Clones (3&4)

Martin Goldstern

Discrete Mathematics and Geometry, TU Wien

TACL Olomouc, June 2017

Clones (3&4)

Galois connections

Let *A*, *B* be sets, $R \subseteq A \times B$. For any $S \subseteq A$ and any $T \subseteq B$ let

• $S^u := \{ b \in B \mid \forall a \in S : aRb \}$

•
$$T^{\ell} := \{ a \in A \mid \forall b \in T : aRb \}.$$

Then

- the maps $T \mapsto T^{\ell}$ and $S \mapsto S^{u}$ are \subseteq -antitone.
- the maps S → S̄ := S^{uℓ} and T → T̄ := T^{ℓu} are closure operators (S ⊆ S̄ = S̄)

$$\triangleright S^{u\ell u} = S^u, T^{\ell u\ell} = \ell.$$

Usually it is of interest to characterize the family of *closed* sets $\{S \mid S = \overline{S}\}$ and the closure operator "from below".

Galois connections, examples

Let *A*, *B* be sets, $R \subseteq A \times B$. $S^{u} := \{b \in B \mid \forall a \in S : aRb\} = \bigcap_{a \in S} \{b \in B \mid aRb\}$ $T^{\ell} := \{a \in A \mid \forall b \in T : aRb\} = \bigcap_{b \in T} \{a \in A \mid aRb\}$ Examples

- ► *A* = vector space, *B* = dual space = set of linear forms. $aRb \Leftrightarrow b(a) = 0$. $S \subseteq A \Rightarrow S^{u\ell}$ = linear hull of *S*.
- ► A = all formulas, B = all structures, $aRb \Leftrightarrow b \models a$ (the formula *a* holds in the structure *b*). $\overline{S} =$ all consequences of $S = \{a : S \models a\}$
- ► A = operations on X, B = relations, $f R \rho \Leftrightarrow f \triangleright \rho$. $S^{u\ell} = \langle S \rangle$ = clone generated by S.

k-ary clones, clones

$$\mathbb{O}^{(k)} := \{ f \mid f : X^k \to X \}. \ \mathbb{O}_X := \bigcup_{k=1}^{\infty} \mathbb{O}_X^{(k)}.$$

Definition (*k*-ary clone)

A *k*-ary clone on X is a set $T \subseteq O_X^{(k)}$ which is closed under "composition" and contains the *k* projections.

Definition (Clone)

A *clone* on *X* is a set $T \subseteq \mathcal{O}_X = \bigcup_{k=1}^{\infty} \mathcal{O}_X^{(k)}$ which is closed under "composition" and contains all projections.

Definition (Composition)

Let $f \in \mathcal{O}^{(k)}$, $g_1, \ldots, g_k \in \mathcal{O}^{(m)}_X$. $f(g_1, \ldots, g_k)(\vec{x}) := f(g_1(\vec{x}), \ldots, g_k(\vec{x}))$ for all $\vec{x} \in X^m$. If *C* is a clone, then $C^{(k)} := C \cap \mathcal{O}^{(k)}$ is a *k*-ary clone, the *k*-ary fragment of *C*.

Vector-valued operations

C is a clone: $f, g_1, \ldots, g_k \in C \Rightarrow f(g_1, \ldots, g_k) \in C$. We can view (g_1, \ldots, g_k) as a single function $\vec{g} : X^m \to X^k$, and write $f \circ \vec{g}$ instead of $f(g_1, \ldots, g_k)$.

Definition

For any set $S \subseteq O_X$ let \tilde{S} be the set of all operations $f: X^k \to X^n$ with the property that all "components" are in S:

$$\tilde{\boldsymbol{S}} := \bigcup_{k,n} \{ f : \boldsymbol{X}^k \to \boldsymbol{X}^n \mid \forall i \in \{1, \dots, n\} : \ \pi_i^n \circ f \in \boldsymbol{S}) \}$$

where $\pi_i^n : X^n \to X$ is the *i*-th projection function.

