A new characterization of the class $HSP_U(\mathcal{K})$

Michal Botur & Martin Broušek

Palacký University

Olomouc

Prague, June 2017

Finite Embeddability Property

Definition

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if every finite partial subalgebra of any algebra from \mathcal{K} can be embedded into a finite member of \mathcal{K} .

- useful when dealing with the word problem
- applications in logic

Finite Embeddability Property

Definition

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if every finite partial subalgebra of any algebra from \mathcal{K} can be embedded into a finite member of \mathcal{K} .

- useful when dealing with the word problem
- applications in logic

A different approach to FEP

Definition

An algebra \mathcal{A} satisfies the generalized finite embeddability property (GFEP) for a class \mathcal{K} of algebras of the same type if every finite partial subalgebra of \mathcal{A} can be embedded into an algebra from \mathcal{K} .

Theorem

An algebra A satisfies GFEP for K if and only if $A \in \mathsf{ISP}_{\mathsf{U}}(K)$.

• useful for several problems of representation

A different approach to FEP

Definition

An algebra \mathcal{A} satisfies the generalized finite embeddability property (GFEP) for a class \mathcal{K} of algebras of the same type if every finite partial subalgebra of \mathcal{A} can be embedded into an algebra from \mathcal{K} .

Theorem

An algebra \mathcal{A} satisfies GFEP for \mathcal{K} if and only if $\mathcal{A} \in \mathsf{ISP}_\mathsf{U}(\mathcal{K})$.

useful for several problems of representation

Finite Coverability Property

Definition

Let $\mathcal{A}=(A,F)$ be an algebra and \mathcal{K} be a class of algebras of the type F. We say \mathcal{A} satisfies the finite coverability property for the class \mathcal{K} if for every finite set of terms $T\subseteq T_F(A)$ there exist an algebra $\mathcal{B}\in\mathcal{K}$, a mapping $f\colon B\to A$ and a set $Y\subseteq B$ such that

- $f|_{Y}: Y \rightarrow \text{Var } T \text{ is a bijection,}$
- if $t(a_1, \ldots, a_n) \in T$ and $y_1, \ldots, y_n \in Y$ are such that $fy_i = a_i$ then

$$ft^{\mathcal{B}}(y_1,\ldots,y_n)=t^{\mathcal{A}}(a_1,\ldots,a_n).$$

Finite Coverability Property

Definition

Let $\mathcal{A}=(A,F)$ be an algebra and \mathcal{K} be a class of algebras of the type F. We say \mathcal{A} satisfies the finite coverability property for the class \mathcal{K} if for every finite set of terms $T\subseteq T_F(A)$ there exist an algebra $\mathcal{B}\in\mathcal{K}$, a mapping $f\colon B\to A$ and a set $Y\subseteq B$ such that

- $f|_{Y}: Y \rightarrow \text{Var } T \text{ is a bijection,}$
- if $t(a_1, ..., a_n) \in T$ and $y_1, ..., y_n \in Y$ are such that $fy_i = a_i$ then

$$ft^{\mathcal{B}}(y_1,\ldots,y_n)=t^{\mathcal{A}}(a_1,\ldots,a_n).$$

Finite Coverability Property

Definition

Let $\mathcal{A}=(A,F)$ be an algebra and \mathcal{K} be a class of algebras of the type F. We say \mathcal{A} satisfies the finite coverability property for the class \mathcal{K} if for every finite set of terms $T\subseteq T_F(A)$ there exist an algebra $\mathcal{B}\in\mathcal{K}$, a mapping $f\colon B\to A$ and a set $Y\subseteq B$ such that

- $f|_{Y}: Y \to \text{Var } T \text{ is a bijection,}$
- if $t(a_1, \ldots, a_n) \in T$ and $y_1, \ldots, y_n \in Y$ are such that $fy_i = a_i$ then

$$ft^{\mathcal{B}}(y_1,\ldots,y_n)=t^{\mathcal{A}}(a_1,\ldots,a_n).$$

Let $\mathcal A$ satisfy the finite coverability property for the class $\mathcal K$ then $\mathcal A \in \mathsf{HSP}_\mathsf{U}(\mathcal K).$

Sketch of proof: There exists an ultrafilter \mathcal{U} on the set $\mathcal{P}_{\text{fin}}T_F(A)$ such that it contains all sets

$$\overline{T} = \{ T' \in \mathcal{P}_{fin} T_F(A) \mid T \subseteq T' \},$$

where $T \in \mathcal{P}_{fin}T_F(A)$.

