Clones (3&4)

Martin Goldstern

Discrete Mathematics and Geometry,
TU Wien

TACL Olomouc, June 2017
Galois connections

Let \(A, B \) be sets, \(R \subseteq A \times B \).
For any \(S \subseteq A \) and any \(T \subseteq B \) let

- \(S^u := \{ b \in B \mid \forall a \in S : aRb \} \)
- \(T^\ell := \{ a \in A \mid \forall b \in T : aRb \} \).

Then

- the maps \(T \mapsto T^\ell \) and \(S \mapsto S^u \) are \(\subseteq \)-antitone.
- the maps \(S \mapsto \bar{S} := S^{ul} \) and \(T \mapsto \bar{T} := T^{lu} \) are closure operators (\(S \subseteq \bar{S} = \bar{\bar{S}} \))
- \(S^{ulu} = S^u, T^{lu} = \ell. \)

Usually it is of interest to characterize the family of closed sets \(\{ S \mid S = \bar{S} \} \) and the closure operator “from below”.

Clones (3&4) Discrete Mathematics and Geometry, TU Wien
Galois connections, examples

Let A, B be sets, $R \subseteq A \times B$.

$S^u := \{ b \in B \mid \forall a \in S : aRb \} = \bigcap_{a \in S} \{ b \in B \mid aRb \}$

$T^\ell := \{ a \in A \mid \forall b \in T : aRb \} = \bigcap_{b \in T} \{ a \in A \mid aRb \}$

Examples

- $A =$ vector space, $B =$ dual space = set of linear forms.
 $aRb \iff b(a) = 0$.
 $S \subseteq A \Rightarrow S^{u\ell} =$ linear hull of S.

- $A =$ all formulas, $B =$ all structures,
 $aRb \iff b \models a$ (the formula a holds in the structure b).
 $\bar{S} =$ all consequences of $S = \{ a : S \models a \}$

- $A =$ operations on X, $B =$ relations, $f R \rho \iff f \triangleright \rho$.
 $S^{u\ell} = \langle S \rangle =$ clone generated by S.
k-ary clones, clones

\(\mathcal{O}^{(k)} := \{ f \mid f : X^k \rightarrow X \} \). \(\mathcal{O}_X := \bigcup_{k=1}^{\infty} \mathcal{O}^{(k)}_X \).

Definition (k-ary clone)

A **k-ary clone** on \(X \) is a set \(T \subseteq \mathcal{O}^{(k)}_X \) which is closed under “composition” and contains the \(k \) projections.

Definition (Clone)

A **clone** on \(X \) is a set \(T \subseteq \mathcal{O}_X = \bigcup_{k=1}^{\infty} \mathcal{O}^{(k)}_X \) which is closed under “composition” and contains all projections.

Definition (Composition)

Let \(f \in \mathcal{O}^{(k)}, g_1, \ldots, g_k \in \mathcal{O}^{(m)}_X \).

\[f(g_1, \ldots, g_k)(\vec{x}) := f(g_1(\vec{x}), \ldots, g_k(\vec{x})) \text{ for all } \vec{x} \in X^m. \]

If \(C \) is a clone, then \(C^{(k)} := C \cap \mathcal{O}^{(k)} \) is a \(k \)-ary clone, the **\(k \)-ary fragment** of \(C \).
Vector-valued operations

C is a clone: $f, g_1, \ldots, g_k \in C \Rightarrow f(g_1, \ldots, g_k) \in C$.

We can view (g_1, \ldots, g_k) as a single function $\vec{g} : X^m \to X^k$, and write $f \circ \vec{g}$ instead of $f(g_1, \ldots, g_k)$.

Definition

For any set $S \subseteq \emptyset_X$ let \tilde{S} be the set of all operations $f : X^k \to X^n$ with the property that all “components” are in S:

$$\tilde{S} := \bigcup_{k,n} \{ f : X^k \to X^n \mid \forall i \in \{1, \ldots, n\} : \pi_i^n \circ f \in S \}$$

where $\pi_i^n : X^n \to X$ is the i-th projection function.