The set S is a clone iff \tilde{S} contains all projection functions and is closed under composition:

$$\forall g: X^m
ightarrow X^k \ \forall f: X^k
ightarrow X^n: (f, g \in \tilde{S} \Rightarrow f \circ g \in \tilde{S})$$

Examples of clones

- Every subset S ⊆ O_X will generate a clone (S), the smallest clone containing S.
- For any relation ρ ⊆ Xⁿ: Pol(ρ) := {f ∈ O^{(|f|}_X ⊳ ρ} is a clone.
- ► For any relation $\rho \subseteq X^{K}$ (K infinite), Pol(ρ) is a clone.
- For any set R of relations, POL(R) := ∩_{ρ∈R} Pol(ρ) is a clone.
- ⟨C⟩ = POL(INV(C)), where INV(C) := ∩_{f∈C} Inv(f), Inv(f) := {ρ | f ⊳ ρ}. (For infinite X, need to allow infinitary relations; operations still have finite arity!)

The lattice of all clones on X

For finite *X*, \mathcal{O}_X is countable. For infinite *X* of size κ , \mathcal{O}_X has 2^{κ} elements.

Definition

For any nonempty set X let CI(X) be the set of all clones on X. (CI(X) is a subset of the power set of \mathcal{O}_X .)

- CI(X) is a complete lattice. (meet = intersection, join = clone generated by union)
- CI(X) is Countable for |X| = 2. (Post's lattice. wikipedia!)
- CI(X) is of size $|\mathbb{R}| = 2^{\aleph_0}$ for X finite with > 2 elements.
- For infinite X of size κ: |Cl(X)| ≤ 2^{2^κ}. In fact: = 2^{2^κ}. (Later)

Minimal clones

Definition

We call a clone *M* minimal if $J \subsetneq M$ (*J* is the smallest clone, containing only the projections), but there is no clone *D* with $J \subsetneq D \subsetneq M$.

The minimal clones are the atoms of the clone lattice.

An operation *m* is minimal iff $\langle m \rangle$ is a minimal clone.

Instead of minimal clones we consider minimal operations. If *m* is minimal, then $\forall f \in \langle m \rangle \setminus J : m \in \langle f \rangle$.

- If *m* is unary, then have *m* ∈ ⟨*m^j*⟩ for all *j* except if *m^j* = *id*. Hence *j*² = *id* ("retraction"), or *m* is a permutation of prime order.
- ► If *m* not essentially unary, then *m* must be idempotent. m(x,...,x) = m.

Minimal operations, examples

- Every constant operation.
- Every permutation whose order is a prime number.
- The meet operation of any meet-semilattice.
- The median operation in any linear order.
- ... (many more. Some necessary conditions known, but no explicit criterion.)

Fact

If X is finite, then there are finitely many minimal operations. Every clone \neq J contains a minimal clone.

(This is not true for infinite sets. Let $s : \mathbb{Z} \to \mathbb{Z}$ be defined by s(x) = x + 1, then every non-projection in $\langle s \rangle$ is of the form s^j $(j \in \{1, 2, ...\}$, and none of them is minimal, as $\langle s^{2j} \rangle \subsetneq \langle s^j \rangle$.)

Complete sets

Theorem For every X: $\langle \mathfrak{O}_X^{(2)} \rangle = \mathfrak{O}_X$.

Proof for infinite X.

- Let $p_2: X^2 \to X$ be a bijection.
- ▶ Find bijections $p_j : X^j \to X$ for j = 3, 4, ..., with $p_j \in \langle 0^{(2)} \rangle$. For example, $p_3(x, y, z) := p_2(x, p_2(y, z))$.
- ► For every $f: X^k \to X$, let $\hat{f} := f \circ p_k^{-1}$. So $f(\vec{x}) = \hat{f}(p_k(\vec{x}))$ for all $\vec{x} \in X^k$. As \hat{f} is unary, $\hat{f} \in \langle 0^{(2)} \rangle$.
- From $\hat{f} \in \langle \mathbb{O}^{(2)} \rangle$ and $p_k \in \langle \mathbb{O}^{(2)} \rangle$ conclude $f \in \langle \mathbb{O}^{(2)} \rangle$.