For every $T \in \mathcal{P}_{fin}T_F(A)$ there exist an algebra $\mathcal{B}_T \in \mathcal{K}$, a mapping $f_T \colon \mathcal{B}_T \to A$ and a set $Y_T \subseteq \mathcal{B}_T$ satisfying the conditions of FCP.

Let $a \in A$ then $y \in \prod_T Y_T$ is called *a-stable* if

$$\operatorname{Stab}_{a}(y) := \{ T \in \mathcal{P}_{\operatorname{fin}}T_{F}(A) \mid f_{T}(y(T)) = a \} \in \mathcal{U}$$

Let $\mathcal A$ satisfy the finite coverability property for the class $\mathcal K$ then $\mathcal A \in \mathsf{HSP}_\mathsf{U}(\mathcal K).$

Sketch of proof: There exists an ultrafilter \mathcal{U} on the set $\mathcal{P}_{\text{fin}}T_F(A)$ such that it contains all sets

$$\overline{T} = \{ T' \in \mathcal{P}_{fin}T_{F}(A) \mid T \subseteq T' \},\$$

where $T \in \mathcal{P}_{fin}T_F(A)$.

For every $T \in \mathcal{P}_{fin}T_F(A)$ there exist an algebra $\mathcal{B}_T \in \mathcal{K}$, a mapping $f_T \colon \mathcal{B}_T \to A$ and a set $Y_T \subseteq \mathcal{B}_T$ satisfying the conditions of FCP.

Let $a \in A$ then $y \in \prod_T Y_T$ is called *a-stable* if

$$\operatorname{Stab}_{a}(y) := \{ T \in \mathcal{P}_{\operatorname{fin}}T_{F}(A) \mid f_{T}(y(T)) = a \} \in \mathcal{U}$$

Let $\mathcal A$ satisfy the finite coverability property for the class $\mathcal K$ then $\mathcal A \in \mathsf{HSP}_\mathsf{U}(\mathcal K)$.

Sketch of proof: There exists an ultrafilter \mathcal{U} on the set $\mathcal{P}_{\text{fin}}T_F(A)$ such that it contains all sets

$$\overline{T} = \{ T' \in \mathcal{P}_{fin} T_F(A) \mid T \subseteq T' \},$$

where $T \in \mathcal{P}_{fin}T_F(A)$.

For every $T \in \mathcal{P}_{fin}T_F(A)$ there exist an algebra $\mathcal{B}_T \in \mathcal{K}$, a mapping $f_T \colon \mathcal{B}_T \to A$ and a set $Y_T \subseteq \mathcal{B}_T$ satisfying the conditions of FCP.

Let $a \in A$ then $y \in \prod_T Y_T$ is called *a-stable* if

$$\operatorname{Stab}_{a}(y) := \{ T \in \mathcal{P}_{\operatorname{fin}}T_{F}(A) \mid f_{T}(y(T)) = a \} \in \mathcal{U}$$

Let \mathcal{A} satisfy the finite coverability property for the class \mathcal{K} then $\mathcal{A} \in \mathsf{HSP}_\mathsf{U}(\mathcal{K})$.

Sketch of proof: There exists an ultrafilter \mathcal{U} on the set $\mathcal{P}_{\text{fin}}T_F(A)$ such that it contains all sets

$$\overline{T} = \{ T' \in \mathcal{P}_{fin}T_{F}(A) \mid T \subseteq T' \},$$

where $T \in \mathcal{P}_{fin}T_F(A)$.

For every $T \in \mathcal{P}_{fin}T_F(A)$ there exist an algebra $\mathcal{B}_T \in \mathcal{K}$, a mapping $f_T \colon \mathcal{B}_T \to A$ and a set $Y_T \subseteq \mathcal{B}_T$ satisfying the conditions of FCP.

Let $a \in A$ then $y \in \prod_{T} Y_{T}$ is called *a-stable* if

$$\operatorname{Stab}_{a}(y) := \{ T \in \mathcal{P}_{\operatorname{fin}}T_{F}(A) \mid f_{T}(y(T)) = a \} \in \mathcal{U}$$

Lemma

There exists a mapping $\underline{}^{\bullet} : A \to \prod_{\mathcal{T}} Y_{\mathcal{T}}$ such that a^{\bullet} is a-stable.

