Truth sets

Truth sets

An introduction to Abstract Algebraic Logic Parts III

Tommaso Moraschini

Institute of Computer Science of the Czech Academy of Sciences

June 29, 2017

1/24

Leibniz operator in algebraizable logics

Logical equivalence

Theorem (semantic characterization of algebraizability)

- Let \vdash be a logic and K a generalized quasi-variety. TFAE:
- 1. \vdash is algebraizable with equivalent algebraic semantics K.
- 2. For every algebra \boldsymbol{A} there is $\Phi^{\boldsymbol{A}} : \mathcal{F}_{i_{\vdash}} \boldsymbol{A} \to \operatorname{Con}_{\mathsf{K}} \boldsymbol{A}$ that commutes with endomorphisms σ in the sense that $\Phi^{\boldsymbol{A}} \sigma^{-1} F = \sigma^{-1} \Phi^{\boldsymbol{A}} F$ for every $F \in \mathcal{F}_{i_{\vdash}} \boldsymbol{A}$.
- There is a lattice isomorphism Φ: Th(⊢) → Th(⊨_K) that commutes with substitutions σ in the sense that Φσ⁻¹Γ = σ⁻¹ΦΓ for every Γ ∈ Th(⊢).

Moreover, Φ^{A} can be always taken to be Ω^{A} : $\mathcal{F}_{i\vdash}A \to \mathsf{Con}_{\mathsf{K}}A$.

Truth sets

Leibniz operator

Definition

Given an algebra A, the Leibniz operator is the map

 $\boldsymbol{\varOmega^{A}} \colon \mathcal{P}(A) o \mathsf{Con}\boldsymbol{A}$

defined by the rule $F \mapsto \Omega^A F$.

- Recall that:
 - $\langle a, b \rangle \in \Omega^{\mathbf{A}}F \iff$ for every unary pol. function $p: \mathbf{A} \to \mathbf{A}$, $p(a) \in F$ if and only if $p(b) \in F$.
- The Leibniz operator (restricted to deductive filters) can be used to characterize interesting facts about logics, e.g. semantic characterization of algebraizability.

2/24

Leibniz operator in algebraizable logics

Theorem (semantic characterization of algebraizability)

Let \vdash be a logic and K a generalized quasi-variety. TFAE:

- 1. \vdash is algebraizable with equivalent algebraic semantics K.
- 2. $\Omega^{\mathbf{A}}: \mathcal{F}_{i_{\vdash}}\mathbf{A} \to \operatorname{Con}_{\mathsf{K}}\mathbf{A}$ is an iso that commutes with endomorphisms σ in the sense that $\sigma^{-1}\Omega^{\mathbf{A}}F = \Omega^{\mathbf{A}}\sigma^{-1}[F]$, for every algebra \mathbf{A} and $F \in \mathcal{F}_{i_{\vdash}}\mathbf{A}$.
- 3. $\Omega: \mathcal{T}h(\vdash) \to \mathcal{T}h(\vDash_{\mathsf{K}})$ is an iso that commutes with substitutions σ .
- Thus the fact that the Leibniz operator is an iso preserving substitutions characterizes algebraizability.

Truth sets

Equivalential logics

Definition

Let \vdash be a logic.

 ⊢ is equivalential if there is a set of formulas Δ(x, y) such that for every model (A, F) of ⊢,

 $\langle a,b
angle\in \boldsymbol{\varOmega^{A}F}\Longleftrightarrow\Delta(a,b)\subseteq F.$

- 2. \vdash is finitely equivalential if, moreover, Δ can be chosen finite.
- This idea abstract the Lindenbaum-Tarski process: IPC and CPC are equivalential with

$$\Delta(x,y) = \{x \to y, y \to x\}$$

i.e. if $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$ is a model of IPC, then

$$\langle a,b\rangle \in \Omega^{\mathbf{A}}F \iff \{a \rightarrow b, b \rightarrow a\} \subseteq F.$$

6/24

Logical equivalence

Equivalential logics: syntactic characterization

х,

Theorem

A logic \vdash is equivalential if and only if there exists a set $\Delta(x, y)$ of formulas such that:

$$\emptyset \vdash \Delta(x, x)$$
 (Ref)

Truth sets

$$\Delta(x,y) \vdash y \tag{MP}$$

$$\int_{\leq n} \Delta(x_i, y_i) \vdash \Delta(f(\vec{x}), f(\vec{y}))$$
(Rep)

for all connectives f of \vdash .