Complete sets

For every X: $\langle \mathfrak{O}_X^{(2)} \rangle = \mathfrak{O}_X$.

Proof for finite X ("Lagrange interpolation").

Let $(X, +, \cdot, 0, 1)$ be a finite lattice with smallest element 0 and greatest element 1. So $x + 0 = 0 + x = x = 1 \cdot x$ for all x.

- For each a ∈ X let χ_a : X → X be the characteristic function of the set {a}. So χ_a ∈ O⁽¹⁾ ⊆ (O⁽²⁾).
- ► For each $\vec{a} \in X^k$ let $\chi_{\vec{a}} : X^k \to X$ be the characteristic function of $\{\vec{a}\}$: $\chi_{\vec{a}} = \prod_i \chi_{a_i}(x_i)$. So $\chi_{\vec{a}} \in \langle 0^{(2)} \rangle$.
- ▶ For any $b \in X$ let $c_b \in O^{(1)}$ be constant with value b.
- ► Every operation $f \in \mathcal{O}^{(k)}$ can now be written as $f = \sum_{\vec{a} \in X^k} (\chi_{\vec{a}} \cdot c_{f(\vec{a})})$. So $f \in \langle \mathcal{O}^{(2)} \rangle$.

(Remark: This proof also works for strongly amorphous sets.)

Precomplete clones

Definition

A clone $C \subseteq \mathcal{O}_X$ is "precomplete" (or "maximal") if $C \neq \mathcal{O}_X$, but there is no clone *D* satisfying $C \subsetneq D \subsetneq \mathcal{O}_X$.

Theorem

For any clone $C \subsetneq \mathfrak{O}_X$ there is a precomplete clone C' with $C \subseteq C'$.

(Remark: Not true for infinite sets! At least if the continuum hypothesis holds.)

Post's lattice

The lattice of all clones on a 2-element set is countably infinite.

It has 5 coatoms ("precomplete" clones) and 7 atoms.

Precomplete clones, example 1

Let ρ be a nontrivial unary relation, i.e. $\emptyset \subsetneq \rho \subsetneq X$. Then Pol(ρ) is the set of all operations *f* such that ρ is a subalgebra of (*X*, *f*). This clone is precomplete.

Proof.

Let $g: X^k \to X, g \notin \operatorname{Pol}(\rho)$. Let $C := \langle \operatorname{Pol}(\rho) \cup \{g\} \rangle$. We show $C = \mathcal{O}_X$. Sufficient: $C \supseteq \mathcal{O}_X^{(2)}$. For $v \in X$, let c_v be the constant function with value v. There are $\vec{a} = (a_1, \dots, a_k) \in \rho^k$, $b \notin \rho$ with $g(\vec{a}) = b$, So $c_b = g(c_{a_1}, \dots, c_{a_k})$ is in C. For $f \in \mathcal{O}_X^{(2)}$ define $\hat{f}(x_1, x_2, y) := \begin{cases} x_1 & \text{if } y \in \rho \\ f(x_1, x_2) & \text{if } y \notin \rho \end{cases}$. So $\hat{f} \in C$. Now $f = \hat{f}(\pi_1^2, \pi_2^2, c_b)$, i.e., $f(x_1, x_2) = \hat{f}(x_1, x_2, b)$. So $f \in C$.

Precomplete clones, example 2

 \sim a nontrivial equivalence relation \Rightarrow Pol(\sim) is precomplete.

Proof.

For $\vec{a}, \vec{b} \in X^k$ write $\vec{a} \sim \vec{b}$ iff $\forall i \ a_i \sim b_i$. This is an equivalence relation on X^k .

Let $g: X^k \to X$, $g \notin \text{Pol}(\sim)$. Let $C := \langle \text{Pol}(\sim) \cup \{g\} \rangle$. We have to show $C = \mathcal{O}_X$. Sufficient: $C \supseteq \mathcal{O}_X^{(2)}$.

