An introduction to Abstract Algebraic Logic Part I

Tommaso Moraschini

Institute of Computer Science of the Czech Academy of Sciences

June 29, 2017

1/1

Consequence relations and closure operators

- Consequence relations and closure operators are two faces of the same coin:
- If \vdash is a consequence relation on A, then define

$$\mathcal{C}_{\vdash} \colon \mathcal{P}(\mathcal{A}) o \mathcal{P}(\mathcal{A})$$

setting, for every $X \subseteq A$,

$$C_{\vdash}(X) \coloneqq \{x \in A : X \vdash x\}.$$

The map C_{\vdash} is a closure operator.

► If *C* is a closure operator on *A*, then define

$$\vdash_{C} \subseteq \mathcal{P}(A) \times A$$

setting, for every $X \cup \{x\} \subseteq A$,

$$X \vdash_C x \iff x \in C(X).$$

Then \vdash_C is a consequence relation.

These transformations are indeed inverse one to the other.

Consequence relations and closure operators

► AAL is the study of logics understood as consequence relations.

Definition

A consequence relation on a set A is a relation $\vdash \subseteq \mathcal{P}(A) \times A$ s.t. for all $X \cup Y \cup \{x\} \subseteq A$, R. If $x \in X$, then $X \vdash x$. M. If $X \vdash x$ and $X \subseteq Y$, then $Y \vdash x$. C. If $X \vdash x$ and $Y \vdash y$ for all $y \in X$, then $Y \vdash x$. A closure operator on A is a map $C : \mathcal{P}(A) \rightarrow \mathcal{P}(A)$ s.t. for all $X, Y \in \mathcal{P}(A)$, R. $X \subseteq C(X)$. M. If $X \subseteq Y$, then $C(X) \subseteq C(Y)$. C. CC(X) = C(X).

3/1

Logics as substitution invariant consequence relations

Convention

From now on we work within a fixed (but arbitrary) algebraic language. In particular,

F*m* = term algebra built up with countably many variables.

Definition

A logic is a consequence relation $\vdash \subseteq \mathcal{P}(Fm) \times Fm$, which is substitution-invariant in the sense that for every substitution $\sigma : Fm \to Fm$,

if $\Gamma \vdash \varphi$, then $\sigma \Gamma \vdash \sigma \varphi$.

 The idea is that logics are consequence relations whose inferences are valid in virtue of their form (as opposed to their content).

Examples: substructural logics

Example

 Let K be a variety of residuated lattices (with involution). Then set

$$\Gamma \vdash_{\mathsf{K}} \varphi \iff$$
 for every $\mathbf{A} \in \mathsf{K}$ and hom $v \colon \mathbf{Fm} \to \mathbf{A}$,
if $1 \leq v(\gamma)$ for all $\gamma \in \Gamma$, then $1 \leq v(\varphi)$

- ► The relation ⊢_K is a logic in our sense, the substructural logic naturally associated to K:
 - $\label{eq:K} \begin{array}{l} \mbox{if $\mathsf{K}=\mathsf{Heyting algebras, then } \vdash_{\mathsf{K}}=\mbox{intuitionistic logic} \\ \mbox{if $\mathsf{K}=\mathsf{MV}$-algebra, then } \vdash_{\mathsf{K}}=\mbox{Lukasiwicz logic} \end{array}$
 - if K = De Morgan monoids, then $\vdash_{K} =$ releavance logic \boldsymbol{R}_{t} .

6/1

Matrices

Logics may have different kind of semantics, e.g. relational, topological, game-theoretic, categorical and... matrix-based.

Definition

- 1. A (logical) matrix is a pair $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$ where \boldsymbol{A} is an algebra and $\boldsymbol{F} \subseteq \boldsymbol{A}$.
- 2. Every class of matrices M induces a logic as follows:

 $\Gamma \vdash_{\mathsf{M}} \varphi \iff \text{for every } \langle \boldsymbol{A}, F \rangle \in \mathsf{M} \text{ and hom } v \colon \boldsymbol{Fm} \to \boldsymbol{A}$ if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

Example

If K is a variety of residuated lattices, then ⊢_K is the logic induced by the following class of matrices:

Example

- Let F be a class of all Kripke frames W = ⟨W, R⟩. Then set
 Γ⊢^I φ ⇔ for every W ∈ F, v: Var → P(W) and w ∈ W, if v, w ⊩ γ for all γ ∈ Γ, then v, w ⊩ φ.
 Γ⊢^g φ ⇔ for every W ∈ F and v: Var → P(W), if v, w ⊩ γ for all γ ∈ Γ and w ∈ W, then v, w ⊩ φ for all w ∈ W.
- ⊢^I and ⊢^g are respectively the local and global modal consequences of the system K.
- ► They are different, since

 $x \nvDash^{l} \Box x$ while $x \vdash^{g} \Box x$.