We can define $a^{\bullet} \in \prod_{T} Y_{T}$ such that

$$a^{\bullet}(T) = \begin{cases} (f_T|_{Y_T})^{-1}(a) & \text{if } a \in \text{Var } T, \\ y_T & \text{if } a \notin \text{Var } T. \end{cases}$$

Lemma

Let $x, y \in \prod_T Y_T$. If x, y are a-stable, then $[x = y] \in \mathcal{U}$.

Lemma

Let $x, y \in \prod_T Y_T$ be such that $[x = y] \in \mathcal{U}$. If x is a-stable then also y is a-stable.

Lemma

There exists a mapping $\underline{}^{\bullet} : A \to \prod_{\mathcal{T}} Y_{\mathcal{T}}$ such that a^{\bullet} is a-stable.

We can define $a^{\bullet} \in \prod_{T} Y_{T}$ such that

$$a^{\bullet}(T) = \begin{cases} (f_T|_{Y_T})^{-1}(a) & \text{if } a \in \text{Var } T, \\ y_T & \text{if } a \notin \text{Var } T. \end{cases}$$

Lemma

Let $x, y \in \prod_T Y_T$. If x, y are a-stable, then $[x = y] \in \mathcal{U}$.

Lemma

Let $x, y \in \prod_T Y_T$ be such that $[x = y] \in \mathcal{U}$. If x is a-stable then also y is a-stable.

Lemma

There exists a mapping $\underline{\ }^{\bullet}\colon A\to \prod_{T} Y_{T}$ such that a^{\bullet} is a-stable.

We can define $a^{\bullet} \in \prod_{T} Y_{T}$ such that

$$a^{\bullet}(T) = \begin{cases} (f_T|_{Y_T})^{-1}(a) & \text{if } a \in \text{Var } T, \\ y_T & \text{if } a \notin \text{Var } T. \end{cases}$$

Lemma

Let $x, y \in \prod_T Y_T$. If x, y are a-stable, then $[\![x = y]\!] \in \mathcal{U}$.

Lemma

Let $x, y \in \prod_T Y_T$ be such that $[x = y] \in \mathcal{U}$. If x is a-stable then also y is a-stable.

 $a \mapsto a^{\bullet}/\mathcal{U}$ is a bijection.

$$f(t^{[Y/\mathcal{U}]}(a_1^{\bullet}/\mathcal{U},\ldots,a_n^{\bullet}/\mathcal{U}))=t^{\mathcal{A}}(a_1,\ldots,a_n)$$

Let Y be the set of all a-stable elements for some $a \in A$. Than $Y \subseteq \prod_T Y_T \subseteq \prod_T B_T$ and so $[Y/\mathcal{U}] \subseteq \prod_T B_T/\mathcal{U}$. Which implies $[Y/\mathcal{U}] \in SP_{\mathsf{H}}(\mathcal{K}).$

Due to the lemmmata the mapping $g: A \to Y/\mathcal{U}$ such that $a \mapsto a^{\bullet}/\mathcal{U}$ is a bijection.

$$f(t^{[Y/\mathcal{U}]}(a_1^{\bullet}/\mathcal{U},\ldots,a_n^{\bullet}/\mathcal{U}))=t^{\mathcal{A}}(a_1,\ldots,a_n)$$

Let Y be the set of all a-stable elements for some $a \in A$. Than $Y \subseteq \prod_{\mathcal{T}} Y_{\mathcal{T}} \subseteq \prod_{\mathcal{T}} B_{\mathcal{T}}$ and so $[Y/\mathcal{U}] \leq \prod_{\mathcal{T}} B_{\mathcal{T}}/\mathcal{U}$. Which implies $[Y/\mathcal{U}] \in \mathsf{SP}_{\mathsf{U}}(\mathcal{K})$.

Due to the lemmmata the mapping $g: A \to Y/\mathcal{U}$ such that $a \mapsto a^{\bullet}/\mathcal{U}$ is a bijection.

A mapping $f: [Y/\mathcal{U}] \to \mathcal{A}$ such that

$$f(t^{[Y/U]}(a_1^{\bullet}/U,\ldots,a_n^{\bullet}/U))=t^{A}(a_1,\ldots,a_n)$$

for any $t(a_1, ..., a_n) \in T_F(A)$ is a well defined homomorphism.

