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An implicative semilattice �A,,,1,�� is a meet-semilattice
�A,,,1� with a binary �� A �A� A satisfying

a , b D c 
� a D b� c

for any a, b, c > A.

A nuclear implicative semilattice �A,,,1,�, j� is an implicative
semilattice �A,,,1,�� with a unary j � A� A satisfying

a� j b � ja� j b

for all a, b > A.

A less concise but probably more understandable equivalent
formulation:

L a D ja

L j ja � ja

L j�a , b� � ja , j b

Terminology – j is a nucleus.
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First appearance?

(F. W. Lawvere, “Toposes, Algebraic Geometry and Logic”, Introduction. Dalhousie
University, Halifax 1971, Springer LNM 274)
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Main contributors

Lawvere and Tierney used nuclei to interpret (Cohen) forcing in
their topos-theoretic proof of independence of the Continuum
Hypothesis.

Roughly, the forcing relation p è φ between a poset of forcing
conditions and formulæ of certain theory corresponds in their
context to p > j�Val�φ�� (where Val�� is the valuation in a given
model of certain theory).

Isbell, Simmons, Banaschewski, Johnstone, Pultr, Picado,
Escardo, ...
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Kripke + nuclei = all cHa

Every complete Heyting algebra can be obtained (in many ways)
as the algebra of fixed points of a nucleus on the algebra Up�P �
of all up-sets of a poset P .

Thus cHa semantics (in particular, topological semantics) for
intuitionistic logic can be reformulated using Kripke models
with extra structure, in form of a nucleus.
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Dragalin frames

The latter had several alternative descriptions in the literature -
The idea of coverage (Johnstone): U U x (or x T U), a relation
between elements and up-sets of P , re-axiomatizing “x > jU”
(“j makes elements of U cover p”).

Dragalin had a variant of neighborhood semantics, axiomatized
in such a way that

jU �� �x > P S every neighborhood of x meets U�

produces a nucleus.

(He only had it for topological semantics; recently generalized
by Guram Bezhanishvili and Wesley Holliday to any complete
Heyting algebras.)
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Semantics for Propositional Lax Logic
(Journal of Logic and Computation 21 (2011), pp. 1035–1063)
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Examples

Open nuclei
jx � a� x

(fixed points �a� x S x > A�).

“Quasi-closed” nuclei

jx � �x� a�� a

(fixed points �x� a S x > A�).

On a Boolean algebra, every nucleus j has form

jx � a - x

(fixed points ��a�).
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Köhler duality

Our proof of local finiteness of the variety of nuclear implicative
semilattices is based on the duality for finite implicative
semilattices developed in

P. Köhler, Brouwerian semilattices, Trans. Amer. Math. Soc.
268 (1981), no. 1, 103-126.

Every finite implicative semilattice is isomorphic to one of the
form Up�X� for a finite partially ordered set X.
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Köhler duality

Moreover homomorphisms h � Up�X ��� Up�X� are determined
by certain partial maps

X c Y
f
Ð�X �;

namely, Y can be arbitrary subset of X while f � Y �X � is a
strict p-morphism.

Recall that f � Y �X � is a p-morphism means f�U� > Up�X ��
for every U > Up�Y �

�on elements, ¦ y > Y ¦ x� E f�y� § y� E y f�y�� � x�� .

Such a p-morphism is called strict if moreover y0 @ y1 implies
f�y0� @ f�y1� for all y0, y1 > Y .
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Köhler duality

A partial strict p-morphism

X c Y
f
Ð�X �

gives rise to an implicative semilattice homomorphism
hf � Up�X ��� Up�X�.

Up�X� Up�Y � Up�X ��Y 9� f�1

and every implicative semilattice homomorphism
h � Up�X ��� Up�X� has this form for a unique partial strict
p-morphism f .

11 / 29
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Köhler duality and nuclei

We first extend the Köhler duality to nuclear finite implicative
semilattices �Up�X�, j� where j is a nucleus on Up�X�.

Now every subset S bX of a poset X gives rise to a nucleus jS
on Up�X�,

jS�U� �X � ��S �U�,

and for finite posets X, every nucleus j � Up�X�� Up�X� is
equal to jS for a unique S bX.
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Köhler duality and nuclei

Then, to complete the extension of the Köhler duality to nuclear
implicative semilattices, we need to answer this question:

Given finite posets X, X � and subsets S bX, S� bX �, for which
partial strict p-morphisms

X c Y
f
Ð�X �

is the corresponding implicative semilattice homomorphism
hf � Up�X ��� Up�X� actually a homomorphism of nuclear
implicative semilattices �Up�X ��, jS��� �Up�X�, jS�?
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Dual description of subalgebras

Having obtained description of such homomorphisms, we in
particular obtain a dual description of subalgebras of a nuclear
implicative semilattice �Up�X�, jS�.

Nuclear implicative subsemilattices of a finite nuclear
implicative semilattice �Up�X�, jS� are in one-to-one
correspondence with partial equivalence relations � on X with
the following properties:

L � is p-morphic: ¦ y1 � y2 D y�2 § y1 D y�1 � y�2;
L � is strict: all �-equivalence classes are antichains;
L S is �-saturated: every �-equivalence class is either disjoint
from S or contained in S;

L for all s > S and all y E s, if y belongs to a �-equivalence
class, then there is an s� > S belonging to a (possibly
different) �-equivalence class, such that s D s� and s� D y�

with y � y�.
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Dual description of subalgebras

y y�

s�

s

�-equivalence
classes outside
S �-equivalence

classes in S
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General method of Ghilardi

Armed with this dual description of subalgebras, we can now
use the powerful general method of description of universal
models given in

Silvio Ghilardi, Irreducible models and definable embeddings,
Logic Colloquium 92 (Veszprém, 1992), Stud. Logic Lang.
Inform., CSLI Publ., Stanford, CA, 1995, pp. 95113.