7/1

Matrices as models of logics

Definition

Let \vdash be a logic. A matrix $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$ is a model of a logic \vdash when

if $\Gamma \vdash \varphi$, then for every hom $v \colon \mathbf{Fm} \to \mathbf{A}$ if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

Then we set $Mod(\vdash) := \{ \langle \boldsymbol{A}, \boldsymbol{F} \rangle : \langle \boldsymbol{A}, \boldsymbol{F} \rangle \text{ is a model of } \vdash \}.$

Completeness (1st version)

Every logic \vdash coincides with the logic $\vdash_{\mathsf{Mod}(\vdash)}$ induced by its models $\mathsf{Mod}(\vdash)$.

• Drawback: $Mod(\vdash)$ is a very artificial class of matrices, since

 $\langle \boldsymbol{A}, \boldsymbol{A} \rangle \in \mathsf{Mod}(\vdash)$ for every algebra \boldsymbol{A} .

$\{\langle \pmb{A},\uparrow 1\rangle:\pmb{A}\in\mathsf{K}\}.$

Leibniz congruence

• We need a process to tame the matrices in $Mod(\vdash)$:

Definition

- Let **A** be an algebra and $F \subseteq A$.
- 1. A congruence $\theta \in Con \mathbf{A}$ is compatible with F when

if $a \in F$ and $\langle a, b \rangle \in \theta$, then $b \in F$.

- 2. The largest such congruence (it exists!) is called the Leibniz congruence of F (over **A**), and is denoted by $\Omega^{\mathbf{A}}F$.
- 3. The reduction of $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$ is $\langle \boldsymbol{A}, \boldsymbol{F} \rangle^* := \langle \boldsymbol{A}/\Omega^{\boldsymbol{A}}\boldsymbol{F}, \boldsymbol{F}/\Omega^{\boldsymbol{A}}\boldsymbol{F} \rangle$.

Proposition

Every class of matrices M induces the same logic of M^* .

10/1

Reduced models: examples

In most cases, reduced models (as opposed to arbitrary models) of a logic are its intended matrix semantics.

Example: substructural logics

 \blacktriangleright If K is a variety of residuated lattices (with involution), then

 $\mathsf{Mod}^{*}(\vdash_{\mathsf{K}}) = \{ \langle \mathbf{A}, \uparrow 1 \rangle : \mathbf{A} \in \mathsf{K} \}.$

Example: modal logics

► Let MA the variety of modal algebras, then

$$\begin{split} \mathsf{Mod}^{*}(\vdash^{g}) &= \{ \langle \boldsymbol{A}, \{1\} \rangle : \boldsymbol{A} \in \mathsf{MA} \} \\ \mathsf{Mod}^{*}(\vdash^{I}) &= \{ \langle \boldsymbol{A}, F \rangle : \boldsymbol{A} \in \mathsf{MA} \text{ and } F \text{ is a lattice filter,} \\ & \text{which includes a single open filter, i.e. } \{1\} \}. \end{split}$$

Reduced models

Definition

Let \vdash be a logic. The class of reduced models of \vdash is

 $\begin{aligned} \mathsf{Mod}^{*}(\vdash) &:= \mathbb{I} \operatorname{\mathsf{Mod}}(\vdash)^{*} \\ &= \mathbb{I} \left\{ \langle \boldsymbol{A}, F \rangle^{*} : \langle \boldsymbol{A}, F \rangle \in \operatorname{\mathsf{Mod}}(\vdash) \right\} \\ &= \left\{ \langle \boldsymbol{A}, F \rangle \in \operatorname{\mathsf{Mod}}(\vdash) : \boldsymbol{\Omega}^{\boldsymbol{A}} F = \operatorname{\mathsf{Id}}_{\boldsymbol{A}} \right\} \\ &\operatorname{\mathsf{Alg}}^{*}(\vdash) &:= \left\{ \boldsymbol{A} : \exists F \subseteq A \text{ s.t. } \langle \boldsymbol{A}, F \rangle \in \operatorname{\mathsf{Mod}}^{*}(\vdash) \right\}. \end{aligned}$

Completeness (2nd version)

Every logic \vdash coincides with the logic $\vdash_{Mod^*(\vdash)}$ induced by its reduced models $Mod^*(\vdash)$.