There is *k* and $\vec{a} \sim \vec{b} \in X^k$ with $1 := g(\vec{a}) \not\sim g(\vec{b}) =: 0$. We claim that for each $p \in X^2$ there is a function $\chi_p : X^2 \to X$ which maps *p* to 1, everything else to $0 \not\sim 1$. For each $p \in X^2$ let $h_p : X^2 \to X^k$ be defined by $h_p(p) = \vec{a}$, $h_p(x) = \vec{b}$ otherwise. Clearly $h_p \in Pol(\sim)$. So $\chi_p := g \circ h_p \in C$. (continued on next page)

Proof that $Pol(\sim)$ is precomplete, continued.

We started with a clone $C \supseteq \operatorname{Pol}(\sim)$. For each $p \in X^2$ we have found $\chi_p \in C$, $\chi_p : X^2 \to X$ with $\chi_p(p) = 1$, $\chi_p(x) = 0$ for $x \neq p$. (And $0 \not\sim 1$) Define $\chi : X^2 \to X^{|X|^2}$ by $\chi(\vec{x}) = (\chi_p(x) : p \in X^2)$. So $\chi \in \tilde{C}$. Let $f \in \mathcal{O}_X^{(2)}$ be arbitrary. We will show $f \in C$. Define $\hat{f} : X^{2+|X|^2} \to X$ as follows:

▶ \hat{f} is constant on each ~-class. (So $\hat{f} \in Pol(\sim) \subseteq C$)

•
$$\hat{f}(\vec{x},\chi(\vec{x})) = f(\vec{x}).$$

This two requirements are compatible, as $\vec{x} \neq \vec{x}'$ implies that $\chi(\vec{x}) \not\sim \chi(\vec{x}')$. Clearly $f(\vec{x}) = \hat{f}(\vec{x}, \chi(\vec{x}))$. So $f \in C$.

Precomplete clones, example 3

Definition

Let $r : X \to X$, $f : X^k \to X$. We say that f commutes with r if:

$$\forall x_1,\ldots,x_k\in X:f(r(x_1),\ldots,r(x_k))=r(f(x_1,\ldots,x_k))$$

Writing r^{\bullet} for the relation $\{(x, r(x)) | x \in X\}$, f commutes with r iff $f \triangleright r^{\bullet}$. (We may write $f \triangleright r$ instead of $f \triangleright r^{\bullet}$)

Clearly $f \triangleright r \Rightarrow f \triangleright r^j$ for all *j*. Hence e.g. $Pol(r) \subseteq Pol(r^2)$. But if *r* is a permutation of order *p*, then $Pol(r) = Pol(r^j)$ whenever *p* does not divide *j*.

Theorem

Assume that $r : X \to X$ is a permutation and all cycles have the same prime length. Then Pol(r) is precomplete.

Precomplete clones, examples 4,5

- "monotone": Let ρ ⊆ X × X be a partial order with smallest and greatest element.
 Pol(ρ) is the set of all pointwise monotone operations.
- "affine" Assume |X| = p^m, so wlog X is a finite field X = GF(p^m).
 Let ρ = {(a, b, c, d) ∈ X⁴ | a + b = c + d}. Then Pol(ρ) is the set of all operations f of the form

$$f(x_1,...,x_k) = a_0 + \sum_{i=1}^k \sum_{j=0}^{m-1} x_i^{p^j}$$

All these clones are precomplete.

Clones (3&4)

Post's lattice, again

The 5 precomplete clones in $Cl(\{0,1\})$:

- operations preserving {0}.
- operations preserving {1}.
- monotone operations
- "commuting": $f(\neg x) = \neg f(x)$.
- affine operations

Rosenberg's list

Theorem

Let $X = \{1, ..., k\}$. Then there is an explicit finite list of relations $\rho_1, ..., \rho_m$ such that every precomplete clone on X is one of $Pol(\rho_1), ..., Pol(\rho_m)$. The list includes

- all "central relations" (generalisations of $\rho \subsetneq X$)
- all nontrivial equivalence relations
 (∄ if |X| = 2)
- all prime permutations
- All bounded partial orders
- affine relations (only if $|X| = p^n$)
- (others. more complicated but still explicit)

Rosenberg's list

Theorem Let $X = \{1, ..., k\}$. Then there is an explicit finite list of relations $\rho_1, ..., \rho_m$ such that every precomplete clone on X is one of Pol(ρ_1), ..., Pol(ρ_m).