Corollary

Every algebraizable logic is equivalential: if the algebraization of \vdash is witnessed by the sets of formulas $\Delta(x, y)$ and of equations E(x), then the equivalentiality of \vdash is witnessed by Δ .

Logical equivalence

Equivalential logics: syntactic characterization

Recall that:

Theorem (definability of Leibniz congruence)

- Let \vdash be a logic and $\Delta(x, y)$ be a set of formulas. TFAE:
- 1. For every model $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$ of \vdash ,

$$\langle a,b
angle\in \Omega^{oldsymbol{A}}{F} \Longleftrightarrow \Delta^{oldsymbol{A}}(a,b)\subseteq F.$$

2. The following inferences are valid in \vdash :

$$\emptyset \vdash \Delta(x, x) \tag{Ref}$$

Truth sets

Truth sets

$$x, \Delta(x, y) \vdash y$$
(MP)
$$\bigcup_{i \le n} \Delta(x_i, y_i) \vdash \Delta(f(\vec{x}), f(\vec{y}))$$
(Rep)

for all connectives f of \vdash .

/ 24

Equivalential logics: modal examples

- Recall that local modal consequence $\vdash_{\mathbf{K}}^{l}$ is not algebraizable.
- However it is equivalential with

 $\Delta(x,y) = \{\Box^n(x \to y), \Box^n(y \to x) : n \in \omega\}.$

- Hint: apply syntactic characterization of equivalentiality to Δ .
- However $\vdash'_{\mathbf{K}}$ is not finitely equivalential (hints: later on).
- $\vdash \vdash_{\mathsf{K4}}^{\prime}$ is finitely equivalential with

$$\Delta(x,y) = \{x \to y, y \to x, \Box(x \to y), \Box(y \to x)\}.$$

• \vdash_{S4}^{\prime} is finitely equivalential with

$$\Delta(x,y) = \{\Box(x \to y), \Box(y \to x)\}.$$

Equivalential logics: semantic characterization

Theorem

Let \vdash be a logic. TFAE:

- 1. \vdash is equivalential.
- 2. $\Omega^{\mathbf{A}}$: $\mathcal{F}_{i\vdash}\mathbf{A} \to \text{Con}\mathbf{A}$ is monotone and commutes with endomorphisms σ in the sense that $\sigma^{-1}\Omega^{\mathbf{A}}F = \Omega^{\mathbf{A}}\sigma^{-1}[F]$, for every algebra \mathbf{A} and $F \in \mathcal{F}_{i\vdash}\mathbf{A}$.
- 3. $\Omega: \mathcal{T}h(\vdash) \to \operatorname{Con} \boldsymbol{Fm}$ is monotone and commutes with substitutions σ .

Moreover, \vdash is finitely equivalentially if Ω^{A} : $\mathcal{F}_{i\vdash}A \rightarrow \text{Con}A$ is continuous for every algebra A.

 Remark: this provides a readily falsifiable characterization of equivalentiality.

Truth sets

10/24

Equivalential logics: recap

Logical equivalence

ruth sets

Truth sets

Equivalential logics: class-operators characterization

Theorem

Let \vdash be a logic.

- 1. \vdash is equivalential iff $Mod^*(\vdash)$ is closed under \mathbb{S} and \mathbb{P} .
- 2. \vdash is finitary finitely equiv. iff $Mod^*(\vdash)$ is closed under $\mathbb{S}, \mathbb{P}, \mathbb{P}_u$.
- An algebra A = ⟨A, ∧, ∨, ¬, 0, 1⟩ is an ortholattice when ⟨A, ∧, ∨, 0, 1⟩ is a bounded lattice such that

$$\neg(x \land y) \approx \neg x \lor \neg y \quad \neg \neg x \approx x$$

$$x \vee \neg x \approx 1 \quad x \wedge \neg x \approx 0$$

▶ Let OL be the variety of ortholattices. Consider the logic

$$\Gamma \vdash_{\mathsf{OL}} \varphi \iff \text{for all } \mathbf{A} \in \mathsf{OL} \text{ and evaluation } v \colon \mathbf{Fm} \to \mathbf{A}$$

if $v[\Gamma] = 1$, then $v(\varphi) = 1$.

