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Rough Sets (Pawlak, Z. (1982))

Rough set theory was first proposed to deal with incomplete
information systems and vagueness.

(U,R), with U a set and R an equivalence relation over U, is
called a Pawlak approximation space. For a subset X ⊆ U,
consider

X R := {x | [x ]R ∩ X 6= ∅}, and

X R := {x | [x ]R ⊆ X}

where [x ]R is an equivalence class in U containing x .

X R is called R-upper approximation of X and X R is called R-lower
approximation of X .
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Rough sets

The pair (X R ,X R) is called a rough set in the approximation space
(U,R). Here, X R ⊆ X R .

Let XR and XR denote the collections of equivalence classes of
R contained in X R and X R respectively, that is,

X R =
⋃
XR and X R =

⋃
XR .
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ROUGH Category (Banerjee, M. and Chakraborty, M.K. (1993))

Objects of ROUGH have the form (U,R,X ), where U is a set, R
an equivalence relation on U and X a subset of U.

An arrow in ROUGH with dom (U,R,X ) and cod (V ,S,Y ) is a
map f : XR → YS such that f (XR) ⊆ YS.

Note that the lower approximation is preserved by the arrow f .

ROUGH is not a topos.
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ξ-ROUGH Category (Banerjee, M. and Chakraborty, M.K. (1993))

Objects of ξ-ROUGH are same as of ROUGH.

A ξ-ROUGH arrow f is a ROUGH arrow with dom (U,R,X ) and
cod (V ,S,Y ) such that f (XR/XR) ⊆ YS/YS.

Note that the lower approximation XR , as well as the boundary
region XR/XR , is preserved by the arrow f .
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RSC Category (Li, X.S., Yuan, X.H. (2008))

Objects of RSC are (X1,X2) where X1, X2 are sets and X1 ⊆ X2.

An RSC arrow with dom (X1,X2) and cod (Y1,Y2) is a map
f : X2 → Y2 such that f (X1) ⊆ Y1.
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Comparison

ROUGH ξ-ROUGH RSC
(Li, Yuan (2008))

Objects (U,R,X ) (U,R,X ) (X1,X2)
Morphisms f : X R → YS f : X R → YS f : X2 → Y2

f (X R) ⊆ YS f (X R) ⊆ YS f (X1) ⊆ Y1

f (XR \ XR) ⊆ YS \ YS

Theorem (More, A. K. and Banerjee, M.)
1 ROUGH is equivalent to RSC, and forms a quasitopos.
2 ξ-ROUGH is equivalent to SET 2, and forms a topos.
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Subobjects and strong subobjects in RSC

In figure (a), (X1,X2) is a subobject of (Y1,Y2).

In figure (b), (X1,X2) is a strong subobject of (Y1,Y2).

Hereafter, the strong subobejcts of RSC are referred as the
subobjects of RSC.
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Generalization of RSC (More, A. K. and Banerjee, M. (2016))

The category RSC is based on sets. Let us replace sets by an
arbitrary topos C .

RSC(C ) category: Objects are pairs (A,B) where A and B are
objects in C such that there exist a monic arrow m : A→ B in C .

An arrow with dom (X1,X2) and cod (Y1,Y2) is a pair of arrows
(f ′, f ) in C , such that the following diagram commutes in C .

X1 Y1

Y2X2

f ′

m′

f

m

where m and m′ are monic arrows corresponding to the objects
(X1,X2) and (Y1,Y2) in RSC(C ).
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RSC(C )

Theorem

RSC(C ) is a quasitopos.

RSC(SET ) is the category RSC.

On generalizing RSC to RSC(C ), we have lost the Boolean
property a ∨ ¬a = 1 in the algebra of subobjects of the
quasitopos RSC.
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An example of RSC(C )

Consider C to be topos M-Set, where M is a monoid.

An object of M-Set is a monoid action on a set X , and an arrow
is a function preserving monoid action.

M-Set is not a Boolean topos, when M is not a group.

Consider M to be 2 = {0,1} with 0 ≤ 1. What are the objects
and arrows of RSC(2-Set)?
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RSC(2-Set)

An object is a triple (X1,X2, µ) such that X1 ⊆ X2 and µ : X2 → Y2
is a set function such that µ2 = µ and µ|X1 : X1 → X1.

An arrow f : (X1,X2, µ)→ (Y1,Y2, λ) is the set function
f : X2 → Y2 such that f (X1) ⊆ Y1 and λf = fµ.

