The variety of nuclear implicative semilattices
is locally finite

Guram Bezhanishvili, Nick Bezhanishvili, David Gabelaia,
Silvio Ghilardi, Mamuka Jibladze

Wednesday, June 28
TACL2017, Prague



An implicative semilattice (A, A, 1,—) is a meet-semilattice
(A, A,1) with a binary »: A x A - A satisfying

anb<c < a<b-c

for any a,b,c € A.
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An implicative semilattice (A, A, 1,—) is a meet-semilattice
(A, A,1) with a binary »: A x A - A satisfying

anb<c < a<b-c

for any a,b,c € A.
A nuclear implicative semilattice (A, A,1,—,j) is an implicative
semilattice (A, A,1,—) with a unary j: A - A satisfying

a—>jb=ja—-jb

for all a,b e A.

A less concise but probably more understandable equivalent
formulation:

»a<sja
> Jjia=ja
» jlanb)=janjb

Terminology — j is a nucleus.
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First appearance?

(F. W. Lawvere, “Toposes, Algebraic Geometry and Logic”, Introduction. Dalhousie
University, Halifax 1971, Springer LNM 274)

such that when the diagram is pulled back to E/S it has the
property in the sense of the topos E/S . The other notion is with
respect to a given Q———i—+ Q which may be thought of as a modal
operator to be read "it is j-locally the case that .." and which
satisfies the axioms below which in particular mean that j is
equivalent to a Grothendieck topology on € in the case of a topos
of the form ggop . At the Rome and Overwolfach meetings I had
pointed out that the usual notion of a Grothendieck topology is
equivalent to a single such morphism j ; Tierney showed that the
appropriate axioms on Jj are simply that Jjj = j and j preserves
finite conjunctionsf A subobject X'>——> X with characteristic

function X-——ﬁ—é Q2 1is said to be j-dense if ¢ 1is j-locally true



Main contributors

Lawvere and Tierney used nuclei to interpret (Cohen) forcing in
their topos-theoretic proof of independence of the Continuum
Hypothesis.

Roughly, the forcing relation p I+ ¢ between a poset of forcing
conditions and formula of certain theory corresponds in their
context to p € j(Val(y)) (where Val() is the valuation in a given
model of certain theory).
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Lawvere and Tierney used nuclei to interpret (Cohen) forcing in
their topos-theoretic proof of independence of the Continuum
Hypothesis.

Roughly, the forcing relation p I+ ¢ between a poset of forcing
conditions and formula of certain theory corresponds in their
context to p € j(Val(y)) (where Val() is the valuation in a given
model of certain theory).

Isbell, Simmons, Banaschewski, Johnstone, Pultr, Picado,
Escardo, ...
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Every complete Heyting algebra can be obtained (in many ways)
as the algebra of fixed points of a nucleus on the algebra Up(P)
of all up-sets of a poset P.



Kripke 4 nuclei = all cHa

Every complete Heyting algebra can be obtained (in many ways)
as the algebra of fixed points of a nucleus on the algebra Up(P)
of all up-sets of a poset P.

Thus cHa semantics (in particular, topological semantics) for
intuitionistic logic can be reformulated using Kripke models
with extra structure, in form of a nucleus.
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Dragalin frames

The latter had several alternative descriptions in the literature -
The idea of coverage (Johnstone): U >z (or x < U), a relation
between elements and up-sets of P, re-axiomatizing “x € jU”
(“j makes elements of U cover p”).
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Dragalin frames

The latter had several alternative descriptions in the literature -
The idea of coverage (Johnstone): U >z (or z < U), a relation
between elements and up-sets of P, re-axiomatizing “x € jU”
(“j makes elements of U cover p”).

Dragalin had a variant of neighborhood semantics, axiomatized
in such a way that

jU = {z € P | every neighborhood of = meets U}
produces a nucleus.

