Clones (1&2)

Martin Goldstern

Discrete Mathematics and Geometry, TU Wien

TACL Olomouc, June 2017

Base set X

Let *X* be a (nonempty) set.

Often finite:

```
X = {0,1}.
X = {0,*,1}.
X = { {}, {a}, {b}, {a,b} }.
X = {1,...,n}.
Etc.
```

Sometimes countably infinite:

►
$$X = \mathbb{N} = \{0, 1, 2, \ldots\}.$$

Sometimes uncountably infinite:

$$X = \mathbb{R}$$
, etc.

Operations on X

X = our base set.

- ▶ A unary operation is a (total) function $f: X \to X$.
- ▶ A binary operation is a function $f: X^2 \to X$.
- ternary, quaternary, . . .
- ▶ A $\frac{k}{k}$ -ary operation is a function $f: X^k \to X$ (for $k \ge 1$).
- ► We write $\mathcal{O}^{(k)}$ or $\mathcal{O}_X^{(k)}$ for the set of all k-ary operations on X. (Sometimes also written X^{X^k} .)
- We let $\mathcal{O}_X := \bigcup_{k=1}^{\infty} \mathcal{O}_X^{(k)}$.

(For simplicity we will assume that the sets X^k are pairwise disjoint. We will ignore the 0-ary functions and replace them by constant 1-ary functions.)

Transformation monoids

Definition ((abstract) monoid)

A monoid or abstract monoid is a structure (M, *, 1), where

- * is a binary operation on M, associative
- ... together with a neutral element 1 (1 * a = a * 1 = a).

Definition (transformation/concrete monoid, unary clone)

A *transformation monoid* is a subset $T \subseteq \mathcal{O}_X^{(1)}$ (for some X) which is closed under composition and contains the identity function $id: X \to X$. $((T, \circ, id))$ will be an abstract monoid.)

Conversely, a variant of Cayley's theorem shows that every abstract monoid is isomorphic to a transformation monoid.

Binary clones

A transformation monoid or unary clone on X is a subset $T \subseteq \mathcal{O}_X^{(1)}$ which is closed under composition and contains the identity function $id: X \to X$.

Definition

A *binary clone* on X is a set $T \subseteq \mathcal{O}_X^{(1)}$ which is closed under "composition" and contains the two projections

$$\pi_1, \pi_2: X^2 \to X.$$

Definition (Composition)

Let $f, g_1, g_2 \in \mathcal{O}_X^{(2)}$. The composition $f(g_1, g_2)$ is the function from X^2 to X defined by

$$f(g_1g_2)(x,y) := f(g_1(x,y), g_2(x,y))$$

k-ary clones

Definition (k-ary clone)

A k-ary clone on X is a set $T \subseteq \mathcal{O}_X^{(k)}$ which is closed under "composition" and contains the k projections

$$\pi_1,\ldots,\pi_k:X^k\to X.$$

Definition (Composition)

Let $f, g_1, \ldots, g_k \in \mathcal{O}_X^{(k)}$. The composition $f(g_1, \ldots, g_k)$ is the function from X^k to X defined by

$$\forall \vec{x} \in X^k : f(g_1, \ldots, g_k)(\vec{x}) := f(g_1(\vec{x}), \ldots, g_k(\vec{x}))$$

("Plugging g_1, \ldots, g_k into f")

Clones

Definition (Clone)

A *clone* on X is a set $T \subseteq \mathcal{O}_X = \bigcup_{k=1}^{\infty} \mathcal{O}_X^{(k)}$ which is closed under "'composition" and contains all projections $\pi_k^n : X^n \to X$, $n = 1, 2, \ldots, 1 < k < n$.

Definition (Composition)

Let $f \in \mathcal{O}^{(k)}$, $g_1, \ldots, g_k \in \mathcal{O}_X^{(m)}$. The composition $f(g_1, \ldots, g_k)$ is the function from X^m to X defined by

$$\forall \vec{x} \in X^m : f(g_1, \dots, g_k)(\vec{x}) := f(g_1(\vec{x}), \dots, g_k(\vec{x}))$$

("Plugging g_1, \ldots, g_k into f") If C is a clone, then $C^{(k)} := C \cap \mathcal{O}^{(k)}$ is a k-ary clone, the k-ary fragment of C.