11/1

Leibniz congruence again

Reduced models have been defined thanks to the Leibniz congruence.

Definition

Let **A** be an algebra. A map $p: \mathbf{A} \to \mathbf{A}$ is a unary polynomial function of **A** if there is a term $\varphi(x, \vec{y})$ and elements $\vec{c} \in A$ such that for every $a \in A$,

 $p(a) = \varphi^{\boldsymbol{A}}(a, \vec{c}).$

Theorem

Let **A** be an algebra, $F \subseteq A$, and $a, b \in A$.

 $\langle a, b \rangle \in \Omega^{\mathbf{A}}F \iff$ for every unary pol. function $p: \mathbf{A} \to \mathbf{A}$, $p(a) \in F$ if and only if $p(b) \in F$.

Equational consequences

Convention

Eq = set of equations in countably many variables.

Definition

Let K be a class of algebras and $\Theta \cup \{\alpha \approx \psi\} \subseteq Eq$.

$$\begin{split} \Theta \vDash_{\mathsf{K}} \varphi \approx \psi & \Longleftrightarrow \text{ for every } \mathbf{A} \in \mathsf{K} \text{ and hom } v \colon \mathbf{Fm} \to \mathbf{A}, \\ & \text{ if } v(\alpha) = v(\beta) \text{ for every } \alpha \approx \beta \in \Theta, \\ & \text{ then } v(\varphi) = v(\psi). \end{split}$$

The relation \vDash_{K} is the equational consequence relative to K.

• Remark: \vDash_{K} is not Birkhoff consequence of equational logic.

15/1

Generalized quasi-equations

Theorem

1. A class of algebras K is axiomatizable by generalized quasi-equations if and only if it is closed under $\mathbb{I},\mathbb{S},\mathbb{P}$ and $\mathbb{U},$ where

 $\mathbb{U}(\mathsf{W}) := \{ \boldsymbol{A} : \boldsymbol{B} \in \mathsf{W} \text{ for all countably generated } \boldsymbol{B} \in \mathbb{S}(\boldsymbol{A}) \}.$

- 2. For a generalized quasi-variety K TFAE:
 - K is axiomatizable by quasi-equations.
 - K is closed under \mathbb{P}_{u} .
 - ▶ \models_{K} is finitary.

Definition

A class of algebras is a (generalized) quasi-variety if is axiomatizable by (generalized) quasi-equations.

Generalized quasi-equations

Definition

1. A generalized quasi-equation is a formula

$$\Phi \coloneqq \bigwedge_{i \in I} \alpha_i \approx \beta_i \to \varphi \approx \psi$$

written in at most countably many variables.

 $2. \ \mbox{Let}\ \mbox{K}\ \mbox{be}\ \mbox{a}\ \mbox{class}\ \mbox{of}\ \mbox{algebras},\ \mbox{then}$

$$\begin{split} \mathsf{K} &\models \bigwedge_{i \in I} \alpha_i \approx \beta_i \to \varphi \approx \psi \Longleftrightarrow \{ \alpha_i \approx \beta_i : i \in I \} \vDash_{\mathsf{K}} \varphi \approx \psi \\ & \mathsf{K} \vDash \forall \vec{x} \Big((\bigwedge_{i \in I} \alpha_i \approx \beta_i) \to \varphi \approx \psi \Big) \end{split}$$

3. A quasi-equation is a generalized quasi-equation whose antecendent is finite.

16/1

Structural transformers

Definition

A structural transformer of formulas into equations is a map

$$au : \mathcal{P}(Fm) \to \mathcal{P}(Eq)$$

which commutes with unions and substitutions, i.e.

$$\boldsymbol{\tau}(\Gamma) = \bigcup_{\gamma \in \Gamma} \boldsymbol{\tau}(\gamma) \text{ and } \boldsymbol{\tau}(\sigma\Gamma) = \sigma \boldsymbol{\tau}\Gamma.$$

• If $\tau : \mathcal{P}(Fm) \to \mathcal{P}(Eq)$ is a structural transformer, then $E(x) := \tau(x)$ is only in variable x, and for every $\Gamma \subseteq Fm$,

$${oldsymbol au}(arGamma) = igcup_{\gamma \in \gamma} {oldsymbol E}(\gamma).$$

Structural transformers *ρ*: *P*(*Eq*) → *P*(*Fm*) of equations into formulas are defined similarly.