(He only had it for topological semantics; recently generalized
by Guram Bezhanishvili and Wesley Holliday to any complete
Heyting algebras.)
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Semantics for Propositional Lax Logic

(Journal of Logic and Computation 21 (2011), pp. 1035-1063)

Cover semantics for quantified lax logic
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1 The curious concept of lax modality

Propositional lax logic (PLL) was defined by Fairtlough and Mendler [13, 14] as an intuitionistic
propasitional logic with a modality O having the axioms

v—=Op

OO¢— Oy

OpAO¥—OwAY).
“The motivation was hardware specification and verification, with a modal formula Oy being read
“there is some constraint under which g is true’. Typical constraints are timing delays on input
signals to digital circuits, with the first axiom corresponding (0 a single wire with no delay; the

1 given
delays; and the third axiom corresponding (o parallel composition, with the maximum of the two
delays as constraint. The term ‘lax’ was chosen to indicate the looseness associated with the notion

of correctness up to consraints’ [14, p. 3]
n fact there have been several independently motivated investigations that have produced an
inwitionistic logic with a [ax modality, i.¢. one having the above axioms.' The first would appear o
died by Curry [9] for p purposes. Its modality, denoted

, was intended to express possibility
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Examples

Open nuclei
jr=a-=

(fixed points {a — = |z € A}).
“Quasi-closed’ nuclei
jr=(x—a)—>a
(fixed points {x - a |z € A}).
On a Boolean algebra, every nucleus j has form
jr=avz

(fixed points 1(a)).



Kohler duality

Our proof of local finiteness of the variety of nuclear implicative
semilattices is based on the duality for finite implicative
semilattices developed in

P. Koéhler, Brouwerian semilattices, Trans. Amer. Math. Soc.
268 (1981), no. 1, 103-126.



Kohler duality

Our proof of local finiteness of the variety of nuclear implicative
semilattices is based on the duality for finite implicative
semilattices developed in

P. Koéhler, Brouwerian semilattices, Trans. Amer. Math. Soc.
268 (1981), no. 1, 103-126.

Every finite implicative semilattice is isomorphic to one of the
form Up(X) for a finite partially ordered set X.
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Kohler duality

Moreover homomorphisms A : Up(X’) - Up(X) are determined
by certain partial maps

X2V L X/,

namely, Y can be arbitrary subset of X while f:Y - X’ is a
strict p-morphism.
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Kohler duality

Moreover homomorphisms A : Up(X’) - Up(X) are determined
by certain partial maps

X2V L X/,

namely, Y can be arbitrary subset of X while f:Y - X’ is a
strict p-morphism.

Recall that f:Y — X’ is a p-morphism means f(U) € Up(X')
for every U € Up(Y)

(on elements, Vye Y V 2' > f(y) 3y 2y f() :;1:').

Such a p-morphism is called strict if moreover yg < y; implies
f(yo) < f(yl) for all Yo, Y1 € Y.
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Kohler duality

A partial strict p-morphism

Xov L x

gives rise to an implicative semilattice homomorphism

h¢:Up(X') - Up(X).
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Kohler duality

A partial strict p-morphism

Xov L x

gives rise to an implicative semilattice homomorphism

h¢:Up(X') - Up(X).

RN

Up(X) — " Up(v)

Up(X')

and every implicative semilattice homomorphism
h:Up(X') — Up(X) has this form for a unique partial strict
p-morphism f.
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We first extend the Kohler duality to nuclear finite implicative
semilattices (Up(X),j) where j is a nucleus on Up(X).



Kohler duality and nuclei

We first extend the Kohler duality to nuclear finite implicative
semilattices (Up(X),j) where j is a nucleus on Up(X).

Now every subset S € X of a poset X gives rise to a nucleus jg
on Up(X),
Js(U) = X~ 1(S\U),

and for finite posets X, every nucleus j: Up(X) - Up(X) is
equal to jg for a unique S ¢ X.

N



Kohler duality and nuclei

Then, to complete the extension of the Kohler duality to nuclear
implicative semilattices, we need to answer this question:

Given finite posets X, X’ and subsets S ¢ X, S’ ¢ X', for which
partial strict p-morphisms

xa2vLx
is the corresponding implicative semilattice homomorphism

hy:Up(X') - Up(X) actually a homomorphism of nuclear
implicative semilattices (Up(X'),jg/) = (Up(X),jg)?
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Dual description of subalgebras

Having obtained description of such homomorphisms, we in
particular obtain a dual description of subalgebras of a nuclear
implicative semilattice (Up(X),jg)-
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Dual description of subalgebras

Having obtained description of such homomorphisms, we in
particular obtain a dual description of subalgebras of a nuclear
implicative semilattice (Up(X),jg).

