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Galois connections

Let A, B be sets, R ⊆ A× B.
For any S ⊆ A and any T ⊆ B let
I Su := {b ∈ B | ∀a ∈ S : aRb}
I T ` := {a ∈ A | ∀b ∈ T : aRb}.

Then
I the maps T 7→ T ` and S 7→ Su are ⊆-antitone.
I the maps S 7→ S̄ := Su` and T 7→ T̄ := T `u are closure

operators (S ⊆ S̄ = ¯̄S)
I Su`u = Su, T `u` = `.

Usually it is of interest to characterize the family of closed sets
{S | S = S̄} and the closure operator “from below”.
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Galois connections, examples

Let A, B be sets, R ⊆ A× B.
Su := {b ∈ B | ∀a ∈ S : aRb} =

⋂
a∈S{b ∈ B | aRb}

T ` := {a ∈ A | ∀b ∈ T : aRb} =
⋂

b∈T{a ∈ A | aRb}
Examples

I A = vector space, B = dual space = set of linear forms.
aRb ⇔ b(a) = 0.
S ⊆ A⇒ Su` = linear hull of S.

I A = all formulas, B = all structures,
aRb ⇔ b � a (the formula a holds in the structure b).
S̄ = all consequences of S = {a : S � a}

I A = operations on X , B = relations, fRρ⇔ f B ρ.
Su` = 〈S〉 = clone generated by S.
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k -ary clones, clones

O(k) := {f | f : X k → X}. OX :=
⋃∞

k=1 O
(k)
X .

Definition (k -ary clone)
A k-ary clone on X is a set T ⊆ O

(k)
X which is closed under

“composition” and contains the k projections.

Definition (Clone)
A clone on X is a set T ⊆ OX =

⋃∞
k=1 O

(k)
X which is closed

under “composition” and contains all projections.

Definition (Composition)
Let f ∈ O(k), g1, . . . ,gk ∈ O

(m)
X .

f (g1, . . . ,gk )(~x) := f ( g1(~x), . . . ,gk (~x) ) for all ~x ∈ X m.
If C is a clone, then C(k) := C ∩ O(k) is a k -ary clone, the k -ary
fragment of C.
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Vector-valued operations

C is a clone: f ,g1, . . . ,gk ∈ C ⇒ f (g1, . . . ,gk ) ∈ C).
We can view (g1, . . . ,gk ) as a single function ~g : X m → X k , and
write f ◦ ~g instead of f (g1, . . . ,gk ).

Definition
For any set S ⊆ OX let S̃ be the set of all operations
f : X k → X n with the property that all “components” are in S:

S̃ :=
⋃
k ,n

{f : X k → X n | ∀i ∈ {1, . . . ,n} : πn
i ◦ f ∈ S)}

where πn
i : X n → X is the i-th projection function.

The set S is a clone iff S̃ contains all projection functions and is
closed under composition:

∀g : X m → X k ∀f : X k → X n : (f ,g ∈ S̃ ⇒ f ◦ g ∈ S̃)

Clones (3&4) Discrete Mathematics and Geometry, TU Wien



Examples of clones

I Every subset S ⊆ OX will generate a clone 〈S〉, the
smallest clone containing S.

I For any relation ρ ⊆ X n: Pol(ρ) := {f ∈ O
(|f )
X B ρ} is a

clone.
I For any relation ρ ⊆ X K (K infinite), Pol(ρ) is a clone.
I For any set R of relations, POL(R) :=

⋂
ρ∈R Pol(ρ) is a

clone.
I 〈C〉 = POL(INV(C)), where INV(C) :=

⋂
f∈C Inv(f ),

Inv(f ) := {ρ | f B ρ}.
(For infinite X , need to allow infinitary relations; operations
still have finite arity!)

Clones (3&4) Discrete Mathematics and Geometry, TU Wien



The lattice of all clones on X

For finite X , OX is countable.
For infinite X of size κ, OX has 2κ elements.