The set S is a clone iff \tilde{S} contains all projection functions and is closed under composition:

$$\forall g : X^m \to X^k \forall f : X^k \to X^n : (f, g \in \tilde{S} \Rightarrow f \circ g \in \tilde{S})$$
Examples of clones

- Every subset \(S \subseteq \emptyset_X \) will *generate* a clone \(\langle S \rangle \), the smallest clone containing \(S \).
- For any relation \(\rho \subseteq X^n \): \(\text{Pol}(\rho) := \{ f \in \emptyset_X^{(|f|)} \upharpoonright \rho \} \) is a clone.
- For any relation \(\rho \subseteq X^K \) (\(K \) infinite), \(\text{Pol}(\rho) \) is a clone.
- For any set \(R \) of relations, \(\text{POL}(R) := \bigcap_{\rho \in R} \text{Pol}(\rho) \) is a clone.
- \(\langle C \rangle = \text{POL}(\text{INV}(C)) \), where \(\text{INV}(C) := \bigcap_{f \in C} \text{Inv}(f) \), \(\text{Inv}(f) := \{ \rho \mid f \upharpoonright \rho \} \).
 (For infinite \(X \), need to allow infinitary relations; operations still have finite arity!)
The lattice of all clones on X

For finite X, \mathcal{O}_X is countable.
For infinite X of size κ, \mathcal{O}_X has 2^κ elements.

Definition
For any nonempty set X let $\text{Cl}(X)$ be the set of all clones on X.
($\text{Cl}(X)$ is a subset of the power set of \mathcal{O}_X.)

- $\text{Cl}(X)$ is a complete lattice. (meet = intersection, join = clone generated by union)
- $\text{Cl}(X)$ is Countable for $|X| = 2$.
 (Post’s lattice. wikipedia!)
- $\text{Cl}(X)$ is of size $|\mathbb{R}| = 2^{\aleph_0}$ for X finite with > 2 elements.
- For infinite X of size κ: $|\text{Cl}(X)| \leq 2^{2^\kappa}$.
 In fact: $= 2^{2^\kappa}$. (Later)
Minimal clones

Definition
We call a clone M minimal if $J \varsubsetneq M$ (J is the smallest clone, containing only the projections), but there is no clone D with $J \varsubsetneq D \varsubsetneq M$.
The minimal clones are the atoms of the clone lattice.
An operation m is minimal iff $\langle m \rangle$ is a minimal clone.
Instead of minimal clones we consider minimal operations.
If m is minimal, then $\forall f \in \langle m \rangle \setminus J : m \in \langle f \rangle$.

- If m is unary, then have $m \in \langle m^j \rangle$ for all j except if $m^j = id$.
 Hence $j^2 = id$ (“retraction”), or m is a permutation of prime order.
- If m not essentially unary, then m must be idempotent.
 \[m(x, \ldots, x) = m. \]
Minimal operations, examples

▶ Every constant operation.
▶ Every permutation whose order is a prime number.
▶ The meet operation of any meet-semilattice.
▶ The median operation in any linear order.
▶ ... (many more. Some necessary conditions known, but no explicit criterion.)

Fact
If X is finite, then there are finitely many minimal operations. Every clone $\neq J$ contains a minimal clone.

(This is not true for infinite sets. Let $s : \mathbb{Z} \to \mathbb{Z}$ be defined by $s(x) = x + 1$, then every non-projection in $\langle s \rangle$ is of the form s^j ($j \in \{1, 2, \ldots \}$, and none of them is minimal, as $\langle s^{2j} \rangle \subsetneq \langle s^j \rangle$.)
Complete sets

Theorem

For every X: $\langle \mathcal{O}_X^{(2)} \rangle = \mathcal{O}_X$.

Proof for infinite X.

- Let $p_2 : X^2 \rightarrow X$ be a bijection.
- Find bijections $p_j : X^j \rightarrow X$ for $j = 3, 4, \ldots$, with $p_j \in \langle \mathcal{O}^{(2)} \rangle$.
 For example, $p_3(x, y, z) := p_2(x, p_2(y, z))$.
- For every $f : X^k \rightarrow X$, let $\hat{f} := f \circ p_k^{-1}$.
 So $f(\vec{x}) = \hat{f}(p_k(\vec{x}))$ for all $\vec{x} \in X^k$. As \hat{f} is unary, $\hat{f} \in \langle \mathcal{O}^{(2)} \rangle$.
- From $\hat{f} \in \langle \mathcal{O}^{(2)} \rangle$ and $p_k \in \langle \mathcal{O}^{(2)} \rangle$ conclude $f \in \langle \mathcal{O}^{(2)} \rangle$.
Complete sets

For every X: $\langle O_X^{(2)} \rangle = O_X$.

