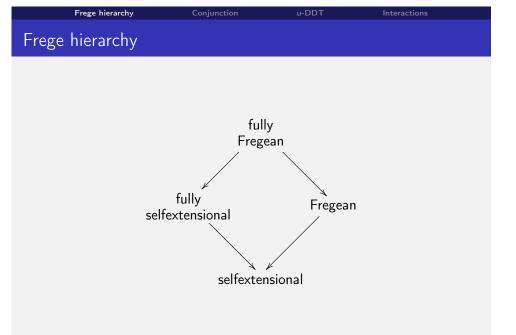
if
$$\varphi_i \dashv \vdash \psi_i$$
 for $i = 1, ..., n$, then $f(\vec{\varphi}) \dashv \vdash f(\vec{\psi})$.

2. \vdash is Fregean when for every *n*-ary connective *f* and set of formulas Γ ,

if $\Gamma, \varphi_i \dashv \vdash \psi_i, \Gamma$ for i = 1, ..., n, then $\Gamma, f(\vec{\varphi}) \dashv \vdash f(\vec{\psi}), \Gamma$.

 Remark: selfextensionality and Fregeanity are inherited by fragments.

3/21



Frege hierarchy

u-DDT

Interactions

Frege hiearchy: examples

- Axiomatic extensions of IPC (e.g. CPC) are fully Fregean.
- ► Local modal logic $\vdash'_{\mathbf{K}}$ is fully selfextensional, but not Fregean:

 $x, x \lor y \dashv \vdash'_{\mathbf{K}} x, x \text{ but } x, \Box (x \lor y) \nvDash'_{\mathbf{K}} \Box x.$

► The same holds for Belnap-Dunn logic **BD**:

 $x, x \dashv \vdash_{\mathsf{BD}} x \lor y, x \text{ but } x, \neg x \nvDash_{\mathsf{BD}} \neg (x \lor y).$

- The $\langle \neg, 1 \rangle$ -fragment of **CPC** is Fregean, but not fully selfext.
- There are (artificial) selfextensional logic, neither fully selfextensional or Fregean.
- Łukasiewicz logic Ł is not selfextensional:

$$x \dashv \vdash_{\mathbf{k}} x * x \text{ but } \neg (x * x) \nvDash_{\mathbf{k}} \neg x.$$

• Global modal logic $\vdash_{\mathbf{K}}^{g}$ is not selfextensional:

$$x \dashv \vdash^{g}_{\mathbf{K}} x \land \Box x \text{ but } \Diamond x \nvDash^{g}_{\mathbf{K}} \Diamond (x \land \Box x).$$

6/21

Logics with a conjunction vs semilattice-based logics

Conjunction

Definition

Frege hierarchy

A logic \vdash has a conjunction if there is a formula $x \land y$ such that

 $x, y \vdash x \land y \quad x \land y \vdash x \quad x \land y \vdash y.$

Definition

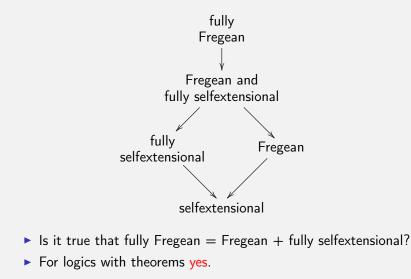
A logic \vdash is semilattice-based if there is a class of algebras K with semilattice reduct such that

$$\gamma_1, \ldots, \gamma_n \vdash \varphi \iff \mathsf{K} \vDash (\gamma_1 \land \cdots \land \gamma_n) \le \varphi$$

where \leq is the meet-semilattice order.

- Lattice based logics have a conjunction (the converse is false).
- CPC, IPC and $\vdash'_{\mathbf{K}}$ are lattice based logics.

Frege hierarchy Conjunction u-DDT Frege hierarchy



7/21

Interactions

Selfextensional logics with a conjunction

Conjunction

Theorem

Frege hierarchy

- Let \vdash be a finitary selfextensional logic with a conjunction \land .
- 1. \land is a semilattice operation in Alg^{*}(\vdash).
- *Fi*⊢*A* is the class of semilattice filters of *A* (possibly with Ø), for every *A* ∈ Alg^{*}(⊢).
- 3. \vdash is semilattice based on Alg^{*}(\vdash).
- 4. \vdash is fully selfextensional.