Examples of clones

- ▶ The smallest clone J_X contains only the projections.
- ▶ The largest clone \mathcal{O}_X contains all operations.
- ▶ Every subset $S \subseteq \mathcal{O}_X$ will *generate* a clone $\langle S \rangle$, the smallest clone containing S. The clone $\langle S \rangle$ can be obtained from below by closing S under composition, or from above as $\langle S \rangle = \bigcap \{ M \mid S \subseteq M \subseteq \mathcal{O}_X, M \text{ is a clone } \}$.
- ▶ If V is a vector space over the field K, then the set of all linear functions $f_{\vec{a}}: V^k \to V$

$$f_{\vec{a}}(v_1,\ldots,v_k):=a_1v_1+\cdots+a_kv_k$$
 (with $\vec{a}=(a_1,\ldots,a_k)\in K^k$) is a clone.

Examples of clones, continued

For every algebra $\mathcal{X} = (X, f, g, ...)$ (=universe X with operations f, g, ... — for example \mathcal{X} might be a group, a ring, etc) we consider

- ▶ the clone of *term operations* on X, the smallest clone containing all the basic operations f, g, ... of \mathfrak{X} ;
- the clone of polynomial operations on X, the smallest clone containing all terms as well as all constant unary functions on X.

Many properties of the algebra \mathcal{X} depend only on the clone of term functions, and not on the specific set of basic operations which generates this clone. (E.g. subalgebras, congruence relations, automorphisms, etc)

For example, a Boolean algebra will have the same clone as the corresponding Boolean ring.

The family of all clones

For any nonempty set X let CI(X) be the set of all clones on X.

- ► The intersection of any subfamily of CI(X) is again in CI(X).
- (CI(X), ⊆) is a complete lattice. Meet = intersection, join = generated by union.
- ▶ J_X is the smallest clone, \mathcal{O}_X the largest.
- ▶ If $X = \{0\}$, then there is a unique clone: $J_X = \mathcal{O}_X$.
- ▶ If $X = \{0, 1\}$, then CI(X) is countably infinite.
- ▶ If X is finite and has at least three elements, then CI(X) is uncountable. (In fact: $|CI(X)| = |\mathbb{R}|$.)
- ▶ If X is infinite, then ... (later)

Uncountably many clones

If $X = \{0, 1, 2\}$, then CI(X) is uncountable.

Proof sketch.

- ▶ We call a k-tuple $(a_1, ..., a_k) \in \{0, 1, 2\}^k$ proper, if exactly one of the a_i is equal to 1, and all the others are 2.
- ► For every $k \ge 3$ let $f_k : X^k \to X$ be the function that assigns 1 to every proper k-tuple, and 0 to everything else.
- ▶ For every $A \subseteq \{3,4,\ldots\}$ let $C_A := \langle \{f_i \mid i \in A\} \rangle$.
- Check that for k ∉ A we have f_k ∉ C_A. (Every composition of functions f_i, i ≠ k will assign 0 to some proper k-tuple.)
- ▶ Hence the map $A \mapsto C_A$ is 1-1.

Completeness

Fix a base set X.

Definition

A set $S \subseteq \mathcal{O}_X$ is *complete* if $\langle S \rangle = \mathcal{O}_X$, i.e., if every operation on X is term function of the algebra with operations S.

Example

Let $X = \{0, 1\}, \mathcal{X} = (X, \vee, \wedge, \neg, 0, 1).$

- ▶ The set $\{\lor, \land, \neg\}$ is complete.
- ▶ The set $\{\land, \neg\}$ is complete.
- ► The set {|} is complete, where $x|y := \neg(x \land y)$. (Sheffer stroke)

Completeness, more examples

Theorem

For every $X: \langle \mathcal{O}_X^{(2)} \rangle = \mathcal{O}_X$.

Proof.

- finite: Lagrange interpolation
- ▶ infinite: use $X \times X \approx X$.

Caution: Most clones C are NOT generated by their binary fragment $C \cap \mathcal{O}^{(2)}$. (Not even finitely generated.)

Theorem

If
$$X = \{1, ..., k\}$$
, then there is a single function $f \in \mathcal{O}_X^{(2)}$ with $\langle f \rangle = \mathcal{O}_X^{(2)}$: Let $f(x, x) = x + 1$ (modulo k), $f(x, y) = 0$ otherwise.

(Completeness on infinite sets)

If X is infinite, then \mathcal{O}_X is uncountable. Hence a finite/countable set of operations cannot generate all of \mathcal{O}_X .

However:

Theorem

Let $X \neq \emptyset$. For any finite or countable set $T \subseteq \mathcal{O}_X$ there is a single function f_T (not necessarily in T) such that $T \subseteq \langle f \rangle$.