Definition
For any nonempty set X let Cl(X ) be the set of all clones on X .
(Cl(X ) is a subset of the power set of OX .)

I Cl(X ) is a complete lattice. (meet = intersection, join =
clone generated by union)

I Cl(X ) is Countable for |X | = 2.
(Post’s lattice. wikipedia!)

I Cl(X ) is of size |R| = 2ℵ0 for X finite with > 2 elements.
I For infinite X of size κ: |Cl(X )| ≤ 22κ

.
In fact: = 22κ

. (Later)

Clones (3&4) Discrete Mathematics and Geometry, TU Wien



Minimal clones

Definition
We call a clone M minimal if J ( M (J is the smallest clone,
containing only the projections), but there is no clone D with
J ( D ( M.
The minimal clones are the atoms of the clone lattice.
An operation m is minimal iff 〈m〉 is a minimal clone.
Instead of minimal clones we consider minimal operations.
If m is minimal, then ∀f ∈ 〈m〉 \ J : m ∈ 〈f 〉.
I If m is unary, then have m ∈ 〈mj〉 for all j except if mj = id .

Hence j2 = id (“retraction”), or m is a permutation of prime
order.

I If m not essentially unary, then m must be idempotent.
m(x , . . . , x) = m.

Clones (3&4) Discrete Mathematics and Geometry, TU Wien



Minimal operations, examples

I Every constant operation.
I Every permutation whose order is a prime number.
I The meet operation of any meet-semilattice.
I The median operation in any linear order.
I . . . (many more. Some necessary conditions known, but no

explicit criterion.)

Fact
If X is finite, then there are finitely many minimal operations.
Every clone 6= J contains a minimal clone.
(This is not true for infinite sets. Let s : Z→ Z be defined by
s(x) = x + 1, then every non-projection in 〈s〉 is of the form sj

(j ∈ {1,2, . . .}, and none of them is minimal, as 〈s2j〉 ( 〈sj〉.)
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Complete sets

Theorem
For every X: 〈O(2)

X 〉 = OX .

Proof for infinite X .
I Let p2 : X 2 → X be a bijection.
I Find bijections pj : X j → X for j = 3,4, . . . , with pj ∈ 〈O(2)〉.

For example, p3(x , y , z) := p2(x ,p2(y , z)).
I For every f : X k → X , let f̂ := f ◦ p−1

k .
So f (~x) = f̂ (pk (~x)) for all ~x ∈ X k . As f̂ is unary, f̂ ∈ 〈O(2)〉.

I From f̂ ∈ 〈O(2)〉 and pk ∈ 〈O(2)〉 conclude f ∈ 〈O(2)〉.
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Complete sets

For every X : 〈O(2)
X 〉 = OX .

Proof for finite X (“Lagrange interpolation”).
Let (X ,+, ·,0,1) be a finite lattice with smallest element 0 and
greatest element 1. So x + 0 = 0 + x = x = 1 · x for all x .

I For each a ∈ X let χa : X → X be the characteristic
function of the set {a}. So χa ∈ O(1) ⊆ 〈O(2)〉.

I For each ~a ∈ X k let χ~a : X k → X be the characteristic
function of {~a}: χ~a =

∏
i χai (xi). So χ~a ∈ 〈O(2)〉.

I For any b ∈ X let cb ∈ O(1) be constant with value b.
I Every operation f ∈ O(k) can now be written as

f =
∑
~a∈X k (χ~a · cf (~a)). So f ∈ 〈O(2)〉.

(Remark: This proof also works for strongly amorphous sets.)
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Precomplete clones

Definition
A clone C ⊆ OX is “precomplete” (or “maximal”) if C 6= OX , but
there is no clone D satisfying C ( D ( OX .

Theorem
For any clone C ( OX there is a precomplete clone C′ with
C ⊆ C′.
(Remark: Not true for infinite sets! At least if the continuum
hypothesis holds.)
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Post’s lattice

The lattice of all clones
on a 2-element set
is countably infinite.