Frege hierarch

Conjunction

Selfextensional logics with a conjunction: Gentzen systems

- \blacktriangleright Let \vdash be a finitary selfextensional logic with a conjunction.
- Pick sequents of the form ⟨γ₁,..., γ_n⟩ ⊳ φ, possibly with empty antecedent if ⊢ has theorems.
- \blacktriangleright Then define a Gentzen system $\vdash_{\mathbf{G}}$ as follows: structural rules plus

$$\frac{\emptyset}{\Gamma \rhd \varphi} \qquad \frac{\{x_i \rhd y_i, y_i \rhd x_i : i \le n\}}{f(x_1, \dots, x_n) \rhd f(y_1, \dots, y_n)}$$

for all $\Gamma \cup \{\varphi\}$ s.t. $\Gamma \vdash \varphi$, and for all *n*-ary connectives *f*.

Theorem

 $\vdash_{\boldsymbol{G}}$ is adequate for \vdash is the sense that

$$\Gamma \vdash \varphi \Longleftrightarrow \emptyset \vdash_{\mathbf{G}} \Gamma \rhd \varphi$$

Moreover, \vdash_{G} is algebraizable with equiv. alg. sem. $\mathbb{Q}(Alg^{*}(\vdash))$.

11/21

Selfextensional logics with a conjunction: Gentzen systems

Conjunction

Example

Frege hierarchy

- Then $\vdash_{\mathbf{G}_{\wedge\vee}}$ is algebraizable with equiv. algebraic semantics DL.
- ► Now, DL has some nice algebraic properties, e.g. EDPC: for all A ∈ DL,

$$\langle c, d \rangle \in \mathsf{Cg}(a, b) \iff \mathsf{both} \begin{cases} c \land a \land b &= d \land a \land b \\ c \lor a \lor b &= d \lor a \lor b \end{cases}$$

▶ We can apply the bridge with $\vdash_{\mathbf{G}_{\wedge\vee}}$ (but not with $\mathbf{CPC}_{\wedge\vee}$) and obtain that $\vdash_{\mathbf{G}_{\wedge\vee}}$ has the DDT:

$$\Delta, \langle \gamma_1, \dots, \gamma_n \rangle \rhd \psi \vdash_{\mathbf{G}_{\wedge\vee}} \langle \delta_1, \dots, \delta_m \rangle \rhd \varphi \iff \\ \Delta \vdash_{\mathbf{G}_{\wedge\vee}} \left\{ \begin{array}{c} \wedge \gamma_i \wedge \wedge \delta_j \wedge \psi \rhd \wedge \gamma_i \wedge \wedge \delta_j \wedge \psi \wedge \varphi \\ \wedge \gamma_i \vee \wedge \delta_j \rhd \wedge \gamma_i \vee (\varphi \wedge \wedge \delta_j) \end{array} \right.$$

Frege hierarchy

u-DDT

Interactions

Selfextensional logics with a conjunction: Gentzen systems

Conjunction

- ► Hence there are non-algebraizable fully selfextensional logics ⊢, which can be described by algebraizable Gentzen systems ⊢_G.
- ▶ Thus \vdash_{G} (as opposed to \vdash) can be used to exploit bridge theorems w.r.t. Alg^{*}(\vdash).

Example

- Let $CPC_{\wedge\vee}$ be the $\langle \wedge, \vee \rangle$ -fragment of CPC.
- Clearly $CPC_{\wedge\vee}$ is finitary selfextensional with a conjunction.
- ► Then consider its algebraizable Gentzen system ⊢_{G∧∨}, given by structural rules plus

$$\begin{array}{ccc} \underbrace{ \emptyset } \\ \hline \varphi \vartriangleright \varphi \end{array} & \frac{ \Gamma, \varphi, \psi \vartriangleright \gamma }{ \Gamma, \varphi \land \psi \vartriangleright \gamma } & \frac{ \Gamma \vartriangleright \varphi \quad \Gamma \vartriangleright \psi }{ \Gamma \vartriangleright \varphi \land \psi } \\ \hline \frac{ \Gamma, \varphi \vartriangleright \gamma \quad \Gamma, \psi \vartriangleright \gamma }{ \Gamma, \varphi \lor \psi \vartriangleright \gamma } & \frac{ \Gamma \vartriangleright \varphi }{ \Gamma \vartriangleright \varphi \lor \psi } & \frac{ \Gamma \vartriangleright \varphi }{ \Gamma \vartriangleright \psi \lor \varphi } \end{array}$$

Frege hierarchy

u-DDT Interacti

12/21

Uniterm DDT

Definition

A logic \vdash has the uniterm deduction theorem (u-DDT) if there exists a formula $x \to y$ such that for all $\Gamma \cup \{\psi, \varphi\}$,

$$\Gamma, \psi \vdash \varphi \Longleftrightarrow \Gamma \vdash \psi \to \varphi$$

▶ CPC, IPC and \vdash'_{κ} have the u-DDT.