Proof for finite X ("Lagrange interpolation").

Let $(X, +, \cdot, 0, 1)$ be a finite lattice with smallest element 0 and greatest element 1. So $x + 0 = 0 + x = x = 1 \cdot x$ for all x.

- For each $a \in X$ let $\chi_a : X \to X$ be the characteristic function of the set $\{a\}$. So $\chi_a \in O^{(1)} \subseteq \langle O^{(2)} \rangle$.
- For each $\bar{a} \in X^k$ let $\chi_{\bar{a}} : X^k \to X$ be the characteristic function of $\{\bar{a}\}$: $\chi_{\bar{a}} = \prod_i \chi_{a_i}(x_i)$. So $\chi_{\bar{a}} \in \langle O^{(2)} \rangle$.
- For any $b \in X$ let $c_b \in O^{(1)}$ be constant with value b.
- Every operation $f \in O^{(k)}$ can now be written as $f = \sum_{\bar{a} \in X^k} (\chi_{\bar{a}} \cdot c_{f(\bar{a})})$. So $f \in \langle O^{(2)} \rangle$.

(Remark: This proof also works for strongly amorphous sets.)
Precomplete clones

Definition
A clone $C \subseteq \emptyset_X$ is “precomplete” (or “maximal”) if $C \neq \emptyset_X$, but there is no clone D satisfying $C \subsetneq D \subsetneq \emptyset_X$.

Theorem
For any clone $C \subsetneq \emptyset_X$ there is a precomplete clone C' with $C \subseteq C'$.

(Remark: Not true for infinite sets! At least if the continuum hypothesis holds.)
Post’s lattice

The lattice of all clones on a 2-element set is countably infinite.

It has 5 coatoms ("precomplete" clones) and 7 atoms.
Precomplete clones, example 1

Let \(\rho \) be a nontrivial unary relation, i.e. \(\emptyset \subsetneq \rho \subsetneq X \). Then \(\text{Pol}(\rho) \) is the set of all operations \(f \) such that \(\rho \) is a subalgebra of \((X, f)\). This clone is precomplete.

Proof.
Let \(g : X^k \rightarrow X, g \notin \text{Pol}(\rho) \). Let \(C := \langle \text{Pol}(\rho) \cup \{g\} \rangle \). We show \(C = \emptyset_X \). Sufficient: \(C \supseteq \emptyset_X^{(2)} \).

For \(v \in X \), let \(c_v \) be the constant function with value \(v \).
There are \(\bar{a} = (a_1, \ldots, a_k) \in \rho^k \), \(b \notin \rho \) with \(g(\bar{a}) = b \),
So \(c_b = g(c_{a_1}, \ldots, c_{a_k}) \) is in \(C \).

For \(f \in \emptyset_X^{(2)} \) define \(\hat{f}(x_1, x_2, y) := \begin{cases} x_1 & \text{if } y \in \rho \\ f(x_1, x_2) & \text{if } y \notin \rho \end{cases} \). So \(\hat{f} \in C \).

Now \(f = \hat{f}(\pi_1^2, \pi_2^2, c_b) \), i.e., \(f(x_1, x_2) = \hat{f}(x_1, x_2, b) \). So \(f \in C \).
Precomplete clones, example 2

\(\sim\) a nontrivial equivalence relation \(\Rightarrow\) \(\text{Pol}(\sim)\) is precomplete.

Proof.
For \(\vec{a}, \vec{b} \in X^k\) write \(\vec{a} \sim \vec{b}\) iff \(\forall i\ a_i \sim b_i\). This is an equivalence relation on \(X^k\).
Let \(g : X^k \to X, g \notin \text{Pol}(\sim)\). Let \(C := \langle \text{Pol}(\sim) \cup \{g\} \rangle\). We have to show \(C = \emptyset_X\). Sufficient: \(C \supseteq \emptyset_X^{(2)}\).
There is \(k\) and \(\vec{a} \sim \vec{b} \in X^k\) with \(1 := g(\vec{a}) \not\sim g(\vec{b}) =: 0\).
We claim that for each \(p \in X^2\) there is a function \(\chi_p : X^2 \to X\) which maps \(p\) to \(1\), everything else to \(0 \not\sim 1\).
For each \(p \in X^2\) let \(h_p : X^2 \to X^k\) be defined by \(h_p(p) = \vec{a}, h_p(x) = \vec{b}\) otherwise. Clearly \(h_p \in \text{Pol}(\sim)\). So \(\chi_p := g \circ h_p \in C\).
(continued on next page)
Proof that Pol(∼) is precomplete, continued.