Algebraizable logics

Definition

A logic \vdash is algebraizable if there exist a generalized quasi-variety K and structural transformers

$$au : \mathcal{P}(Fm) \longleftrightarrow \mathcal{P}(Eq) : \rho$$

such that

$\Gamma \vdash \varphi \Longleftrightarrow \boldsymbol{\tau}(\Gamma) \vDash_{K} \boldsymbol{\tau}(\varphi)$	(ALG1)
$\rho(\Theta) \vdash \rho(\varphi \approx \psi) \Longleftrightarrow \Theta \vDash_{K} \varphi \approx \psi$	(ALG2)
$x \approx y \Rightarrow _{K} \tau \rho(x \approx y)$	(ALG3)
$x\dashv\vdash \rho\tau(x)$	(ALG4)

19/1

Algebraizable logics: examples

Example: substructural logics

If K is a variety of residuated lattices, then \vdash_K is algebraizable with equivalent algebraic semantics K via:

 $\boldsymbol{\tau}(\boldsymbol{\Gamma}) = \{ 1 \leq \gamma : \gamma \in \boldsymbol{\Gamma} \} \\ \boldsymbol{\rho}(\Theta) = \{ (\alpha \backslash \beta) \land (\beta \backslash \alpha) : \alpha \approx \beta \in \Theta \}.$

 Exercise: Prove that the global modal consequence ⊢^g is algebraizable with equivalent algebraic semantics the variety of modal algebras.

Algebraizable logics

Definition

A logic \vdash is algebraizable if there exist a generalized quasi-variety K and structural transformers

$$au : \mathcal{P}(Fm) \longleftrightarrow \mathcal{P}(Eq) : \mu$$

such that

$$\Gamma \vdash \varphi \Longleftrightarrow \tau(\Gamma) \vDash_{\mathsf{K}} \tau(\varphi) \tag{ALG1}$$
$$x \approx y \models \models_{\mathsf{K}} \tau \rho(x \approx y) \tag{ALG3}$$

• Remark: Conditions (ALG2) and (ALG4) are redundant.

Theorem

If \vdash is algebraizable, then the class K is uniquely determined and is called the equivalent algebraic semantics of \vdash .

20/1

Non-Algebraizable logics: examples

Proposition

Algebraizable logics have theorems, i.e. if \vdash is algebraizable, then there is φ such that $\emptyset \vdash \varphi$.

Example: non-algebraizable logics

► All logics without theorems, e.g.

{∧, ∨}-fragment of classical logicBelnap-Dunn logic (without constants)Kleene 3-valued logics (without constants)

Algebraizable logics: syntactic characterization

We need to investigate the definability of Leibniz congr	Jence:
Theorem (definability of Leibniz congruence)	
Let \vdash be a logic and $\Delta(x, y)$ be a set of formulas. TFAE:	
1. For every model $\langle \boldsymbol{A}, \boldsymbol{F} angle$ of \vdash ,	
$\langle a, b angle \in \boldsymbol{\Omega}^{\boldsymbol{A}}F \Longleftrightarrow \Delta^{\boldsymbol{A}}(a, b) \subseteq F.$	
2. The following inferences are valid in \vdash :	
$\emptyset\vdash \Delta(x,x)$	(Ref)
$x, \Delta(x,y) \vdash y$	(MP)
$\bigcup \Delta(x_i,y_i) \vdash \Delta(f(\vec{x}),f(\vec{y}))$	(Rep)
i≤n	
for all connectives f of \vdash .	

Algebraizable logics: syntactic characterization

Corollary

- 1. The equiv. alg. semantics of an alg. logic \vdash is Alg^{*}(\vdash).
- 2. Algebriazability is preserved by extensions (not necessarily axiomatic).

Theorem

If \vdash is an algebraizable logic with equivalent algebraic semantics K, then there is a dual isomorphism between the complete lattice of extensions of \vdash and subgeneralized quasi-varieties of K.

Example

The typical correspondence between axiomatic extensions and subvarieties (e.g. normal modal logics, superintuitionistic logics etc.) is a special instance of this phenomenon.