It has 5 coatoms
(“precomplete” clones)
and 7 atoms.
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Precomplete clones, example 1

Let ρ be a nontrivial unary relation, i.e. ∅ ( ρ ( X .
Then Pol(ρ) is the set of all operations f such that ρ is a
subalgebra of (X , f ). This clone is precomplete.

Proof.
Let g : X k → X , g /∈ Pol(ρ). Let C := 〈Pol(ρ) ∪ {g}〉. We show
C = OX . Sufficient: C ⊇ O

(2)
X .

For v ∈ X , let cv be the constant function with value v .
There are ~a = (a1, . . . ,ak ) ∈ ρk , b /∈ ρ with g(~a) = b,
So cb = g(ca1 , . . . , cak ) is in C.

For f ∈ O
(2)
X define f̂ (x1, x2, y) :=

{
x1 if y ∈ ρ
f (x1, x2) if y /∈ ρ

. So f̂ ∈ C.

Now f = f̂ (π2
1, π

2
2, cb), i.e., f (x1, x2) = f̂ (x1, x2,b). So f ∈ C.
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Precomplete clones, example 2

∼ a nontrivial equivalence relation⇒ Pol(∼) is precomplete.

Proof.
For ~a, ~b ∈ X k write ~a ∼ ~b iff ∀i ai ∼ bi . This is an equivalence
relation on X k .
Let g : X k → X , g /∈ Pol(∼). Let C := 〈Pol(∼) ∪ {g}〉. We have
to show C = OX . Sufficient: C ⊇ O

(2)
X .

There is k and ~a ∼ ~b ∈ X k with 1 := g(~a) 6∼ g(~b) =: 0.
We claim that for each p ∈ X 2 there is a function χp : X 2 → X
which maps p to 1, everything else to 0 6∼ 1.
For each p ∈ X 2 let hp : X 2 → X k be defined by hp(p) = ~a,

hp(x) = ~b otherwise. Clearly hp ∈ P̃ol(∼). So χp := g ◦ hp ∈ C.
(continued on next page)
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Proof that Pol(∼) is precomplete, continued.
We started with a clone C ) Pol(∼).
For each p ∈ X 2 we have found χp ∈ C, χp : X 2 → X with
χp(p) = 1, χp(x) = 0 for x 6= p. (And 0 6∼ 1)
Define χ : X 2 → X |X |

2
by χ(~x) = (χp(x) : p ∈ X 2). So χ ∈ C̃.

Let f ∈ O
(2)
X be arbitrary. We will show f ∈ C.

Define f̂ : X 2+|X |2 → X as follows:
I f̂ is constant on each ∼-class. (So f̂ ∈ Pol(∼) ⊆ C)
I f̂ (~x , χ(~x)) = f (~x).

This two requirements are compatible, as ~x 6= ~x ′ implies that
χ(~x) 6∼ χ(~x ′).
Clearly f (~x) = f̂ (~x , χ(~x)). So f ∈ C.
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Precomplete clones, example 3

Definition
Let r : X → X , f : X k → X . We say that f commutes with r if:

∀x1, . . . , xk ∈ X : f ( r(x1), . . . , r(xk ) ) = r( f (x1, . . . , xk ) )

Writing r• for the relation {(x , r(x)) | x ∈ X}, f commutes with r
iff f B r•. (We may write f B r instead of f B r•)
Clearly f B r ⇒ f B r j for all j . Hence e.g. Pol(r) ⊆ Pol(r2). But
if r is a permutation of order p, then Pol(r) = Pol(r j) whenever
p does not divide j .

Theorem
Assume that r : X → X is a permutation and all cycles have the
same prime length. Then Pol(r) is precomplete.
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Precomplete clones, examples 4,5

I “monotone”: Let ρ ⊆ X × X be a partial order with smallest
and greatest element.
Pol(ρ) is the set of all pointwise monotone operations.