X2 Y2

Y2X2

f

λ

f

µ

RSC(2-Set) gives the motivation of defining monoid action on
rough sets.
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Monoid action on rough sets (More, A. K. and Banerjee, M. (2016))

A monoid M = (M, ∗,e) action on a set X is a function
λ : M × X → X satisfying

λ(e, x) = x and

λ(m, λ(p, x)) = λ(m ∗ p, x).

Definition (Monoid Action on rough sets)

A monoid M action on a rough set (X1,X2) is a triple (X1,X2, µ) such that
µ : M× X2 → X2 is a monoid action of M on the set X2, with the
condition that µ|X1

is a monoid action of M on X1.
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Algebra of subobjects of an RSC object

Any topos (quasitopos) has an intuitionistic logic associated with
the (strong) subobjects of its objects.

LetM be the collection of subobjects of an RSC-object (U1,U2),
that is,

M = {(A1,A2) | A1 ⊆ U1, A2 ⊆ U2, A1 = U1 ∩ A2}.

Propositional Connectives are obtained as following:

∩ : (A1,A2) ∩ (B1,B2) = (A1 ∩ B1,A2 ∩ B2)

∪ : (A1,A2) ∪ (B1,B2) = (A1 ∪ B1,A2 ∪ B2)

¬ : ¬(A1,A2) = (U1 \ A1,U2 \ A2)

→: (A1,A2)→ (B1,B2) = (U1 \ A1,U2 \ A2) ∪ (B1,B2)
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Observations

The algebraic structure of subobjects of an object in quasitopos
ROUGH is same as that of topos ξ-ROUGH.

The algebra obtained is Boolean, and thus the corresponding
logic obtained is classical.

On a close look at negation ¬, we see that negation is with
respect to fixed RSC-object (U1,U2).

Therefore, we need to use the notion of relative negation in
rough sets.
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Complementation in Rough Sets

Relative rough complement, defined by Iwiński (1987), in Rough
sets is given by

(A1,A2)− (B1,B2) = (A1 \ B2,A2 \ B1)

In the lines of this, we define the negation as

∼: ∼ (A1,A2) := (U1 \ A2,U2 \ A1).

This ‘results’ in a different algebraic structure onM, namely
c. ∨ c. lattices.
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Some properties of negation ∼

1 ∼ (U ,U) = (∅,U \ U)

2 ∼ (∅, ∅) = (U ,U)

3 ∼∼ (A1,A2) = (A1,A2 ∪ (U \ U))

4 ∼∼∼ (A1,A2) =∼ (A1,A2)

5 (A1,A2)∪ ∼ (A1,A2) = (U ,U)

6 (A1,A2)∩ ∼ (A1,A2) = (∅,A2 \A1)

7 DeMorgan’s laws hold.

∼ 1 6= 0

∼ 0 = 1

∼∼ a 6= a

∼∼∼ a =∼ a

a∨ ∼ a = 1

a∧ ∼ a 6= 0
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C. ∨ C. Lattices

Definition (C.C. lattice)

A contrapositionally complemented (c.c.) lattice is an algebra of the form
(B,∨,∧,→,¬,1) such that the reduct (B,∨,∧,→,1) is a relatively
pseudo-complemented (r .p.c.) lattice and ¬ satisfies the
contraposition law

x → ¬y = y → ¬x .

equivalently, ¬a = a→ ¬1.

The logic corresponding to the class of c.c. lattices is the minimal
logic.

Definition (C. ∨ C. Lattices)

A contrapositionally ∨ complemented (c. ∨ c.) lattice is a c.c. lattice
satisfying

x ∨ ¬x = 1.
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Examples

Let us consider the following 6-element r .p.c. lattice A.

a ¬a ¬1a ¬2a ¬3a
a→ 0 a→ w a→ x a→ y

0 1 1 1 1
y x 1 x 1
z y 1 1 y
w 0 1 x y
x y w 1 y
1 0 w x y

Heyting c. ∨ c. c. ∨ c.

1

w

??

x

__

y

??

z

??__

0

??__

A does not form c. ∨ c. lattice with the negation ¬3.
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C. ∨ C. lattices from a Boolean Algebra

Consider a Boolean Algebra B = (B,≤,∨,∧,¬,→,0,1) and
u = (u1,u2) where u1,u2 ∈ B.

Consider the set Au = {(a1,a2) : a1 ≤ a2, a1,a2 ∈ B, a1 = a2 ∧ u1}.