We started with a clone \(C \supseteq \text{Pol}(\sim) \).

For each \(p \in X^2 \) we have found \(\chi_p \in C \), \(\chi_p : X^2 \to X \) with \(\chi_p(p) = 1 \), \(\chi_p(x) = 0 \) for \(x \neq p \). (And \(0 \not\sim 1 \))

Define \(\chi : X^2 \to X^{\mid X \mid^2} \) by \(\chi(\vec{x}) = (\chi_p(x) : p \in X^2) \). So \(\chi \in \tilde{C} \).

Let \(f \in \mathcal{O}(\chi)^{(2)} \) be arbitrary. We will show \(f \in C \).

Define \(\hat{f} : X^{2+\mid X \mid^2} \to X \) as follows:

\[\begin{align*}
\text{\(\hat{f} \) is constant on each \(\sim \)-class. (So \(\hat{f} \in \text{Pol}(\sim) \subseteq C \))} \\
\text{\(\hat{f}(\vec{x}, \chi(\vec{x})) = f(\vec{x}) \).}
\end{align*} \]

This two requirements are compatible, as \(\vec{x} \neq \vec{x}' \) implies that \(\chi(\vec{x}) \not\sim \chi(\vec{x}') \).

Clearly \(f(\vec{x}) = \hat{f}(\vec{x}, \chi(\vec{x})) \). So \(f \in C \).
Precomplete clones, example 3

Definition
Let $r : X \rightarrow X$, $f : X^k \rightarrow X$. We say that f commutes with r if:

$$\forall x_1, \ldots, x_k \in X : f(r(x_1), \ldots, r(x_k)) = r(f(x_1, \ldots, x_k))$$

Writing r^\bullet for the relation $\{(x, r(x)) \mid x \in X\}$, f commutes with r iff $f \triangleright r^\bullet$. (We may write $f \triangleright r$ instead of $f \triangleright r^\bullet$)

Clearly $f \triangleright r \Rightarrow f \triangleright r^j$ for all j. Hence e.g. Pol$(r) \subseteq$ Pol(r^2). But if r is a permutation of order p, then Pol$(r) =$ Pol(r^j) whenever p does not divide j.

Theorem
Assume that $r : X \rightarrow X$ is a permutation and all cycles have the same prime length. Then Pol(r) is precomplete.
Precomplete clones, examples 4,5

- “monotone”: Let \(\rho \subseteq X \times X \) be a partial order with smallest and greatest element. \(\text{Pol}(\rho) \) is the set of all pointwise monotone operations.

- “affine” Assume \(|X| = p^m \), so wlog \(X \) is a finite field \(X = GF(p^m) \).
 Let \(\rho = \{(a, b, c, d) \in X^4 \mid a + b = c + d\} \). Then \(\text{Pol}(\rho) \) is the set of all operations \(f \) of the form

\[
f(x_1, \ldots, x_k) = a_0 + \sum_{i=1}^{k} \sum_{j=0}^{m-1} x_i^p j
\]

All these clones are precomplete.
Post’s lattice, again

The 5 precomplete clones in $Cl(\{0, 1\})$:

- operations preserving $\{0\}$.
- operations preserving $\{1\}$.
- monotone operations
- “commuting”:
 $f(\neg x) = \neg f(x)$.
- affine operations
Rosenberg’s list

Theorem

Let $X = \{1, \ldots, k\}$. Then there is an explicit finite list of relations ρ_1, \ldots, ρ_m such that every precomplete clone on X is one of $\text{Pol}(\rho_1), \ldots, \text{Pol}(\rho_m)$.