Completeness criterion $\langle S \rangle \neq \mathfrak{O}_X$ iff there is some ρ_i from the list with $\forall f \in S : f \rhd \rho_i$.

A complicated interval in the clone lattice

Definition

Let C_{idem} be the clone of all idempotent operations: f(x, ..., x) = x. (Assume $|X| \ge 3$.) Find all clones between C_{idem} and \mathcal{O}_X !

Example

Let $Y \subseteq X$. Then $C_{\text{idem} \upharpoonright Y} := \{f \mid \forall x \in Y : f(x, \dots, x) = x\}$ is a clone $\supseteq C_{\text{idem}}$.

Theorem

Every clone between C_{idem} and \mathfrak{O}_X is of the form $C_{idem \upharpoonright Y}$. Hence: the interval $[C_{idem}, \mathfrak{O}_X]$ is (anti-)isomophic to the power set of *X*.

(Precomplete clones correspond to singletons, O_X to \emptyset .)

$[C_{idem}, \mathfrak{O}_X]$, proof sketch

Let *C* be a clone containing all idempotent operations f(x, ..., x) = x. We want to find *Y* such that $C = C_{idem|Y} = \{f \mid \forall y \in Y : f(y, ..., y) = y\}.$

- $fix(f) := \{a \in X \mid f(a, \ldots, a) = a\}, nix(f) := X \setminus fix(f).$
- Let $R := { nix(f) | f \in C }.$
- R is downward closed.
- R is upward directed, hence an ideal.
- Let Z be the largest element of R, $Y := X \setminus Z$.
- So $C \subseteq C_{\text{idem} \upharpoonright Y}$.
- If $nix(f) \subseteq nix(g)$ and $g \in C$, then $f \in C$.
- Hence $C = C_{\text{idem} \upharpoonright Y}$.

A complicated interval, continued

 C_{idem} = the clone of all idempotent operations: f(x, ..., x) = x. Theorem (X finite) Every clone between C_{idem} and \bigcirc_X is of the form $C_{idem|Y}$. For infinite X:

Definition For every filter \mathcal{F} on X, let

$$\mathcal{C}_{\mathcal{F}} := \bigcup_{Y \in \mathcal{F}} \mathcal{C}_{\operatorname{idem} \upharpoonright Y} = \{ f \mid \exists Y \in \mathcal{F} \; \forall y \in Y \; f(y, \ldots, y) = y \}$$

Each $C_{\mathcal{F}}$ is a clone above C_{idem} .

A complicated interval, conclusion

$$\mathcal{C}_{\mathcal{F}} := \{ f \mid \exists Y \in \mathcal{F} \; \forall y \in Y \; f(y, \ldots, y) = y \}$$

Theorem

Let X be any set. Then the map $\mathcal{F} \mapsto C_{\mathcal{F}}$ is an order-preserving bijection between the filters on X and the clones above $C_{\mathcal{F}}$. Ultrafilters correspond to precomplete clones in this interval, and the improper filter corresponds to \mathfrak{O}_X . (For finite sets, all filters are principal.)

Translation to topology: the interval $[C_{idem}, \mathcal{O}_X]$ is anti-isomorphic to the family of closed sets of βX , the Čech-Stone compactification of the discrete space *X*. (Precomplete clones correspond to points, \mathcal{O}_X to \emptyset .)

