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Outline of course

1. Sheaves: Continuous set-valued maps

2. Theories and models: Categorical approach 
to many-sorted first-order theories.

3. Classifying categories: Maths generated by a 
generic model

4. Toposes and geometric reasoning: How to 
"do generalized topology".

  

2. Theories and models
(First order, many sorted)

Theory = signature + axioms
Context = finite set of free variables
Axiom = sequent

Models in Set
- and in other categories

Homomorphisms between models

Geometric theories

Propositional geometric theory => topological 
space of models.

Generalize to predicate theories?



Oddities 1: Many-sorted

A set of sorts for all terms, including variables

Arities (of predicates, function symbols) say
- not just how many arguments,
- also what their sorts are
- also (function symbols) the sort of the result

Single-sorted = ordinary first order logic
- all terms have the same sort

No-sorted = propositional logic
- no variables or terms
- no function symbols (no sort for result)
- predicates have no arguments
- hence only possible predicates are propositional symbols



Oddities 2: Contexts

Don't assume overall countable stock of (sorted) free variables.

Instead, introduce context, finite set of sorted free variables, as needed.

Terms, formulae, entailments are in context,
- describing free variables allowed (and their sorts).



Empty carriers

Empty context allows correct treatment of empty carriers.

Entailment holds for every interpretation of x
- vacuously true if carrier empty

- false for empty carrier



Oddities 3: Sequents

Deal with logics lacking some connectives

e.g. geometric logic has conjunction, disjunction, but not implication
- correspond to intersection and union of open sets in topology

Two-level fomalization:
- formulae in context are built up using available connectives
- sequents in context express entailment



Oddities 4: Infinitary connectives

In particular: infinitary disjunctions
- for arbitrary unions of opens

Unexpected consequences

Algebraic treatment (e.g. Lindenbaum algebras) more ad hoc
- see next talk

Can characterize some models, e.g. natural numbers,
uniquely up to isomorphism.
- hence logic takes on aspects of type theory

Not possible with 
finitary first-order logic



Oddities 5: Incompleteness

No completeness in general
Two possible interpretations:

   Inference rules not strong enough to get all semantic entailments

or

   Not enough models to support all syntactic distinctions

Solution Look for models in categories other than Set
- then there are enough models
- but category of models in Set, or monad on Set, don't describe theory 
adequately
- need "categorical Lindenbaum algebras" (see next talk) 



Many-sorted, first-order theory - in some given logic

Theory = signature + axioms

Signature has
- sorts
- predicates
- function symbols

Each predicate or function symbols has an arity specifying
- number of arguments (finite, possibly zero)
- the sort of each argument
- the sort of the result (for a function symbol)

A constant is a 0-ary 
function (no arguments)

binary function, arguments of sorts σ_1, σ_2, and result of sort τ.

binary predicate



Terms, formulae in context

Given a signature:

Context = finite list of variables, each assigned a sort

Given a context:

Terms built from free variables (from context) and function symbols in 
the usual way.

Formulae built from:
- predicates applied to terms (of correct sort)
- equations between terms of same sort
- simpler formulae, using connectives and quantifiers as permitted by 
the logic

We always assume 
equality predicates

Bound variables are outside the 
context



Sequents, axioms, theories

Given a signature:

A sequent is a context, together with two formulae in that context.

A theory is a signature, together with a set of sequents
(the axioms for the theory)



Example

Monoids
- one sort, M
- two function symbols
  1: M
  _ _: M,M -> M
- no predicates
- axioms

unit
infix multiplication

unit laws

associativity

Be pragmatic about 
notation!



Example

Monoid actions
- two sorts, M, A
- function symbols and axioms as for Monoids
- another function symbol
  _ _: A,M -> A
- two more axioms



Geometric theories

Formulae built using:

No-sorted = propositional logic
- no variables or terms
- no function symbols (no sort for result)
- predicates have no arguments
- hence only possible predicates are propositional symbols

finite conjunctions arbitrary disjunctions

Propositional fragment (no sorts)

Signature
= set of propositional symbols

Formulae built with finite conjunctions, arbitrary disjunctions
- relate to finite intersections, arbitrary unions of open sets



Interpreting a signature

Suppose we are given a signature

Each sort σ is interpreted as a set (its carrier)

A context is interpreted as the product of the carriers of the sorts of the 
free variables



Interpreting a signature

To define interpretation I:
- specify interpretations of sorts, function symbols and predicates (*)
- other parts can then be derived



Interpreting terms

Define by structural induction

(1) For free variable in the context: use projection

- always in context

Tuples of values to instantiate 
variables in context

Evaluate t on a tuple

Get i'th component of tuple



Interpreting terms

Define by structural induction

(2) For function application

induction
given

tupling



Example: Monoids

(x,y,z:M . (xy)z)



Interpreting formulae (in context)

"the set of tuples for which φ holds"

Define by structural induction

(1) logical constants

Depends on context!