Theorem

- If X is countable, then there is a countable dense subset of ①_X (in the natural topology), hence there is a single function f such that the topological closure of ⟨f⟩ is all of ①_X.
- If X is uncountable, then O_X will not be separable any more.

Completeness, continued

Let $X=\{0,1\}$ be the 2-element Boolean algebra, with Boolean operations $\land,\lor,\lnot,\to,|,\ldots$

Example

The set $\{\lor, \land, \to\}$ is not complete.

Proof.

Each of the three operations preserves the set $\{1\}$, i.e., this set is a subalgebra of the algebra $(\{0,1\}, \land, \lor, \rightarrow)$.

Hence every function in $\langle \{ \land, \lor, \rightarrow \}$ will also preserve this set, but \neg does not. So $\neg \notin \langle \{ \land, \lor, \rightarrow \} \rangle$.

Polymorphisms, example

Example

The set $\{\lor, \land, 0, 1\}$ is not complete.

Proof.

All four functions are monotone in both arguments.

Definition

Let $\rho \subseteq X \times X$ be a relation (Example: \leq on $\{0, 1\}$.)

A function $f: X^k \to X$ preserves ρ iff:

for all
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_k \\ y_k \end{pmatrix} \in \rho$$
, we have $\begin{pmatrix} f(x_1, \dots, x_k) \\ f(y_1, \dots, y_k) \end{pmatrix} \in \rho$.

Lemma

If all $f \in S \subseteq \mathcal{O}_X$ preserve ρ , then all $f \in \langle S \rangle$ preserve ρ .

Polymorphisms, definition

Definition

Let $\rho \subseteq X^m$ be an m-ary relation, and let $f: X^k \to X$ be a k-ary function. We say that "f preserves ρ " ($f \triangleright \rho$, $f \in \text{Pol}(\rho)$) if:

- for all $(a_{i,j}: i \leq m, j \leq k) \in X^{m \times k}$:
 - whenever $a_{*,1} \in \rho, \ldots, a_{*,k} \in \rho$

• then also
$$\begin{pmatrix} f(a_{1,*}) \\ \vdots \\ f(a_{m,*}) \end{pmatrix} \in \rho$$
.

(We let
$$a_{*,j}:=\left(egin{array}{c} a_{1,j} \\ \vdots \\ a_{m,i} \end{array}\right)$$
, similarly $a_{i,*}=(a_{i,1},\ldots,a_{i,k})$.)

Polymorphisms, examples

- Let ρ be a nontrivial unary relation, i.e. $\emptyset \subsetneq \rho \subsetneq X$. Then $Pol(\rho)$ is the set of all operations f such that ρ is a subalgebra of (X, f).
- Let $\rho \subseteq X \times X$ be an equivalence relation. Then $Pol(\rho)$ is the set of all operations f such that ρ is a congruence relation of the algebra (X, f).
- ▶ Let $\rho \subseteq X \times X$ be a (reflexive) partial order. Then Pol(ρ) is the set of all pointwise monotone operations.
- Let ρ ⊆ X × X be the graph of a function r:
 ρ = {(x, r(x)) : x ∈ X}.
 Then Pol(ρ) is the set of all functions f such that r is an endomorphism of (X, f), i.e., f commutes with r.

Fix a finite base set X.

Definition

For any relation $\rho \subseteq X^m$ let $\operatorname{Pol}(\rho)$ be the set of all operations preserving $\rho \colon \operatorname{Pol}(\rho) := \{ f \in \mathfrak{O}_X \mid f \rhd \rho \}$ For a set R of relations, let $\operatorname{POL}(R) := \bigcap_{\rho \in R} \operatorname{Pol}(\rho)$.

Lemma

If $S \subseteq Pol(\rho)$, then also $\langle S \rangle \subseteq Pol(\rho)$. In particular, $Pol(\rho)$ and also POL(R) are always clones.

Theorem

For every clone $C \subseteq \mathcal{O}_X$ there exists:

- ▶ A set $S \subseteq \mathcal{O}_X$ such that $C = \langle S \rangle$. (Trivial)
- ▶ A set R of relations such that C = POL(R).

(Helpful to show incompleteness.)

Galois connection

Theorem

For every clone $C \subseteq \mathcal{O}_X$ there exists a set R of relations such that $C = \mathsf{POL}(R) = \{f \mid \forall \rho \in R : f \rhd \rho\}.$

Proof sketch.