Indeed, sets

$$M = \llbracket s^{\prod_{T} \mathcal{B}_{T}}(a_{1}^{\bullet}, \dots, a_{n}^{\bullet}) = t^{\prod_{T} \mathcal{B}_{T}}(a_{1}^{\bullet}, \dots, a_{n}^{\bullet}) \rrbracket$$

$$P = \overline{\{s(a_{1}, \dots, a_{n}), t(a_{1}, \dots, a_{n})\}}$$

$$S = \bigcap_{i=1}^{n} \operatorname{Stab}_{a_{i}}(a_{i}^{\bullet})$$

are elements of \mathcal{U} . And using $T \in M \cap P \cap S$ we can prove

$$s^{[Y/\mathcal{U}]}(a_1^{\bullet}/\mathcal{U}, \dots, a_n^{\bullet}/\mathcal{U}) = t^{[Y/\mathcal{U}]}(a_1^{\bullet}/\mathcal{U}, \dots, a_n^{\bullet}/\mathcal{U})$$

$$\Rightarrow s^{\mathcal{A}}(a_1, \dots, a_n) = t^{\mathcal{A}}(a_1, \dots, a_n).$$

Indeed, sets

$$M = \llbracket s^{\prod_{T} \mathcal{B}_{T}}(a_{1}^{\bullet}, \dots, a_{n}^{\bullet}) = t^{\prod_{T} \mathcal{B}_{T}}(a_{1}^{\bullet}, \dots, a_{n}^{\bullet}) \rrbracket$$

$$P = \overline{\{s(a_{1}, \dots, a_{n}), t(a_{1}, \dots, a_{n})\}}$$

$$S = \bigcap_{i=1}^{n} \operatorname{Stab}_{a_{i}}(a_{i}^{\bullet})$$

are elements of \mathcal{U} . And using $T \in M \cap P \cap S$ we can prove

$$s^{[Y/U]}(a_1^{\bullet}/U,\ldots,a_n^{\bullet}/U) = t^{[Y/U]}(a_1^{\bullet}/U,\ldots,a_n^{\bullet}/U)$$

$$\Rightarrow s^{\mathcal{A}}(a_1,\ldots,a_n) = t^{\mathcal{A}}(a_1,\ldots,a_n).$$

Let $\mathcal{A}=(A,F)$ be an algebra and let \mathcal{K} be a class of algebras of the type F. If $\mathcal{A}\in\mathsf{HSP}_\mathsf{U}(\mathcal{K})$ then \mathcal{A} satisfies the finite coverability property for the class K.

Sketch of proof: There exist algebras $\mathcal{B}_i \in K$ for $i \in I$, an ultrafilter $\mathcal{U} \subseteq \mathcal{P}(I)$ and a homomorphism $h \colon \mathcal{B} \to \mathcal{A}$ such that $\mathcal{B} \leq (\prod_i \mathcal{B}_i) / \mathcal{U}$ and $\mathcal{A} = h(\mathcal{B})$. Let us take an arbitrary finite set $T \in T_F(A)$.

• For every $a \in \text{Var } T$ let us take a fixed element $a' \in \mathcal{B}$ such that h(a') = a.

$$Y_1 = \{ a' \in \mathcal{B} \mid a \in \text{Var } T \} \cup$$

$$\{ t^{\mathcal{B}}(a'_1, \dots, a'_n) \in \mathcal{B} \mid t(a_1, \dots, a_n) \in T \}$$

Let $\mathcal{A}=(A,F)$ be an algebra and let \mathcal{K} be a class of algebras of the type F. If $\mathcal{A}\in\mathsf{HSP}_\mathsf{U}(\mathcal{K})$ then \mathcal{A} satisfies the finite coverability property for the class K.

Sketch of proof: There exist algebras $\mathcal{B}_i \in K$ for $i \in I$, an ultrafilter $\mathcal{U} \subseteq \mathcal{P}(I)$ and a homomorphism $h \colon \mathcal{B} \to \mathcal{A}$ such that $\mathcal{B} \leq (\prod_i \mathcal{B}_i) / \mathcal{U}$ and $\mathcal{A} = h(\mathcal{B})$.

Let us take an arbitrary finite set $T\in \mathcal{T}_{F}(A)$.