Definition

Hilbert algebras are implicative subreducts of Heyting algebras. Equivalently they are algebras axiomatized by

$$\begin{array}{l} x \to x \approx y \to y \\ (x \to x) \to x \approx x \\ x \to (y \to z) \approx (x \to y) \to (x \to z) \\ x \to y) \to ((y \to x) \to y) \approx (y \to x) \to ((x \to y) \to x). \end{array}$$

Frege hierarchy

u-DDT

Interactions

Hilbert-algebra-based logics

Definition

A logic \vdash is Hilbert-algebra-based if there exists a class K of expanded Hilbert algebras such that

 $\gamma_1, \ldots, \gamma_n \vdash \varphi \iff \mathsf{K} \vDash \gamma_1 \to (\gamma_2 \to (\ldots (\gamma_n \to \varphi) \ldots)) \approx \top.$

- \blacktriangleright Hilbert-algebra-based logics have the u-DDT w.r.t. $\rightarrow.$
- CPC, IPC and \vdash'_{κ} are Hilbert-algebra-based.

Theorem

Let \vdash be finitary selfextensional logic with the u-DDT. w.r.t. \rightarrow . Then \vdash is Hilbert-algebra based w.r.t. Alg^{*}(\vdash). Moreover, \vdash is fully selfextensional and is described by an algebraizable Gentzen system.

 For finitary logics, in presence of conjunctions or u-DDT, selfextensionality implies full selfextensionality.

16/21

Interactions

Definability of logical equivalence

Theorem

Let \vdash be a Fregean protoalgebraic logic. Then

1. \vdash is equivalential.

Frege hierarchy

- 2. If \vdash is finitary, then it is fully Fregean.
- 3. If \vdash has theorems, then it is (regularly) algebraizable.
- In case 3 (plus finitarity) the equivalent algebraic semantics have been characterized.

Definability of truth-sets

Definition

A logic \vdash is assertional, when Mod^{*}(\vdash) is a class of matrices $\langle \mathbf{A}, F \rangle$ where F is singleton.

If ⊢ is assertional, then it has a theorem ⊤ in variable x. Then truth is equationally definable in Mod*(⊢) by x ≈ ⊤.

Theorem

- 1. A Fregean logic is assertional if and only if it has theorems.
- If truth is equationally definable in Mod^{*}(⊢), then ⊢ is fully selfextensional if and only if it is fully Fregean.
- ► Thus the Frege hierarchy collapses for finitary logics ⊢ for which truth is equationally definable in Mod*(⊢) and either with conjunction or the u-DDT.

18/21

Interactions

Definability of logical equivalence

Definition

- Let K be a pointed quasi-variety.
- 1. K is congruence orderable if for every $\boldsymbol{A} \in K$ and $a, b \in A$,

 $Cg_{K}(a, \top) = Cg_{K}(b, \top) \iff a = b.$

- 2. K is relatively point regular if for every $\mathbf{A} \in K$ and $\theta, \phi \in \operatorname{Con}_{K} \mathbf{A}$, if $\top/\theta = \top/\phi$, then $\theta = \phi$.
- 3. K is Fregean if it is cong. orderable and rel. point-regular.

Theorem

- Let \vdash be a logic. TFAE:
- 1. \vdash is finitary, protoalgebraic, Fregean and non-almost inc.
- 2. \vdash is the \top -assertional logic of a Fregean quasi-variety K.
- In this case, \vdash is algebraizable with equiv. alg. sem. K.

Frege hierarchy

nction

Interactions

u-DDT again

Definition

A Hilbert algebra with compatible operations is an algebra A with a Hilbert algebra reduct $\langle A, \rightarrow \rangle$ s.t. for every *n*-ary basic operation *f*,

 $\boldsymbol{A}\vDash (x \to y) \to ((y \to x) \to (f(\vec{z}, x, \vec{u}) \to f(\vec{z}, y, \vec{u}))) \approx \top$

Theorem

Let \vdash be a finitary Fregean protoalgebraic logics with the u-DDT. Then Alg^{*}(\vdash) is a variety of Hilbert algebras with compatible operations and \vdash is algebraizable with equivalent algebraic semantics Alg^{*}(\vdash).

21/21