Define the following operations on Au:
(a1,a2) ∨ (b1,b2) := (a1 ∨ b1,a2 ∨ b2)

(a1,a2) ∧ (b1,b2) := (a1 ∧ b1,a2 ∧ b2)

∼ (a1,a2) := (u1 ∧ ¬a2,u2 ∧ ¬a1)

(a1,a2)→ (b1,b2) := (u1 ∧ ¬a1,u2 ∧ ¬a2) ∨ (b1,b2)

Au := (Au,∨,∧,→,∼,0,1) forms a C. ∨ C. lattice with the least
element 0.
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Algebra of Subobjects of a RSC(C ) object

LetM((U1,U2)) denote the set of strong monics of an
RSC(C )-object (U1,U2).

M((U1,U2)) forms a pseudo-Boolean (Heyting) algebra with
propositional connectives as follows.

∩ : (f ′, f ) ∩ (g′,g) = (f ′ ∩ g′, f ∩ g)

∪ : (f ′, f ) ∪ (g′,g) = (f ′ ∪ g′, f ∪ g)

¬ : ¬(f ′, f ) = (¬f ′,¬f )

→: (f ′, f )→ (g′,g) = (f ′ → g′, f → g)

where (f ′, f ), (g′,g) ∈M((U1,U2)).

We have observed that in RSC,M((U1,U2)) forms a Boolean
algebra.
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Complementation in Rough Sets

In the lines of the negation defined by Iwiński on rough sets, we
give the new definition of negation for RSC(C ), as done for RSC,

∼: ∼ (f ′, f ) := (¬f ′,¬(m ◦ f ′)).

where (f ′, f ) ∈M((U1,U2)) and m : U1 → U2 is a monic arrow
corresponding to (U1,U2).

∼ satisfies the contraposition law, but is neither a semi-negation
nor involutive.

∼ (a→ a)→ b 6= 1

∼∼ a 6= a

We also have ∼ (IdU1 , IdU2 ) = ¬¬ ∼ (IdU1 , IdU2 ).

This results in a new algebraic structure onM((U1,U2)), namely
Contrapositionally complemented pseudo-Boolean algebras.
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Contrapositionally complemented pseudo-Boolean
algebras

Definition (c.c.-pseudo-Boolean algebra)

An abstract algebra A := (A,1,0,→,∪,∩,¬,∼) is said to be a
c.c.-pseudo-Boolean algebra if (A,1,0,→,∪,∩,¬) forms a
pseudo-Boolean algebra and satisfies

∼ a = a→ (¬¬ ∼ 1)

for all a ∈ A.

If, in addition, x∨ ∼ x = 1 for all x ∈ A, A forms a
c. ∨ c.-pseudo-Boolean algebra.

The reduct (A,1,0,→,∪,∩,∼) forms a c.c. lattice with the least
element 0.
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Some properties of negation ∼ in c.c.-pseudo-
Boolean algebras

1 ∼ 1 = ¬¬ ∼ 1.

2 ∼ 0 = 1.

3 ¬¬ ∼ x =∼ x .

4 ∼∼∼ x =∼ x .

5 ¬x ≤ ∼ x .

These are also true for c. ∨ c.-pseudo-Boolean algebras.
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Some properties of negation ∼ in c. ∨ c.-pseudo-
Boolean algebras

1 x∨ ∼ x = 1.

2 ∼ (x ∧ y) = ∼ x∨ ∼ y .

3 ¬ ∼ x ≤ x .

These are NOT true for c.c.-pseudo-Boolean algebras.
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Examples

Let us again see the 6-element r .p.c. lattice A discussed
previously.

a ¬a ∼1 a ∼2 a ∼3 a
a→ w a→ x a→ y

0 1 1 1 1
y x 1 x 1
z y 1 1 y
w 0 1 x y
x y w 1 y
1 0 w x y

c. ∨ c.-p-B c.c.-p-B

1

w

??

x

__

y

??

z

??__

0

??__

(A,1,0,→,∪,∩,¬,∼1) neither forms c.c.-pseudo-Boolean nor
c. ∨ c.-pseudo-Boolean algebra.
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Examples

(M((U1,U2)), (U1,U2), (0,0),∩,∪,→,¬,∼) forms a
c.c.-pseudo-Boolean algebra, for each RSC(C )-object (U1,U2).

(M(X ), (X ,X ),∩,∪,→,¬,∼) forms a c. ∨ c.-pseudo-Boolean
algebra, for each RSC-object (X ,X ).