The largest set R satisfying $\forall \rho \in R : C \subseteq Pol(\rho)$ is the set

$$\mathsf{INV}(C) := \{ \rho \mid \forall f \in C : f \rhd \rho \}$$

For finite sets X, we can check that C = POL(INV(C)).

even: $\langle S \rangle = \text{POL}(\text{INV}(S))$ for all $S \subseteq \mathcal{O}_X$. We will see a construction of a "better" set R with C = POL(R) later.

Pol: completeness criterion

Fix a finite base set *X*.

Theorem

For every clone $C \subseteq \mathcal{O}_X$ there exists a set R of relations such that C = POL(R).

Corollary

If $S \subseteq \mathcal{O}_X$ is not complete (i.e., $\langle S \rangle \neq \mathcal{O}_X$), then there is a nontrivial relation ρ such that $S \subseteq \text{Pol}(\rho)$, hence $\langle S \rangle \subseteq \text{Pol}(\rho)$.

(But there are so many candidates for ρ ! Want to search a small set. \rightarrow precomplete clones)

Precomplete clones

Definition

A clone $C \subseteq \mathcal{O}_X$ is "precomplete" (or "maximal") if $C \neq \mathcal{O}_X$, but there is no clone D satisfying $C \subsetneq D \subsetneq \mathcal{O}_X$.

Theorem

For any clone $C \subsetneq \mathfrak{O}_X$ there is a precomplete clone C' with $C \subset C'$.

(Remark: Not true for infinite sets!)

Proof.

(Use Zorn's lemma??) Let $\mathcal{O}_X = \langle f \rangle$. Among all clones D with $C \subseteq D$, $f \notin D$, find a maximal element. (Better proof: later)

Examples of precomplete clones

Example

Let $\emptyset \subsetneq \rho \subsetneq X$. Then Pol(ρ) is precomplete.

Proof.

Assuming $g \notin Pol(\rho)$, we let $C := \langle Pol(\rho) \cup \{g\} \rangle$; we show $C = \mathcal{O}_X$.

First show that there is $b \notin \rho$ such that the constant operation c_b with value b is in C.

For any function $f: X^k \to X$ let $\hat{f}: X^{k+1} \to X$ be defined by $\hat{f}(\vec{x}, b) = f(\vec{x})$, and $\hat{f}(\vec{x}, y) \in \rho$ arbitrary for $y \neq b$. Then $\hat{f} \in C$, and $f(\vec{x}) = \hat{f}(\vec{x}, c_b(x_1))$, so $f \in C$.

Example

Let ρ be a bounded partial order. Then $Pol(\rho)$ is precomplete.

Rosenberg's list

Theorem

Let $X = \{1, \dots, k\}$. Then there is an explicit finite list of relations ρ_1, \dots, ρ_m (including, for example, all nontrivial unary relations, all bounded partial orders) such that every precomplete clone on X is one of $Pol(\rho_1), \dots, Pol(\rho_m)$.

Completeness criterion If $\langle S \rangle \neq \mathfrak{O}_X$ iff there is some i with $\forall f \in S : f \rhd \rho_i$.

k-ary fragments

Let *D* be a *k*-ary clone. The smallest clone *C* with $C \cap \mathcal{O}_X^{(k)} = D$ is $\langle D \rangle$.

 $D \subseteq X^{X^k}$ can be viewed as a relation on X.

The largest clone C with $C \cap \mathcal{O}_X^{(k)} = D$ is

$$\mathsf{Pol}(D) = \bigcup_{n} \{ f \in \mathcal{O}_X^{(n)} \mid \forall d_1, \dots, d_n \in D : f(d_1, \dots, d_n) \in D \}$$

For any clone E, the clones $Pol(E \cap \mathcal{O}_X^{(k)})$ approximate E from above, agreeing with E on larger and larger sets:

$$\mathsf{Pol}(E \cap \mathcal{O}_X^{(k)}) \cap \mathcal{O}_X^{(k)} = E \cap \mathcal{O}_X^{(k)}.$$

Theorem

For all clones $E: E = \bigcap_k Pol(E \cap \mathcal{O}_X^{(k)})$.

CI(X) is dually atomic

Theorem

Let X be finite, $C \neq 0_X$ a clone. Then there is a precomplete clone $D \supseteq C$.

Proof.

Let $C' \supseteq C$ be such that $C' \cap \mathcal{O}_X^{(2)}$ is maximal. (finite!) Let $D := \operatorname{Pol}(C')$.