The list includes

- all “central relations” (generalisations of $\rho \subsetneq X$)
- all nontrivial equivalence relations (\forall if $|X| = 2$)
- all prime permutations
- All bounded partial orders
- affine relations (only if $|X| = p^n$)
- (others. more complicated but still explicit)
Rosenberg’s list

Theorem

Let \(X = \{1, \ldots, k\} \). Then there is an explicit finite list of relations \(\rho_1, \ldots, \rho_m \) such that every precomplete clone on \(X \) is one of \(\text{Pol}(\rho_1), \ldots, \text{Pol}(\rho_m) \).

Completeness criterion \(\langle S \rangle \neq \emptyset_X \) iff there is some \(\rho_i \) from the list with \(\forall f \in S : f \uparrow \rho_i \).
A complicated interval in the clone lattice

Definition
Let C_{idem} be the clone of all idempotent operations:
$$f(x, \ldots, x) = x. \text{ (Assume } |X| \geq 3.)$$
Find all clones between C_{idem} and \emptyset_X!

Example
Let $Y \subseteq X$. Then $C_{idem}|_Y := \{ f \mid \forall x \in Y : f(x, \ldots, x) = x \}$ is a clone $\supseteq C_{idem}$.

Theorem
Every clone between C_{idem} and \emptyset_X is of the form $C_{idem}|_Y$.
Hence: the interval $[C_{idem}, \emptyset_X]$ is (anti-)isomorphic to the power set of X.
(Precomplete clones correspond to singletons, \emptyset_X to \emptyset.)
Let C be a clone containing all idempotent operations $f(x, \ldots, x) = x$. We want to find Y such that

$$C = C_{\text{idem}} \upharpoonright Y = \{ f \mid \forall y \in Y : f(y, \ldots, y) = y \}.$$

- \textbf{fix}(f) := \{ a \in X \mid f(a, \ldots, a) = a \}, \textbf{nix}(f) := X \setminus \text{fix}(f).
- Let $R := \{ \text{nix}(f) \mid f \in C \}$.
- R is downward closed.
- R is upward directed, hence an ideal.
- Let Z be the largest element of R, $Y := X \setminus Z$.
- So $C \subseteq C_{\text{idem}} \upharpoonright Y$.
- If $\text{nix}(f) \subseteq \text{nix}(g)$ and $g \in C$, then $f \in C$.
- Hence $C = C_{\text{idem}} \upharpoonright Y$.

Clones (3&4) Discrete Mathematics and Geometry, TU Wien
A complicated interval, continued

\(C_{\text{idem}} = \) the clone of all idempotent operations: \(f(x, \ldots, x) = x \).

Theorem (X finite)

Every clone between \(C_{\text{idem}} \) and \(\emptyset_X \) is of the form \(C_{\text{idem}} \upharpoonright Y \).

For infinite \(X \):

Definition

For every filter \(\mathcal{F} \) on \(X \), let

\[
 C_{\mathcal{F}} := \bigcup_{Y \in \mathcal{F}} C_{\text{idem}} \upharpoonright Y = \{ f \mid \exists Y \in \mathcal{F} \; \forall y \in Y \; f(y, \ldots, y) = y \}
\]

Each \(C_{\mathcal{F}} \) is a clone above \(C_{\text{idem}} \).
A complicated interval, conclusion

\[C_{\mathcal{F}} := \{ f \mid \exists Y \in \mathcal{F} \ \forall y \in Y \ f(y, \ldots, y) = y \} \]

Theorem

Let \(X \) be any set. Then the map \(\mathcal{F} \mapsto C_{\mathcal{F}} \) is an order-preserving bijection between the filters on \(X \) and the clones above \(C_{\mathcal{F}} \).

Ultrafilters correspond to precomplete clones in this interval, and the improper filter corresponds to \(\emptyset_X \).

(For finite sets, all filters are principal.)

Translation to topology: the interval \([C_{\text{idem}}, \emptyset_X] \) is anti-isomorphic to the family of closed sets of \(\beta X \), the Čech-Stone compactification of the discrete space \(X \). (Precomplete clones correspond to points, \(\emptyset_X \) to \(\emptyset \).)
Another complicated interval

Let X be infinite. We will find “very many” clones with trivial unary fragment, i.e., below C_{idem}, the clone of all idempotent operations. (Unfortunately: no complete classification.)