▶ \vdash_{OL} is not equivalential, as $Mod^*(\vdash_{OL})$ is not closed under S.

11/24

Logical equivalence Protoalgebraic logics

Definition

A logic \vdash is protoalgebraic if there is a set of formulas $\Delta(x, y, \vec{z})$ such that for every model $\langle A, F \rangle$ of \vdash ,

 $\langle a,b\rangle \in \Omega^{A}F \iff \Delta(a,b,\vec{c}) \subseteq F \text{ for all } \vec{c} \in A.$

▶ First examples: All equivalential logics are protoalgebraic.

Protoalgebraic logics: characterizations

Protoalgebraic logics can be characterized in different ways:

Theorem

Let \vdash be a logic. TFAE:

- 1. \vdash is protoalgebraic.
- 2. There exists a set of formulas $\Delta(x, y)$ such that

Truth sets

Truth sets

- 3. $\Omega^{\boldsymbol{A}}: \mathcal{F}_{i_{\vdash}}\boldsymbol{A} \to \text{Con}\boldsymbol{A}$ is monotone, for every algebra \boldsymbol{A} .
- 4. $\mathsf{Mod}^*(\vdash)$ is closed under \mathbb{P}_{sd} .
- By 2 all logics having an implication-like connective are protoalgebraic, e.g. ⊢_{OL} with Δ(x, y) = {¬x ∨ y}.

14/24

Logical equivalence

Protoalgebraic logics: a finite basis theorem

- Protoalgebraic logics (as opposed to algebraizable ones) are the definitive framework to state most bridge theorems.
- Moreover, they are amenable to provide generalizations of the deductively-related aspects of universal algebra:

Theorem

Let A be a finite algebra of finite type. If $\mathbb{V}(A)$ is congruence distributive, then it is finitely based.

Theorem

Let M be a finite set of finite matrices of finite type, which induces a protoalgebraic logic \vdash . If \vdash is filter distributive, then it is finitely axiomatizable.

 Generalizations involving logical variants of "definable principal subcongruences" are available as well.

Logical equivalence

Protoalgebraic logics: parametrized local deduction theorem

Definition

1. ⊢ has the parametrized local deduction theorem (PLDDT) if there is a family of sets of formulas $\{\Phi_i(x, y, \vec{z}) : i \in I\}$ s.t.

 $\Gamma, \psi \vdash \varphi \iff$ there is $i \in I$ and $\vec{\gamma}$ s.t. $\Gamma \vdash \Phi_i(\psi, \varphi, \vec{\gamma})$.

 ⊢ has the local contextual deduction theorem (LCDDT) if for every n ∈ ω there is a family of sets of formulas
 Ψ_n = {Φ_i(x₁,..., x_n, y₁, y₂) : i ∈ I} such that for every Γ ∪ {φ, ψ} in variables x₁,..., x_n,

 $\Gamma, \psi \vdash \varphi \iff$ there is $\Phi_i \in \Psi_n$ s.t. $\Gamma \vdash \Phi_i(x_1, \ldots, x_n, \psi, \varphi)$.

Theorem

 \vdash is protoalgebraic iff it has PLDDT iff it has LCDDT.

15/24

uivalence

Equational definability of truth-sets

• Matrices $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$ are models of logics where

A = structured set of truth values

Truth sets

F = values representing truth

• We say that F is the truth-set of the matrix $\langle \mathbf{A}, F \rangle$.

Definition

Let M be a class of matrices.