Nuclear implicative subsemilattices of a finite nuclear
implicative semilattice (Up(X),jg) are in one-to-one
correspondence with partial equivalence relations ~ on X with
the following properties:

>~ is p-morphic: ¥ y1 ~ya <y 3 Y1 <Y1~ Yh;

» ~ 45 strict: all ~-equivalence classes are antichains;

» S is ~-saturated: every ~-equivalence class is either disjoint
from S or contained in S;

» for all se€ S and all y > s, if y belongs to a ~-equivalence
class, then there is an s’ € S belonging to a (possibly
different) ~-equivalence class, such that s < s’ and s' <y’
with y ~ 1.
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Dual description of subalgebras

classes outside

S ~-equivalence
Yy .
v classes in S
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Dual description of subalgebras

~-equivalence
classes outside

S

~-equivalence
classes in S

15 /29



General method of Ghilardi

Armed with this dual description of subalgebras, we can now
use the powerful general method of description of universal
models given in

Silvio Ghilardi, Irreducible models and definable embeddings,
Logic Colloquium 92 (Veszprém, 1992), Stud. Logic Lang.
Inform., CSLI Publ., Stanford, CA, 1995, pp. 95113.



General method of Ghilardi

Armed with this dual description of subalgebras, we can now
use the powerful general method of description of universal
models given in

Silvio Ghilardi, Irreducible models and definable embeddings,
Logic Colloquium 92 (Veszprém, 1992), Stud. Logic Lang.
Inform., CSLI Publ., Stanford, CA, 1995, pp. 95113.

In that paper, for any variety having the variety of implicative
semilattices as a reduct, a fairly explicit construction of
universal models is given provided one knows the dual
description of the situation when a finite algebra A is generated
by its given elements aq, ..., ay,.



Generators

We thus also need to answer the following question:

Given a finite poset X, a subset S ¢ X, and up-sets

Ui, ...,U, € Up(X), when does it happen that these up-sets
generate Up(X) as a nuclear implicative semilattice? That is,
(Up(X),jg) does not possess any proper nuclear implicative
subsemilattices A ¢ Up(X) containing all Uy, ..., U,?



Colorings and irreducibility

There is a well known method to simplify answers to such
questions — the so called coloring technique.



Colorings and irreducibility

There is a well known method to simplify answers to such
questions — the so called coloring technique.

To each element x € X one assigns a set ¢(z) of “colors”, to
determine uniquely to which of the Uy, ..., U, does x belong.

For example, if  belongs to U; and Us and does not belong to
any other U;, one puts c(z) = {1,2}.
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Colorings and irreducibility

There is a well known method to simplify answers to such
questions — the so called coloring technique.

To each element x € X one assigns a set ¢(z) of “colors”, to
determine uniquely to which of the Uy, ..., U, does x belong.

For example, if  belongs to U; and Us and does not belong to
any other U;, one puts c(z) = {1,2}.

In terms of these colors one can give a dual description of the
situation when Uy, ..., U, generate Up(X) as a nuclear
implicative semilattice. Ghilardi calls the corresponding dual
“colored” models irreducible.

18 /29



Coloring and S

VaRva
NSNS NS
N



Coloring and S

19/ 29



Coloring and S

19/ 29



Coloring and S




Coloring and S




Colorings and irreducibility

To characterize irreducibility, let us also extend the colorings
from elements to subsets of X via

) =N{c(z) |z e X"}

for X' c X.



Colorings and irreducibility

To characterize irreducibility, let us also extend the colorings
from elements to subsets of X via

=N {c(2) |z e X'}
for X' c X.
Moreover, for x € X let
v :=min (1(z) \ {z}).
We then have

Theorem. The up-sets Uy, ...,U, of Up(X) generate
(Up(X),jg) as a nuclear implicative semilattice if and only if
in the corresponding colored model, c(x) = c(vx) implies that
x €S and moreover vx ¢ S.

