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Based on results of Allan Skelley and Neil Thapen, The Provably
Total Search Problems of Bounded Arithmetic and P.P. and Neil
Thapen, Parity Games and Propositional Proofs
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Standard finite games

Two players – P1, P2

DAG with one source, every node is assigned either to P1 or to P2

The assignment to terminal nodes determines whose winning
position it is.

The graph is also called the protocol.

Theorem (Zermelo)

In every finite game either P1 or P2 has a winning strategy.
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Boolean circuits as games

Let C be a Boolean circuit with gates ∨,∧ and literals xi , x̄i on
input nodes.

I assign the gates ∨ to P1 and gates ∧ to P2

I given a truth assignment xi 7→ αi ∈ {0, 1}, assign an input
node to P1 if it gets value 1 and to P2 otherwise

Fact
For (C , α), P1 has a winning strategy iff C (α) = 1, and P2 has a
winning strategy iff C (α) = 0. Hence deciding who has a winning
strategy is easy.

NB Formulas are also circuits, so this also holds for formulas in the
basis ∨,∧.

[4]
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How to make games more difficult

After playing a game G1

a1a2a3 . . . am

they play another game G2[a1 . . . am] that depends on the moves in
the first game.
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A particular arrangement of the games

G1 : a1 a2 . . . → . . . am−i . . . am
G2[a] : bm bm−1 . . . ← . . . bi . . . b1

The set of legal moves after bi depends on bi and am−i .
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this can be repeated

G1 : a1 a2 . . . → . . . am−i . . . am
G2[a] : bm bm−1 . . . ← . . . bi . . . b1

G3[a,b] : c1 c2 . . . → . . . cm−i . . . cm

and so on

[7]



Cooperative games and communication complexity

Two players want to achieve the same goal.

The complexity of the task is measured by

I the number of bits they need to communicate
(communication complexity), or

I the number of steps (versions of communication complexity),

I etc.

[8]



Karchmer-Wigderson games

Given a Boolean function f : {0, 1}n → {0, 1}, and

I P1 has α ∈ {0, 1}n such that f (α) = 1,

I P2 has β ∈ {0, 1}n such that f (β) = 0.

Goal: find an i such that αi 6= βi .

Theorem (Karchmer-Wigderson)

The minimum depth of a circuit (formula) computing f is equal to
the communication complexity of the game.

Proof: (⇐) The circuit is essentially the protocol. (⇒) To get the
circuit, remove superfluous parts of the protocol.
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When enemies become friends, and vice versa

Let C be a circuit

1. given α ∈ {0, 1}n
I P1 has a strategy to reach a satisfied input literal iff C (α) = 1,
I P2 has a strategy to reach a falsified input literal iff C (α) = 0

2. I P1 has α ∈ {0, 1}n such that C (α) = 1, and
I P2 has β ∈ {0, 1}n such that C (β) = 0,

then they have a strategy to find a literal p such that
I p[α] = 1,
I p[β] = 0.

[10]



1. from adversarial to cooperative:
I Both players have winning strategies, hence games must be

different. Find the difference!

2. from cooperative to adversarial
I One player is cheating, therefore must loose.

[11]



A symmetric calculus

Idea: A calculus for general formulas, yet it looks like Resolution.

Our calculus is a streamlined and symmetric version of a calculus
of Skelley and Thapen.
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Language: ∨,∧,>,⊥, literals xi , x̄i , no negation, except in literals.
We will tacitly assume that ∨,∧ are associative and commutative,
or equivalently that conjunctions and disjunctions are multisets.

A proof of A ` B is a sequence of formulas A = Φ1, . . . ,Φm = B
where Φi+1 follows from Φi by an application of a deduction rule.

A proof of A is a proof of > ` A.
A refutation of A is a proof of A ` ⊥.

Deep inferences (of course!)

A[. . .B . . . ]

A[. . .C . . . ]

where B ` C is a deduction rule. 2

2Recall that A does not contain negations.
[13]
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Deduction rules:

contraction/expansion

A ∨ A

A

A

A ∧ A

weakenings
A

A ∨ B

A ∧ B

A

truth constants
A ∨ ⊥

A

A

A ∧ >

resolution/dual resolution

(A ∨ p) ∧ (B ∨ p̄)

A ∨ B

A ∧ B

(A ∧ p) ∨ (B ∧ p̄)
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E.G.

(A ∧ (B ∨ p)) ∧ C

(A ∧ (B ∨ p) ∧ p̄) ∨ (p ∧ C )

(A ∧ B) ∨ (p ∧ C )

[15]



Padding

We are interested in proofs of bounded depth, i.e., where each
formula has at most k alternation of ∨ and ∧ for some constant k .

To this end we allow one element disjunctions and conjunctions. In
particular, literals can be interpreted as formulas of any given
depth.

[16]



Interpreting proofs as games I.

Let
A = Φ1, . . . ,Φm = B

be a proof. Suppose, for example, that

Φi =
∨
j

∧
k

∨
l

pijkl

where pijkl are literals.

P1 conjunctions: a1 a2 . . . → . . . am−i . . . am
P2 disjunctions: bm bm−1 . . . ← . . . bi . . . b1

ai =
∧

k

∨
l pijikl

bi =
∨

l pijiki l

Finally, P1 picks p1j1k1l1 .