Interpreting formulae (in context)

Define by structural induction

(1) predicate symbol applied to terms



Interpreting formulae (in context)

Define by structural induction

(2) equation

equalizer - those elements on whch two 
functions agree



Interpreting formulae (in context)

Define by structural induction

(3) connectives - apply corresponding operations on subsets

intersection union



Interpreting formulae (in context)

Define by structural induction

(4) quantifiers



Models of a theory

An interpretation I satisfies a sequent
if -

for every tuple: if φ holds then so 
does ψ

A model of a theory is
- an interpretation of its signature
- that satisfies all its axioms.



e.g. Monoids

Interpret signature:
set M with constant 1 and binary operation

Axioms: e.g.

associativity holds for all triples of elements of M



Special case: propositional theories

No sorts to interpret

Empty context () interpreted as I() = nullary product 1

Propositional symbol P interpreted as subset I(P) of 1 = {*}
= truth value
- 1 is true, 0 (empty set) is false

Likewise, any formula φ
- connectives interpreted in lattice of truth values

Sequent φ |− ψ is satisfied means:
- if * ∈ I(φ) then * ∈ I(ψ)
- if I(φ) true then so is I(ψ)



Homomorphisms between models

M, N two models
homomorphism α: M -> N has
- for each sort σ, a carrier function α_σ: M(σ) -> N(σ)
- such that they preserve function symbols and predicates

product of 
carrier 
functions

Models and homomorphisms form a category



Homomorphisms preserve all terms

By structural induction on t



Homomorphisms preserve some formulae

Yes for geometric formulae
- use structural induction on formula

We shall be using homomorphisms for 
geometric theories



Homomorphisms preserve some formulae

No if formula uses negation, implication, or universal quantification

e.g. theory with one sort
and one unary predicate P
- model = set equipped with subset P
- homomorphism = function that restricts to the subsets

Lecture 3: Important to lift model 
morphisms to other formulae.
Hence classical logic needs 
different account of model 
morphism



Homomorphisms for propositional theories

No sorts
- no carrier functions required
- only one possible homomorphism
- but it only exists if all propositional symbols preserved
- models and homomorphisms form a poset

empty list of sorts

homomorphism M -> N
exists iff:
for every propositional 
symbol P,
if P true for M 
then it's also true for N



Geometric theories: Examples

1. Algebraic theories - e.g. monoids, monoid actions

Signature has sorts and function symbols
Formulae built with equations
Sequents all of form



Geometric theories: Examples

2. Points of topological space X

Signature has
- no sorts (propositional theory)
- one propositional symbol P_U for each open U of X

Sequents

converse sequents follow 
from first

infinite disjunctions!



Models?

Each P_U interpreted as subset of 1, i.e. truth value.

Let F = {U | P_U interpreted as true}

Axioms say -

- F is up-closed
- F contains X
- F is closed under intersection

F is a filter in lattice O(X) of opens

- F "splits unions"

We say F is a completely prime filter

The models of the theory are the completely prime filters of O(X)



Neighbourhood filters

For each x in X:
- N_x = {open U | x in U}
- is a completely prime filter

X is sober if N is a bijection

N is injective iff specialization is a partial order

Think: the completely prime filters are the true points
- if x, y have the same neighbourhood filter,
  they are just "different labels for the same point"

y specializes x (x less than y in 
specialization order)
if every open neighbourhood of x also 
contains y.



For sober spaces X, Y:

Maps f: X -> Y are in bijection with functions f*: Ω(Y) -> Ω(X) preserving 
finite intersections, arbitrary unions

Given f, f* is inverse image.

For reverse:
Completely prime filters of Ω(X) are equivalent to functions

  Ω(X) -> Ω = P(1) = {truthvalues}

preserving finite intersections, arbitrary unions

Given f*, preserving those, by composition it transforms completely prime 
filters of Ω(X) to those of Ω(Y)

Hence by sobriety it gives f: X -> Y. It is continuous.



Point-free topology

Idea

Use a geometric theory to describe a topological space
Points = models of the theory
Opens = geometric formulae

Specifies points and opens all in one structure

This is point-free topology

Contrast with point-set topology
- first specify set of points
- then specify topology



Further reading

First order categorical logic
Johnstone - Elephant D1