Algebraizable logics: syntactic characterization

>

Theorem (syntactic characterization of algebraizability)

A logic \vdash is algebraizable if and only if there are a set of formulas $\Delta(x, y)$ and a set of equations E(x) such that for all connectives f,

$$\emptyset \vdash \Delta(x, x)$$
 (Ref)

$$x, \Delta(x, y) \vdash y$$
 (MP)

$$\bigcup_{i \le n} \Delta(x_i, y_i) \vdash \Delta(f(\vec{x}), f(\vec{y}))$$
(Rep)

$$\Delta E(x) \dashv \vdash x \tag{ALG3}$$

In this case,

$$\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^*(\vdash) \iff F = \{a \in A : \mathbf{A} \vDash E(a)\} \text{ and}$$

 $\mathbf{A} \vDash E(\Gamma) \to E(\varphi) \text{ for every } \Gamma \vdash \varphi$
 $\mathbf{A} \vDash E\Delta(x \approx y) \to x \approx y.$

Algebraizable logics: semantic characterization

 \blacktriangleright Generalized quasi-varieties need not be closed under $\mathbb H.$

Definition

Let K be a generalized quasi-variety and **A** and algebra. A congruence $\theta \in \text{Con} A$ is a K-congruence if $A/\theta \in K$.

 $\mathsf{Con}_{\mathsf{K}}\mathbf{A} := \{ \theta \in \mathsf{Con}\mathbf{A} : \theta \text{ is a K-congruence} \}.$

Con_KA is a complete lattice, since K is closed under subdirect products (and contains the trivial algebra).

Proposition

If K is a generalized quasi-variety, then $Con_{K}Fm$ coincides with the set $\mathcal{T}h(\vDash_{K})$ of closed sets of $C_{\vDash_{K}}$.

23/1

Algebraizable logics: semantic characterization

Definition

Let \vdash be a logic and \boldsymbol{A} and algebra. A set $F \subseteq A$ is a deductive filter of \vdash on \boldsymbol{A} , if $\langle \boldsymbol{A}, F \rangle \in Mod(\vdash)$.

 $\mathcal{F}i_{\vdash} \mathbf{A} \coloneqq \{F \subseteq A : \langle \mathbf{A}, F \rangle \in \mathsf{Mod}(\vdash)\}.$

► $\mathcal{F}_{i_{\vdash}} \mathbf{A}$ is a complete lattice.

Proposition

If \vdash is a logic, then $\mathcal{F}_{i\vdash} \mathbf{F} \mathbf{m}$ coincides with the set $\mathcal{T}_{h}(\vdash)$ of closed sets of C_{\vdash} .

27/1

29/1

Algebraizable logics: semantic characterization

Example: semantic meaning of algebraizability

 Thus algebraizability abstracts the idea of a correspondence between congruences and special subsets of algebras (e.g. filters/ideals):

 $\begin{array}{rcl} \mathsf{Boolean} \ \mathsf{algebras} &\longleftrightarrow \ \mathsf{lattice} \ \mathsf{filters} \\ \mathsf{Heyting} \ \mathsf{algebras} &\longleftrightarrow \ \mathsf{lattice} \ \mathsf{filters} \\ \mathsf{residuated} \ \mathsf{lattices} & \longleftrightarrow \ \mathsf{lattice} \ \mathsf{filters} \ \mathsf{containing} \ 1 \ \mathsf{and} \\ & \mathsf{closed} \ \mathsf{under} \ \mathsf{fusion} \\ \\ \mathsf{modal} \ \mathsf{algebras} \ &\longleftrightarrow \ \mathsf{open} \ \mathsf{lattice} \ \mathsf{filters} \\ \\ & \mathsf{groups} \ &\longleftrightarrow \ \mathsf{normal} \ \mathsf{subgroups} \\ \\ & \mathsf{rings} \ &\longleftrightarrow \ \mathsf{two-sided} \ \mathsf{ideals.} \end{array}$

► The semantic description of algebraizability is also readily falsifiable, e.g. ⊢^l_K is not algebraizable!

Algebraizable logics: semantic characterization

Theorem (semantic characterization of algebraizability)

Let \vdash be a logic and K a generalized quasi-variety. TFAE:

- 1. \vdash is algebraizable with equivalent algebraic semantics K.
- For every algebra A there is a lattice isomorphism
 Φ^A: *Fi*_⊢A → Con_KA that commutes with endomorphisms σ in the sense that Φ^Aσ⁻¹F = σ⁻¹Φ^AF for every F ∈ *Fi*_⊢A.
- There is a lattice isomorphism Φ: Th(⊢) → Th(⊨_K) that commutes with substitutions σ in the sense that Φσ⁻¹Γ = σ⁻¹ΦΓ for every Γ ∈ Th(⊢).

Moreover, $\Phi^{\boldsymbol{A}}$ can be always taken to be $\boldsymbol{\Omega}^{\boldsymbol{A}}$: $\mathcal{F}_{i\vdash}\boldsymbol{A} \to \mathsf{Con}_{\mathsf{K}}\boldsymbol{A}$.