In that paper, for any variety having the variety of implicative
semilattices as a reduct, a fairly explicit construction of
universal models is given provided one knows the dual
description of the situation when a finite algebra A is generated
by its given elements a1, ..., an.
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Generators

We thus also need to answer the following question:

Given a finite poset X, a subset S bX, and up-sets
U1, ..., Un > Up�X�, when does it happen that these up-sets
generate Up�X� as a nuclear implicative semilattice? That is,
�Up�X�, jS� does not possess any proper nuclear implicative
subsemilattices A b Up�X� containing all U1, ..., Un?
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Colorings and irreducibility

There is a well known method to simplify answers to such
questions – the so called coloring technique.

To each element x >X one assigns a set c�x� of “colors”, to
determine uniquely to which of the U1, ..., Un does x belong.

For example, if x belongs to U1 and U2 and does not belong to
any other Ui, one puts c�x� � �1,2�.

In terms of these colors one can give a dual description of the
situation when U1, ..., Un generate Up�X� as a nuclear
implicative semilattice. Ghilardi calls the corresponding dual
“colored” models irreducible.
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Coloring and S

X

X X

X X X X

X

X X

U1

U2 U3

S
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Colorings and irreducibility

To characterize irreducibility, let us also extend the colorings
from elements to subsets of X via

c�X �� ���c�x� S x >X ��

for X � bX.

Moreover, for x >X let

Kx ��min ���x� � �x�� .

We then have

Theorem. The up-sets U1, ...,Un of Up�X� generate
�Up�X�, jS� as a nuclear implicative semilattice if and only if
in the corresponding colored model, c�x� � c�Kx� implies that
x > S and moreover Kx Ú S.
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X

X X

X X X X

X

X X

x

Kx

x retains all possible colors � x is black, and Kx is not all black.
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Universal model

Using this we can then construct the universal model and prove
that it is finite.

The universal n-model L � �X,S,U1, ..., Un� is an (a priori
infinite) poset with n upsets U1, ..., Un is characterized by the
property that for any finite �X �, S�, U �

1, ..., U
�

n� there is a unique
embedding X �  X which identifies X � with an up-set of X
such that under this identification, S� �X �

9 S, U �

i �X �
9Ui,

i � 1, ..., n.
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Universal model - stepwise construction

We start from L�1 which consists of the empty set X�1 with the
empty subset S�1 and the valuation given by the empty map.
For each k, having Lk we construct Lk�1 as follows.

The poset Xk�1 cXk of depth k � 1 and the subset
Xk�1 c Sk�1 c Sk are obtained by adding to Xk new elements
rα,σ ¶ Sk�1 and sα,σ > Sk�1, where α bXk is any antichain which
for k E 0 is required to satisfy α ÚXk�1, while σ ú c�α� for all k.

Moreover if α Ú Sk then we also add sα,c�α� > Sk�1.

The partial order is extended from Xk to Xk�1 by the equalities
Krα,σ � Ksα,σ � α and the valuation by c�rα,σ� � c�sα,σ� � σ
(including sα,c�α� whenever it exists).
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empty subset S�1 and the valuation given by the empty map.
For each k, having Lk we construct Lk�1 as follows.

The poset Xk�1 cXk of depth k � 1 and the subset
Xk�1 c Sk�1 c Sk are obtained by adding to Xk new elements
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Finiteness of the universal model

Let then �Xª, Sª� be the union of the expanding sets Xk and
Sk. Then L is the model �Xª, Sª, c�, with c extended all along
the Xk.

Proof of finiteness of L is based on the above characterization of
irreducibility. This characterization gives two things: on the
one hand, when x ¶ S, we must have c�x� ú c�Kx�, so that if
there were no S, we would run out of colors after depth n (�
number of generators). This can be used to show that X � S is
actually finite.

On the other hand, although for s > S one is allowed to have
c�s� � c�Ks�, still each such s is required to possess some
element r > �Ks� � S.

Combining these facts, one manages to show that along any
descending chain s1 A s2 A s3 A ... in S one eventually runs out
of required elements rk > �Ksk� � S.

This then can be used to prove finiteness of L.
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Finite model property

There is a more or less standard argument to show that in
presence of the finite model property, finiteness of the universal
n-model for every n implies local finiteness of the variety.
Finite model property for the variety of nuclear implicative
semilattices is relatively easy to show.
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What remains to be done

It would be much nicer of course to have a purely algebraic
proof of local finiteness. There is a very simple such proof for
implicative semilattices, based on induction on the number of
generators and on properties of subdirectly irreducible algebras.

From local finiteness one must be able to obtain normal forms
for nuclear implicative semilattices.
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What remains to be done
How fast does it grow?
For n � 1, the cyclic algebra is easy to describe; the dual looks
like

(with S � �x, y, t�), and the algebra itself is

(with o the generator and  � � � o�).
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What remains to be done

However already the 2-generated algebras may be huge.
Experimentally, the dual can have up to six elements on the
highest (zeroth) level, up to 68 elements on the next (first)
level, and at least billions of elements on the second level. We
only have a rough upper bound for its depth.
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Thank you for patience!
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