In fact all our operations will be “conservative”:

$$f(x_1, \ldots, x_k) \in \{x_1, \ldots, x_k\}.$$

- Let $(A_i : i \in I)$ be a family of sufficiently independent sets.
 (In particular: we demand that for any finite $I_0 \subseteq I$ and any $j \in I \setminus I_0$ the set $(\bigcup_{i \in I_0} A_i) \cap (X \setminus A_j)$ contains at least 2 elements. It is possible to find such a family with $2^{|X|}$ elements, in particular: an uncountable such family.)

- Fix a linear order \leq_i on A_i, with minimum operation \wedge_i.

- Extend \wedge_i to X by requiring $x \wedge_i y = x$ outside A_i.

- For any $I' \subseteq I$ let $C_{I'} := \langle\{\wedge_i \mid i \in I'\}\rangle$. Then all $C_{I'}$ are distinct. (Note: the numbers of such clones $= 2^{|X|}$.)
Local clones

Let X be infinite. A clone C is local if each fragment $C \cap \emptyset_X^k$ is closed in the product topology (pointwise convergence) on X^{X^k} (with discrete X). Equivalently: If there is a set R of relations of finite arity such that $C = \text{POL}(R)$.

The lattice of local clones has only $2^{|X|}$ elements; the lattice of all clones: $2^{2^{|X|}}$.

Example:

On a finite set with k elements, the interval $[\emptyset_X^{(1)}, \emptyset_X]$ has $k + 1$ elements.

On any infinite set X, the interval $[\emptyset_X^{(1)}, \emptyset_X]$ in the lattice of all clones has at least $2^{2^{|\mathbb{N}|}}$ elements.

On any infinite set X, the interval $[\emptyset_X^{(1)}, \emptyset_X]$ in the lattice of local clones has at only countably many elements.
Bonus round: non-AC

We used $X \times X \approx X$ to show that $\langle \emptyset_X^{(2)} \rangle = \emptyset_X$ (for infinite sets X). But $X \times X \approx X$ uses the axiom of choice (and in fact $\forall X$ infinite : $X \times X \approx X$ is equivalent to AC). Was that necessary?
Yes, probably.

Let (M, R_3) be the “random 3-uniform hypergraph”. That is, R_3 is a totally symmetric totally irreflexive relation which is “as random as possible”. For example: For all (reasonable) finite sets $\{a_1, b_1, \ldots, a_k, b_k, c_1, d_1, \ldots, c_n, d_n\} \subseteq M$ there is some $e \in M$ with $R(a_i, b_i, e)$ for all i, and $\neg R(c_j, d_j, e)$ for all j.
(Technically: the Fraïssé limit of all finite 3-uniform hypergraphs.)
non-AC, continued

Continuation of the proof.
Let \((M, R_3)\) be the “random 3-uniform hypergraph”. \((M\) countable, \(R_3 \subseteq M^3\) is “random” or “generic”.)
Let \(f_1, \ldots, f_m\) be first order definable binary operations, say definable from \(m_1, \ldots, m_k\) in the structure \((M, R)\). Then the set \(X \times X\) can be partitioned into finitely many sets according to the “type” a pair \((x, y)\) can have over \(m_1, \ldots, m_k\). On each type each operation \(f_i\) must be either constant or a projection, so the same is true for any element of \(\langle f_1, \ldots, f_k \rangle\). But the function \(\chi_R\) is neither a projection or a constant on any type. So we have found a definable ternary function not in the clone generated by the definable binary functions.
We have found a definable ternary function on \((M, R)\), definable from \(R\), but not in the clone generated by the definable binary functions.

Now construct a model of \(ZF+\neg\text{AC}\) in which all operations on \(M\) are definable from \(R\) and finitely many parameters. In this model, all binary operations are trivial on a large set, but not all ternary operations.
The clone lattice on \(\{0, 1\} \) is well understood. (But nontrivial.)

\(Cl(X) \) for larger finite sets \(X \): many fragments are explicitly known (certain intervals, coatoms, …), others only partially (atoms), or only for very small sets (say, \(|X| \leq 4, 5 \)).

To analyse \(k \)-ary operations, it is often helpful to consider \(k + 1 \)-ary operations. (Or \(2k \)-ary. or \((k + |X|^2) \)-ary, etc.)

Many open questions.

For infinite \(X \): set theory kicks in. Local clones more interesting than all clones?
Thank you for your attention! and for your questions! . . . and for your corrections!!