An entire class of c.c.-pseudo-Boolean algebras can be obtained
starting from any arbitrary pseudo-Boolean algebra
H := (H,1,0,→,∪,∩,¬).
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Examples

Let H[2] := {(a,b) : a ≤ b, a,b ∈ H}, u := (u1,u2) ∈ H[2], and
Au := {(a1,a2) ∈ H[2] : a2 ≤ u2 and a1 = a2 ∧ u1}

Define the following operators on Au:

t : (a1,a2) t (b1,b2) := (a1 ∨ b1,a2 ∨ b2)

u : (a1,a2) u (b1,b2) := (a1 ∧ b1,a2 ∧ b2)

¬ : ¬(a1,a2) := (u1 ∧ ¬a1,u2 ∧ ¬a2)

∼: ∼ (a1,a2) := (u1 ∧ ¬a1,u2 ∧ ¬a1)

→: (a1,a2)→ (b1,b2) := ((a1 → b1) ∧ u1, (a2 → b2) ∧ u2)
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Examples

Proposition

Au := (Au,u, (0,0),→,t,u,¬,∼) is a c.c.-pseudo-Boolean algebra.

If H is Boolean, we have a∨ ∼ a = 1 for any u = (u1,u2).

Proposition

If H is Boolean, then Au forms a c. ∨ c.-pseudo-Boolean algebra.
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Representation Theorem for c.c.-pseudo-Boolean
algebras

Definition (Contrapositionally complemented pseudo-fields)

Let G (X ) := (G(X ),X , ∅,∩,∪,→,¬) be a pseudo-field of open
subsets of a topological space X . Define

∼ X := ¬¬Y0 for some Y0 belonging to G(X ),

∼ Z := Z → (¬¬ ∼ X ).

The algebra (G(X ),X , ∅,∩,∪,→,¬,∼) is called the contrapositionally
complemented pseudo-field (c.c. pseudo-field) of open subsets of X .

Theorem (Representation Theorem)

Let A := (A,1,0,→,∪,∩,¬,∼) be a c.c.-pseudo-Boolean algebra.
There exists a monomorphism h from A into a c.c.-pseudo-field of all
open subsets of a topological space X.
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Properties of c.c.-pseudo-Boolean algebras

Since the class of all pseudo-Boolean algebras is equationally
definable, the class of all c.c.-pseudo-Boolean algebras is also
so.

The logic corresponding to c.c.-pseudo-Boolean algebras can be
defined. We call it Intuitionistic logic with minimal negation (ILM).

Intuitionistic logic (IL) is embedded inside ILM.

A natural question is whether some ‘interpretation’ of ILM in IL
exists?
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Interpretation

Various definitions of mappings from one formal system to another
can be found in literature (Eg. Prawitz and Malmnäs).

Let us define a general ‘interpretation’ between two mappings.

Definition (Interpretation)

Consider two formal logics L1 and L2. The mapping r : L1 → L2, from
the set L1 of formulas in L1 to the set L2 of formulas in L2, is called an
interpretation of L1 in L2, if for any formula α ∈ L1, we have the
following condition:

`L1 α if and only if ∆α `L2 r(α),

where ∆α is a finite set of formulas in L2 corresponding to α.
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Interpretation from ILM into IL

Theorem
There exists an interpretation from ILM onto IL, that is, the mapping
r : ILM → IL is onto.

Proof.
For any ILM-formula α with p1, . . . ,pn propositional variables
occurring in α, there exists a ILM-formula α∗ such that

1 α∗ does not contain ∼,
2 α∗ contains p1, . . . ,pn and a distinct propositional variable q,
3 and if `ILM ∼ > ↔ q, then `ILM α↔ α∗.

Define r(α) = α∗ and ∆α = {¬¬q → q}. We obtain the following:

`ILM α↔ {β} `IL α
∗
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Conclusions and future work

ROUGH and ξ-ROUGH are based on preserving some ‘regions’
of an approximation space. There can be other possbile
categories of rough sets based upon conditions on different
‘regions’.

Monoid actions on rough sets seems promising area, as monoid
actions have wide-ranging applications from linguistics to
morphology.

We saw the representation theorem for c.c-pseudo-Boolean
algebra. Further, the representation theorem of
c. ∨ c.-pseudo-Boolean algebra has to be found.

Other semantics of the logic ILM has to be looked upon, mainly
based on the Dunn’s kite diagram of negations.
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Thank you.
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