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2. Theories and models
(First order, many sorted)

Theory = signature + axioms
Context = finite set of free variables
Axiom = sequent

Outline of course
1. Sheaves: Continuous set-valued maps

R eorlle ~TaTalaalalal= Al doLled
to many-sorted first-order theories.

Models in Set
- and in other categories

. Classityimmysate
generic model

4. Toposes and geometric reasoning: How to

‘do generalized topology™ Homomorphisms between models
Geometric theories

Propositional geometric theory => topological
space of models.

Generalize to predicate theories?



Oddities 1: Many-sorted

A set of sorts for all terms, including variables

Arities (of predicates, function symbols) say

- not just how many arguments,

- also what their sorts are

- also (function symbols) the sort of the result

Single-sorted = ordinary first order logic
- all terms have the same sort

No-sorted = propositional logic

- no variables or terms

- no function symbols (no sort for result)

- predicates have no arguments

- hence only possible predicates are propositional symbols



Oddities 2: Contexts

Don't assume overall countable stock of (sorted) free variables.
Instead, introduce context, finite set of sorted free variables, as needed.

—
Terms, formulae, entailments are in context, (3(, . t»
- describing free variables allowed (and their sorts). <——> \
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Empty carriers

Empty context allows correct treatment of empty carriers.
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Entailment holds for every interpretation of x
- vacuously true if carrier empty

Conm € d=duce. \le d?(‘}\ — 33 39(3\ x

- false for empty carrier




Oddities 3: Sequents

Deal with logics lacking some connectives

e.g. geometric logic has conjunction, disjunction, but not implication
- correspond to intersection and union of open sets in topology

Two-level fomalization:
- formulae in context are built up using available connectives
- sequents In context express entailment
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Oddities 4: Infinitary connectives

In particular: infinitary disjunctions
- for arbitrary unions of opens

Unexpected consequences

Algebraic treatment (e.g. Lindenbaum algebras) more ad hoc
- see next talk

Can characterize some models, e.g. natural numbersNot possible with
uniquely up to isomorphism. finitary first-order logic
- hence logic takes on aspects of type theory



Oddities 5: Incompleteness

No completeness in general
Two possible interpretations:

Inference rules not stro gh to get all semantic entailments

or
Not enough models to support all syntactic distinctions

Solution Look for models in categories other than Set
- then there are enough models
- but category of models in Set, or monad on Set, don't describe theory

adequately
- need "categorical Lindenbaum algebras" (see next talk)



Many-sorted, first-order theory - in some given logic

Theory = signature + axioms

Signature has e -

Cgﬁg\ __— C >0
nredicates/ .
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Each predicate or function symbols has an arity specifying
- number of arguments (finite, possibly zero) A constant is a O-ary

- the sort of each argument function (no arguments)
- the sort of the result (for a function symbol)
' 1 —s T
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binary function, arguments of sorts 0_1, ¢ 2, and result of sort 1.
Pe—>0 ,

binary predicate



Terms, formulae in context

Given a signature:

— >
Context = finite list of variables, each assigned a sort X0

Given a context: (5(_2 JC\

Terms built from free variables (from context) and function symbols in

the usual way.
— A?» We al
Formulae built from: x - € always assume

- predicates applied to terms (of correct w equality predicates
- equations between terms of same sor
- simpler formulae, using connectives and quantifiers as permitted by

the logic /

Bound variables are outside the
context



Sequents, axioms, theories

Given a signature:

A sequent is a context, together with two formulae in that context.

A theory Is a signature, together with a set of sequents
(the axioms for the theory)



Be pragmatic about

Example notation!
Monoids
- one sort, M
- two function symbols
1. M unit
MM ->M Infix multiplication
- no predicates
- axioms
T — :LDC-':' x. A sl= x unitlaws
SRV IAN M\ A
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Example

Monoid actions

- two sorts, M, A
- function symbols and axioms as for Monoids

- another function symbol
_ _AM->A
- two more axioms

T_ . AN, \3’8 NN G}QS CY\ZD%



Geometric theories

F lae built using: —
ormulae built using T} A J,,)\/] ] 3

finite COW arbitrary disjunctions
/ No-sorted = propositional logic

Propositional fragment (no sorts) - 1o variables or terms

- no function symbols (no sort for result)
- predicates have no arguments
- hence only possible predicates are propositional symbols

Signature
= set of propositional symbols

Formulae built with finite conjunctions, arbitrary disjunctions
- relate to finite intersections, arbitrary unions of open sets



Interpreting a signature

Suppose we are given a signature

Each sort g is interpreted as a set (its carrier)

A context is interpreted as the product of the carriers of the sorts of the
free variables
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Interpreting a signature

To define interpretation I:
- specify interpretations of sorts, function symbols and predicates (*)
- other parts can then be derived
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Interpreting terms - always in context
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Tuples of values to instantiate Evaluate t on a tuple
variables in context

Define by structural induction

(1) For free variable in the context: use projection
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Get I'th component of tuple



Interpreting terms lj— feren 1T Wn CondtxE 2T
TIER.£): IEY— T(T)

Define by structural induction

(2) For function application
«?
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Example: Monoids

(X,y,Z:M . (xy)z)




Interpreting formulae (in context)

\& & 0 rou\ oy e condextc T
(2.6 = TE)

"the set of tuples for which ¢ holds"
Define by structural induction

(1) logical constants

T L)——Z | —\/’ 3 — T C’?> ~—— Depends on context!