I “affine” Assume |X | = pm, so wlog X is a finite field
X = GF (pm).
Let ρ = {(a,b, c,d) ∈ X 4 | a + b = c + d}. Then Pol(ρ) is
the set of all operations f of the form

f (x1, . . . , xk ) = a0 +
k∑

i=1

m−1∑
j=0

xpj

i

All these clones are precomplete.
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Post’s lattice, again
The 5 precomplete
clones in Cl({0,1}):
I operations

preserving {0}.
I operations

preserving {1}.
I monotone

operations
I “commuting”:

f (¬x) = ¬f (x).
I affine operations
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Rosenberg’s list

Theorem
Let X = {1, . . . , k}. Then there is an explicit finite list of
relations ρ1, . . . , ρm such that every precomplete clone on X is
one of Pol(ρ1), . . . , Pol(ρm).
The list includes
I all “central relations” (generalisations of ρ ( X)
I all nontrivial equivalence relations

(6 ∃ if |X | = 2)
I all prime permutations
I All bounded partial orders
I affine relations (only if |X | = pn)
I (others. more complicated but still explicit)
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Rosenberg’s list

Theorem
Let X = {1, . . . , k}. Then there is an explicit finite list of
relations ρ1, . . . , ρm such that every precomplete clone on X is
one of Pol(ρ1), . . . , Pol(ρm).

Completeness criterion 〈S〉 6= OX iff there is some ρi from the
list with ∀f ∈ S : f B ρi .
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A complicated interval in the clone lattice

Definition
Let Cidem be the clone of all idempotent operations:
f (x , . . . , x) = x . (Assume |X | ≥ 3.)
Find all clones between Cidem and OX !

Example
Let Y ⊆ X . Then Cidem�Y := {f | ∀x ∈ Y : f (x , . . . , x) = x} is a
clone ⊇ Cidem.

Theorem
Every clone between Cidem and OX is of the form Cidem�Y .
Hence: the interval [Cidem,OX ] is (anti-)isomophic to the power
set of X .
(Precomplete clones correspond to singletons, OX to ∅.)
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[Cidem,OX ], proof sketch

Let C be a clone containing all idempotent operations
f (x , . . . , x) = x .
We want to find Y such that
C = Cidem�Y = {f | ∀y ∈ Y : f (y , . . . , y) = y}. .
I fix(f ) := {a ∈ X | f (a, . . . ,a) = a}, nix(f ) := X \ fix(f ).
I Let R := {nix(f ) | f ∈ C}.
I R is downward closed.
I R is upward directed, hence an ideal.
I Let Z be the largest element of R, Y := X \ Z .
I So C ⊆ Cidem�Y .
I If nix(f ) ⊆ nix(g) and g ∈ C, then f ∈ C.
I Hence C = Cidem�Y .
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A complicated interval, continued

Cidem = the clone of all idempotent operations: f (x , . . . , x) = x .

Theorem (X finite)
Every clone between Cidem and OX is of the form Cidem�Y .
For infinite X :

Definition
For every filter F on X , let

CF :=
⋃

Y∈F
Cidem�Y = {f | ∃Y ∈ F ∀y ∈ Y f (y , . . . , y) = y}

Each CF is a clone above Cidem.
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A complicated interval, conclusion

CF := {f | ∃Y ∈ F ∀y ∈ Y f (y , . . . , y) = y}

Theorem
Let X be any set. Then the map F 7→ CF is an order-preserving
bijection between the filters on X and the clones above CF .
Ultrafilters correspond to precomplete clones in this interval,
and the improper filter corresponds to OX .
(For finite sets, all filters are principal.)
Translation to topology: the interval [Cidem,OX ] is
anti-isomorphic to the family of closed sets of βX , the
Čech-Stone compactification of the discrete space X .
(Precomplete clones correspond to points, OX to ∅.)
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Another complicated interval

Let X be infinite. We will find “very many” clones with trivial
unary fragment, i.e., below Cidem, the clone of all idempotent
operations. (Unfortunately: no complete classification.)
In fact all our operations will be “conservative”:
f (x1, . . . , xk ) ∈ {x1, . . . , xk}.
I Let (Ai : i ∈ I) be a family of sufficiently independent sets.