20/29



ava
NSNS\
N



VA
NSNS NS
NS



/ DC
21 /29



x retains all possible colors = x is black, and vz is not all black.



Universal model

Using this we can then construct the universal model and prove
that it is finite.
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Universal model

Using this we can then construct the universal model and prove
that it is finite.

The universal n-model L = (X, S,Uy,...,Uy,) is an (a priori
infinite) poset with n upsets Uy, ..., Uy, is characterized by the
property that for any finite (X', S",U7,...,U}) there is a unique
embedding X’ > X which identifies X’ with an up-set of X
such that under this identification, S’ = X' n S, U/ = X' n U,
1=1,...,n.

N



Universal model - stepwise construction

We start from L_; which consists of the empty set X_; with the
empty subset S_; and the valuation given by the empty map.
For each k, having L; we construct Lp,q as follows.
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Universal model - stepwise construction

We start from L_; which consists of the empty set X_; with the
empty subset S_; and the valuation given by the empty map.
For each k, having L; we construct Lp,q as follows.

The poset X1 2 X} of depth k£ + 1 and the subset

Xis1 2 Sky1 2.5, are obtained by adding to X new elements
Tao & Sk+1 and Sqo € Sk+1, where o € X, is any antichain which
for k> 0 is required to satisfy o ¢ X1, while o & c(a) for all .

Moreover if a ¢ Sy, then we also add s, ¢(q) € Sk+1-
The partial order is extended from X to X, by the equalities

YTa,0 = ¥Sa,0c = @ and the valuation by ¢(rq ) = c(Sa,0) =0
(including s, ¢(q) Whenever it exists).
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Sk. Then L is the model (Xo, Seo, ), With ¢ extended all along
the Xj.
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there were no S, we would run out of colors after depth n (=
number of generators). This can be used to show that X \ S is
actually finite.
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Finiteness of the universal model

Let then (Xe, Se) be the union of the expanding sets X} and
Sk. Then L is the model (Xo, Seo, ), With ¢ extended all along
the Xj.

Proof of finiteness of L is based on the above characterization of
irreducibility. This characterization gives two things: on the
one hand, when z ¢ S, we must have c(x) & c(vx), so that if
there were no S, we would run out of colors after depth n (=
number of generators). This can be used to show that X \ S is
actually finite.

On the other hand, although for s € S one is allowed to have
c(s) = c(vs), still each such s is required to possess some
element r € (vs) \ S.

Combining these facts, one manages to show that along any
descending chain s; > so > s3 > ... in S one eventually runs out
of required elements r € (vsg) \ S.

This then can be used to prove finiteness of L.



Finite model property

There is a more or less standard argument to show that in
presence of the finite model property, finiteness of the universal
n-model for every n implies local finiteness of the variety.
Finite model property for the variety of nuclear implicative
semilattices is relatively easy to show.



What remains to be done

It would be much nicer of course to have a purely algebraic
proof of local finiteness. There is a very simple such proof for
implicative semilattices, based on induction on the number of

generators and on properties of subdirectly irreducible algebras.



What remains to be done

It would be much nicer of course to have a purely algebraic
proof of local finiteness. There is a very simple such proof for
implicative semilattices, based on induction on the number of

generators and on properties of subdirectly irreducible algebras.

From local finiteness one must be able to obtain normal forms
for nuclear implicative semilattices.



What remains to be done

How fast does it grow?
For n =1, the cyclic algebra is easy to describe; the dual looks

EANVAN

(with S ={z,y,t}), and the algebra itself is

1
—=jo = jo (==jo— jo) = j=jo

NUZAN

—-jo

NS
%

(with o the generator and - = (- — 0)).



What remains to be done

However already the 2-generated algebras may be huge.
Experimentally, the dual can have up to six elements on the
highest (zeroth) level, up to 68 elements on the next (first)
level, and at least billions of elements on the second level. We
only have a rough upper bound for its depth.
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highest (zeroth) level, up to 68 elements on the next (first)
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Thank you for patience!