Another complicated interval

Let X be infinite. We will find "very many" clones with trivial unary fragment, i.e., below C_{idem} , the clone of all idempotent operations. (Unfortunately: no complete classification.) In fact all our operations will be "conservative":

 $f(x_1,\ldots,x_k)\in\{x_1,\ldots,x_k\}.$

- ► Let $(A_i : i \in I)$ be a family of sufficiently independent sets. (In particular: we demand that for any finite $I_0 \subseteq I$ and any $j \in I \setminus I_0$ the set $(\bigcup_{i \in I_0} A_i) \cap (X \setminus A_j)$ contains at least 2 elements. It is possible to find such a family with $2^{|X|}$ elements, in particular: an uncountable such family.)
- Fix a linear order \leq_i on A_i , with minimum operation \wedge_i .
- Extend \wedge_i to X by requiring $x \wedge_i y = x$ outside A_i .
- For any I' ⊆ I let C_{I'} := ({∧_i | i ∈ I'}). Then all C_{I'} are distinct. (Note: the numbers of such clones = 2^{2|X|}!)

Local clones

Let *X* be infinite. A clone *C* is local if each fragment $C \cap O_X k$ is closed in the product topology (pointwise convergence) on X^{X^k} (with discrete *X*). Equivalently: If there is a set *R* of relations of finite arity such that C = POL(R).

The lattice of local clones has only $2^{|X|}$ elements; the lattice of all clones: $2^{2^{|X|}}$.

Example:

On a finite set with *k* elements, the intervall $[O_X^{(1)}, O_X]$ has k + 1 elements.

On any infinite set X, the intervall $[\mathcal{O}_X^{(1)}, \mathcal{O}_X]$ in the lattice of all clones has at least $2^{2^{|\mathbb{N}|}}$ elements.

On any infinite set X, the intervall $[\mathcal{O}_X^{(1)}, \mathcal{O}_X]$ in the lattice of *local clones* has at only countably many elements.

Bonus round: non-AC

We used $X \times X \approx X$ to show that $\langle \mathbb{O}_X^{(2)} \rangle = \mathbb{O}_X$ (for infinite sets *X*). But $X \times X \approx X$ uses the axiom of choice (and in fact $\forall X$ infinite : $X \times X \approx X$ is equivalent to AC). Was that necessary? Yes, probably.

Proof sketch. Really: a hint. An idea of a hint. No satisfaction guaranteed.

Let (M, R_3) be the "random 3-uniform hypergraph". That is, R_3 is a totally symmetric totally irreflexive relation which is "as random as possible". For example: For all (reasonable) finite sets $\{a_1, b_1, \ldots, a_k, b_k, c_1, d_1, \ldots, c_n, d_n\} \subseteq M$ there is some $e \in M$ with $R(a_i, b_i, e)$ for all *i*, and $\neg R(c_j, d_j, e)$ for all *j*. (Technically: the Fraïssé limit of all finite 3-uniform hypergraphs.)

Clones (3&4)

non-AC, continued

Continuation of the proof.

Let (M, R_3) be the "random 3-uniform hypergraph". (M countable, $R_3 \subseteq M^3$ is "random" or "generic".) Let f_1, \ldots, f_m be first order definable binary operations, say definable from m_1, \ldots, m_k in the structure (M, R). Then the set $X \times X$ can be partitioned into finitely many sets according to the "type" a pair (x, y) can have over m_1, \ldots, m_k . On each type each operation f_i must be either constant or a projection, so the same is true for any element of $\langle f_1, \ldots, f_k \rangle$. But the function χ_B is neither a projection or a constant on any type. So we have found a definable ternary function not in the clone generated by the definable binary functions.

non-AC, conclusion

We have found a definable ternary function on (M, R), definable from R, but not in the clone generated by the definable binary functions.

Now construct a model of $ZF_{+\neg}AC$ in which all operations on M are definable from R and finitely many parameters. In this model, all binary operations are trivial on a large set, but not all ternary operations.

Summary

- The clone lattice on {0, 1} is well understood. (But nontrivial.)
- Cl(X) for larger finite sets X: many fragments are explicitly known (certain intervals, coatoms, ...), others only partially (atoms), or only for very small sets (say, |X| ≤ 4,5).
- ► To analyse k-ary operations, it is often helpful to consider k + 1-ary operations. (Or 2k-ary. or (k + |X|²)-ary, etc.)
- Many open questions.
- For infinite X: set theory kicks in. Local clones more interesting than all clones?

Thank you for your attention! and for your questions! ... and for your corrections!!