[17]



A ` B by a proof A = Φ1, . . . ,Φm = B, Φi =
∨

j

∧
k

∨
l pijkl

P1 conjunctions: a1 a2 . . . → . . . am−i . . . am
P2 disjunctions: bm bm−1 . . . ← . . . bi . . . b1

Furthermore, truth assignment α ∈ {0, 1}n is given.

The goals of the players:

P1 claims A[α] = 1.
P2 claims B[α] = 0.

P1 looses if p[α] = 0 for a literal that he claims to be true.
P2 looses if p[α] = 1 for a literal that he claims to be false.

[18]



A ` B by a proof A = Φ1, . . . ,Φm = B, Φi =
∨

j

∧
k

∨
l pijkl

P1 conjunctions: a1 a2 . . . → . . . am−i . . . am
P2 disjunctions: bm bm−1 . . . ← . . . bi . . . b1

Furthermore, truth assignment α ∈ {0, 1}n is given.

The goals of the players:

P1 claims A[α] = 1.
P2 claims B[α] = 0.

P1 looses if p[α] = 0 for a literal that he claims to be true.
P2 looses if p[α] = 1 for a literal that he claims to be false.

[18]



Actions of players

Let Φi ` Φi+1 by dual resolution.

Φi = · · · ∨ (C ∧ D) ∨ . . . and P1 played C ∧ D.
Φi+1 = · · · ∨ (C ∧ p) ∨ (D ∧ p̄) ∨ . . . .

Then P1 must play

I C ∧ p, if p is true, or

I C ∧ p̄, if p̄ is true.

For the other rules, the action is also uniquely determined (in fact,
without using the assignment).

The actions of P2 are dual.

[19]
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E.G.

· · · ∨ (C ∧ D) ∨ . . .

· · · ∨ (C ∧ p) ∨ (D ∧ p̄) ∨ . . .
...

· · · ∨ (p ∧ (q ∨ p̄)) ∨ . . .

· · · ∨ q ∨ . . .
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E.G.
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Interpreting proofs as games II.

Karchmer-Wigderson type game

P1 has α such that A[α] = 1.
P2 has β such that B[β] = 0.

Goal: find a literal p such that p[α] = 1 and p[β] = 0.

The players follow the schedule

P1: a1 a2 . . . → . . . am−i . . . am
P2: bm bm−1 . . . ← . . . bi . . . b1

etc . . . .

The literal p can be found

I either at the ends Φ1, Φm,

I or at some application of resolution or dual resolution

[23]
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Interpreting proofs as games III.

Fact
Suppose var(A) ∩ var(B) = ∅ and A ` B. Then

1. either A ` ⊥ ` B, i.e., A is unsatisfiable,

2. or A ` > ` B, i.e., B is a tautology.

We want to “decide” which is true by means of a game.

We now assign P1 to variables of A, and P2 to variables of B.
Thus they have to alternate in the rows.

Conjecture (stated very informally)

The problem of deciding 1. or 2. is equivalent3 to the existence of
certain winning strategies in a suitable game.

3w.r.t. polynomial time reductions
[24]
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Interlude—so what?

Question: Why are we trying to characterize provability of
sentences of certain complexity in certain systems by combinatorial
principles?

Answer 1. Look at Peano Arithmetic.

Problem
Find a combinatorial interpretation of the sentence Con(PA).

Theorem (Paris-Harrington)

The Σ1-reflection principle for PA is equivalent to the PH sentence.

[25]
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Answer 2. Look at computational complexity.

Complexity classes are often characterized by (many) concrete
computational problems.

The corresponding concepts in proof complexity are first order
theories/proof systems and mathematical/combinatorial principles.

Answer 3. Because we want to prove, or to argue that they are
not provable in weaker systems.

[26]
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The Point-Line Game

a game for depth 2 Frege proofs
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A positional strategy for P1 (P2) is an assignment to his nodes,
i.e., a strategy that does not depend on the paths to the nodes.

Whether or not a positional strategy is a winning can be decided in
polynomial time.

It is possible that none of the players has a positional winning
strategy.

The game can be presented in the form

a1 a2 . . . → . . . am−i . . . am
bm bm−1 . . . ← . . . bi . . . b1

where players alternate in the first game and the second game is
trivial—End of the Line.

[37]
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Proof search for Resolution

Theorem (Arnold Beckmann, P.P. and Neil Thapen)

The following two problems are polynomially reducible to each
other:

1. Given a CNF formula Φ decide if
I it is satisfiable, or
I it has a resolution refutation of size |Φ|2,

(provided that one of the two is true).

2. Given a point-line game decide if
I P1 has a positional winning strategy, or
I P1 has a positional winning strategy,

(provided that one of the two is true).

[38]



Combinatorial games

Theorem (Arnold Beckmann, P.P. and Neil Thapen)

The problem of deciding who has a winning strategy for parity
games is reducible to the problem of deciding who has a positional
winning strategy in point-line games.

Proof is based on formalizing parity games in a fragment of
bounded arithmetic and translating the proof into depth 2 Frege
proofs.

We also formalized simple stochastic games in a theory that gives
depth 3 Frege systems.

[39]
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Thank You

[40]