1. Truth is equationally definable in M if there is a set of equations E(x) such that for every $\langle A, F \rangle \in M$,

 $F = \{a \in A : \mathbf{A} \models E(a)\}.$

2. Truth is universally definable in M if there is a set of equations $E(x, \vec{z})$ such that for every $\langle \mathbf{A}, F \rangle \in M$ with $F \neq \emptyset$,

 $F = \{a \in A : \mathbf{A} \models E(a, \vec{c}) \text{ for every } \vec{c} \in A\}.$

Equational definability of truth-sets: characterization

Theorem

For a logic \vdash TFAE:

1. Truth is equationally (resp. universally) definable in $Mod^*(\vdash)$.

Truth sets

Truth sets

- 2. $\Omega^{\mathbf{A}}: \mathcal{F}_{i\vdash}\mathbf{A} \to \text{Con}\mathbf{A}$ is completely order-reflecting (resp. over $\mathcal{F}_{i\vdash}\mathbf{A} \smallsetminus \{\emptyset\}$), for every algebra \mathbf{A} .
- 3. $\Omega: \mathcal{T}h(\vdash) \to \text{Con} Fm$ is completely order-reflecting (resp. over $\mathcal{T}h(\vdash) \smallsetminus \{\emptyset\}$).
- Remark: Truth is equationally definable in Mod^{*}(⊢) for all algebraizable logics ⊢: if the algebraization of ⊢ is witnessed by Δ(x, y) and E(x), then E(x) defines truth sets in Mod^{*}(⊢).

Corollary

 \vdash is algebraizable iff it is equivalential and truth is equationally definable in Mod^{*}(\vdash).

Logical equivalence

Implicit definability of truth-sets

Definition

Truth is implicitly definable in a class of matrices M, if the members of M are determined by their algebraic reducts, in the sense that if $\langle \mathbf{A}, F \rangle$, $\langle \mathbf{A}, G \rangle \in M$, then F = G.

Let S4^{*} be the (□, 1)-fragment of ⊢[']_{S4}. Truth is implicitly, but not equationally, definable in Mod^{*}(⊢_{S4}*).

Lemma

Truth is implicitly definable in $Mod^*(\vdash)$ iff $\Omega^A : \mathcal{F}i_{\vdash}A \to ConA$ is injective for every algebra A.

The injectivity of Ω^A cannot be equivalently restricted to theories Th(⊢) unless the language of ⊢ is countable.

19/24

Equational definability of truth-sets: examples

- Consider the $\langle \wedge, \vee, \neg, 0, 1 \rangle$ -fragment IPL* of IPC.
- An algebra A = ⟨A, ∧, ∨, ¬, 0, 1⟩ is a pseudocomplemented lattice if it is a bounded lattice such that for every a ∈ A,

 $\neg a = \max\{c \in A : a \land c = 0\}.$

- If (A, F) ∈ Mod*(⊢_{IPL*}), then A is a pseudocomplemented distributive lattice and F = {1}.
- Hence truth is equationally definable in $Mod^*(\vdash_{IPL^*})$ by

$$\mathsf{E}(x) = \{x \approx 1\}.$$

However, IPL* is not protoalgebraic (hint: disprove monotonicity of *Ω^A*).

Truth sets

Truth sets

Beth-like definability theorem

Logical equivalence

 Classical Beth's theorem in 1st order logic states that implicit and explicit definability coincide.

Theorem

Let \vdash be protoalgebraic. Truth is implicitly definable in $Mod^*(\vdash)$ iff it is equationally definable.

Definition

A logic \vdash is weakly algebraizable when it is protoalgebraic and truth is equationally definable in $Mod^*(\vdash)$.

Corollary

For a logic \vdash TFAE: \vdash is weakly algebraizable iff $\Omega^{\boldsymbol{A}} : \mathcal{F}_{i\vdash} \boldsymbol{A} \to \text{Con} \boldsymbol{A}$ is monotone and injective for every \boldsymbol{A} iff $\Omega : \mathcal{T}_{h}(\vdash) \to \text{Con} \boldsymbol{F} \boldsymbol{m}$ is monotone and injective. 20/24

Truth sets

Leibniz hierarchy

Miscellanea

Computational aspects:

- The problem of classifying logics presented by Hilbert calculi in the Leibniz hierarchy in undecidable.
- The problem of determining whether logics presented by a finite set of finite matrices of finite type belong to a given level of the Leibniz hierarchy if decidable but (in most cases) complete for EXPTIME.

Related topics:

- A hierarchy somehow parallel to the Leibniz one was introduced to focus on implication (as opposed to equivalence).
- Relations between the Leibniz and Maltsev hierarchy are being explored.

24 / 24