(In particular: we demand that for any finite I0 ⊆ I and any
j ∈ I \ I0 the set (∪i∈I0Ai ) ∩ (X \ Aj ) contains at least 2 elements.
It is possible to find such a family with 2|X | elements, in
particular: an uncountable such family.)

I Fix a linear order ≤i on Ai , with minimum operation ∧i .
I Extend ∧i to X by requiring x ∧i y = x outside Ai .
I For any I′ ⊆ I let CI′ := 〈{∧i | i ∈ I′}〉. Then all CI′ are

distinct. (Note: the numbers of such clones = 22|X |
!)
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Local clones

Let X be infinite. A clone C is local if each fragment C ∩ OX k is
closed in the product topology (pointwise convergence) on X X k

(with discrete X ). Equivalently: If there is a set R of relations of
finite arity such that C = POL(R).
The lattice of local clones has only 2|X | elements; the lattice of
all clones: 22|X |

.
Example:
On a finite set with k elements, the intervall [O

(1)
X ,OX ] has k + 1

elements.
On any infinite set X , the intervall [O

(1)
X ,OX ] in the lattice of all

clones has at least 22|N|
elements.

On any infinite set X , the intervall [O
(1)
X ,OX ] in the lattice of local

clones has at only countably many elements.

Clones (3&4) Discrete Mathematics and Geometry, TU Wien



Bonus round: non-AC

We used X × X ≈ X to show that 〈O(2)
X 〉 = OX (for infinite

sets X ). But X × X ≈ X uses the axiom of choice (and in fact
∀X infinite : X × X ≈ X is equivalent to AC). Was that
necessary?
Yes, probably.
Proof sketch. Really: a hint. An idea of a hint. No
satisfaction guaranteed.
Let (M,R3) be the “random 3-uniform hypergraph”. That is, R3
is a totally symmetric totally irreflexive relation which is “as
random as possible”. For example: For all (reasonable) finite
sets {a1,b1, . . . ,ak ,bk , c1,d1, . . . , cn,dn} ⊆ M there is some
e ∈ M with R(ai ,bi ,e) for all i , and ¬R(cj ,dj ,e) for all j .
(Technically: the Fraïssé limit of all finite 3-uniform
hypergraphs.)
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non-AC, continued

Continuation of the proof.
Let (M,R3) be the “random 3-uniform hypergraph”. (M
countable, R3 ⊆ M3 is “random” or “generic”.)
Let f1, . . . , fm be first order definable binary operations, say
definable from m1, . . . ,mk in the structure (M,R). Then the set
X × X can be partitioned into finitely many sets according to
the “type” a pair (x , y) can have over m1, . . .mk . On each type
each operation fi must be either constant or a projection, so the
same is true for any element of 〈f1, . . . , fk 〉. But the function χR
is neither a projection or a constant on any type. So we have
found a definable ternary function not in the clone generated by
the definable binary functions.
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non-AC, conclusion

We have found a definable ternary function on (M,R),
definable from R, but not in the clone generated by the
definable binary functions.
Now construct a model of ZF+¬AC in which all operations on M
are definable from R and finitely many parameters. In this
model, all binary operations are trivial on a large set, but not all
ternary operations.
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Summary

I The clone lattice on {0,1} is well understood. (But
nontrivial.)

I Cl(X ) for larger finite sets X : many fragments are explicitly
known (certain intervals, coatoms, . . . ), others only
partially (atoms), or only for very small sets (say,
|X | ≤ 4,5).

I To analyse k -ary operations, it is often helpful to consider
k + 1-ary operations. (Or 2k -ary. or (k + |X |2)-ary, etc.)

I Many open questions.
I For infinite X : set theory kicks in. Local clones more

interesting than all clones?
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Thank you
for your attention!

and for your questions!
. . . and for your corrections!!
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