T (. 1y = ¢



Interpreting formulae (in context) \g— & afofwxu.\o\ i contxt X%
TE . = IE)

Define by structural induction

(1) predicate symbol applied to terms
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Interpreting formulae (in context) |- ¢ afofwm\& i conlxt 3 -
TE . = IE)

Define by structural induction

(2) equation
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equalizer - those elements on whch two
functions agree



Interpreting formulae (in context) | ¢ aformulo in ot -5
T2 = I@

Define by structural induction

(3) connectives - apply corresponding operations on subsets

b, O, tmuloe i~ Context X0
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Interpreting formulae (in context) | ¢ aformulo in ot -5
T2 = I@

Define by structural induction
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Models of a theory

An interpretation | satisfies a sequent 47 — Z AV.

CTED
(Y (&)

& :
/D for every tuple: if @ holds then so
L CX’ ' A’\ does Y

A model of a theory is
- an interpretation of its signature
- that satisfies all its axioms.



e.g. Monoids

Interpret signature:
set M with constant 1 and binary operation

Axioms: e.g. T- "53 AL X~ G}S{S Cﬁ:’b’é/
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associativity holds for all triples of elements of M




Special case: propositional theories

No sorts to interpret
Empty context () interpreted as I() = nullary product 1

Propositional symbol P interpreted as subset I(P) of 1 = {*}
= truth value
- 1is true, O (empty set) is false

Likewise, any formula ¢
- connectives interpreted In lattice of truth values

Sequent @ |- W Is satisfied means:
- it * L (@) then * LI I(Y)
- If I{@) true then so is ()



Homomorphisms between models

M, N two models
homomorphism a: M -> N has

- for each sort g, a carrier function a_o: M(o) -> N(0)
- such that they preserve function symbols and predicates
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form a category

Models and homomorphism



Homomorphisms preserve all terms C?_ EZ t : r\‘x
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By structural induction on t



—p
ME @) =
Yes for geometric formulae (
- use structural induction on formula ‘
[
We shall be using homomorphisms for \

geometric theories N 62¢> —




- - -5
Homomorphisms preserve some formulae ()L NV C%\

No If formula uses negation, implication, or universal guantification

e.g. theory with one sort

and one unary predicate P

- model = set equipped with subset P

- homomorphism = function that restricts to the subsets

A\(P) +
AN @ Q ‘Fésé?j zv\(_x_ ~PE)

], e
Lecture 3: Important to lift model
[\( morphisms to other formulae.
Hence classical logic needs
N (@)

different account of model
morphism




Homomorphisms for propositional theories

No sorts
- no carrier functions required

- only one possible homomorphism empty list of sorts
- but it only exists if all propositional symbols preserved

- models and homomorphisms form a poset \
NG
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homomorphism M -> N

exists iff: \ oL o=
for every propositional N ()
symbol P, : Uw\\ W&
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Geometric theories: Examples

1. Algebraic theories - e.g. monoids, monoid actions

Signhature has sorts and function symbols
Formulae built with equations

Sequents all of form —r' PS—Z t\: trl_



Geometric theories: Examples

2. Points of topological space X

Signature has
- no sorts (propositional theory)
- one propositional symbol P_U for each open U of X

Sequents P - P\[ \S U\C:—.\[

A~
T =P
? o converse sequents follow
R&A v — TV from first

— \ Py
] ¢

Infinite disjunctions!

PU;_U"Z



Models?

Each P_U interpreted as subset of 1, I.e. truth value.

Let F ={U | P_U interpreted as true}

Axioms say -
/ \ Pu_ . P\, ;S‘ (JLQ\{

- F Is up-closed

- F contains X - T = F
- Fis closed under intersection, ~_~ Paly  Pu
PU;“’} — \{1 'Plk;

F is a filter in lattice O(X) of opens/

- F "splits unions”

We say F is a completely prime filter

The models of the theory are the completely prime filters of O(X)



Neighbourhood filters

For each x In X:
-N_x={open U | xIn U}
- IS a completely prime filter

Q/ X > wa(ak\y gm'ma/‘f;(’re\rgi
Nole. > ew ff B =G e

if every open neighbourhood of x also
contains y.

X Is sober if N is a bijection
N Is injective iff specialization is a partial order
Think: the completely prime filters are the true points

- If X, y have the same neighbourhood filter,
they are just "different labels for the same point"



For sober spaces X, Y:

Maps f: X -> Y are in bijection with functions f*: Q(Y) -> Q(X) preserving
finite intersections, arbitrary unions

Given f, f* Is Inverse image.

For reverse:
Completely prime filters of Q(X) are equivalent to functions

Q(X) -> Q = P(1) = {truthvalues}
preserving finite intersections, arbitrary unions

Given f*, preserving those, by composition it transforms completely prime
filters of Q(X) to those of Q(Y)

Hence by sobriety it gives f: X -> Y. It is continuous.



Point-free topology

ldea

Use a geometric theory to describe a topological space
Points = models of the theory

Opens = geometric formulae

Specifies points and opens all in one structure

This is point-free topology

Contrast with point-set topology

- first specify set of points
- then specify topology



Further reading

First order categorical logic
Johnstone - Elephant D1