• For every $a \in \text{Var } T$ let us take a fixed element $a' \in \mathcal{B}$ such that h(a') = a.

$$Y_1 = \{ a' \in \mathcal{B} \mid a \in \text{Var } T \} \cup$$

$$\{ t^{\mathcal{B}}(a'_1, \dots, a'_n) \in \mathcal{B} \mid t(a_1, \dots, a_n) \in T \}$$

Let $\mathcal{A}=(A,F)$ be an algebra and let \mathcal{K} be a class of algebras of the type F. If $\mathcal{A}\in\mathsf{HSP}_\mathsf{U}(\mathcal{K})$ then \mathcal{A} satisfies the finite coverability property for the class K.

Sketch of proof: There exist algebras $\mathcal{B}_i \in K$ for $i \in I$, an ultrafilter $\mathcal{U} \subseteq \mathcal{P}(I)$ and a homomorphism $h \colon \mathcal{B} \to \mathcal{A}$ such that $\mathcal{B} \leq (\prod_i \mathcal{B}_i) / \mathcal{U}$ and $\mathcal{A} = h(\mathcal{B})$. Let us take an arbitrary finite set $T \in T_F(A)$.

• For every $a \in \text{Var } T$ let us take a fixed element $a' \in \mathcal{B}$ such that h(a') = a.

$$Y_1 = \{ a' \in \mathcal{B} \mid a \in \text{Var } T \} \cup$$

$$\{ t^{\mathcal{B}}(a'_1, \dots, a'_n) \in \mathcal{B} \mid t(a_1, \dots, a_n) \in T \}$$

• For every $b \in Y_1$ let us take a fixed $v(b) \in \prod_i \mathcal{B}_i$ such that $v(b)/\mathcal{U} = b$.

$$Y_2 = \{ v(b) \in \prod_i \mathcal{B}_i \mid b \in Y_1 \}$$

• For any $a_1, \ldots, a_n \in \text{Var } T$ and $t \in T$ we prove

$$\llbracket v(t^{\left(\prod_{i}\mathcal{B}_{i}\right)/\mathcal{U}}(a'_{1},\ldots,a'_{n})) = t^{\prod_{i}\mathcal{B}_{i}}(v(a'_{1}),\ldots,v(a'_{n})) \rrbracket \in \mathcal{U}$$

• We can prove $W = W_1 \cap W_2 \in \mathcal{U}$ where

$$W_1 = \bigcap_{t(a_1,\ldots,a_n)\in T} \llbracket v(t\ldots) = t(v\ldots) \rrbracket$$

$$W_2 = \bigcap_{x,y \in Y_2, x \neq y} \llbracket x \neq y \rrbracket \in \mathcal{U}$$

• For every $b \in Y_1$ let us take a fixed $v(b) \in \prod_i \mathcal{B}_i$ such that $v(b)/\mathcal{U} = b$.

$$Y_2 = \{ v(b) \in \prod_i \mathcal{B}_i \mid b \in Y_1 \}$$

• For any $a_1, \ldots, a_n \in \text{Var } T$ and $t \in T$ we prove

$$\llbracket v(t^{\left(\prod_i \mathcal{B}_i\right)/\mathcal{U}}(a'_1,\ldots,a'_n)) = t^{\prod_i \mathcal{B}_i}(v(a'_1),\ldots,v(a'_n)) \rrbracket \in \mathcal{U}.$$

• We can prove $W = W_1 \cap W_2 \in \mathcal{U}$ where

$$W_1 = \bigcap_{t(a_1,\ldots,a_n)\in T} \llbracket v(t\ldots) = t(v\ldots) \rrbracket$$

$$W_2 = \bigcap_{x,y \in Y_2, x \neq y} \llbracket x \neq y \rrbracket \in \mathcal{U}.$$

• For every $b \in Y_1$ let us take a fixed $v(b) \in \prod_i \mathcal{B}_i$ such that $v(b)/\mathcal{U} = b$.

$$Y_2 = \{ v(b) \in \prod_i \mathcal{B}_i \mid b \in Y_1 \}$$

• For any $a_1, \ldots, a_n \in \text{Var } T$ and $t \in T$ we prove

$$\llbracket v(t^{\left(\prod_i \mathcal{B}_i\right)/\mathcal{U}}(a'_1,\ldots,a'_n)) = t^{\prod_i \mathcal{B}_i}(v(a'_1),\ldots,v(a'_n)) \rrbracket \in \mathcal{U}.$$

• We can prove $W = W_1 \cap W_2 \in \mathcal{U}$ where

$$W_1 = \bigcap_{t(a_1,\ldots,a_n)\in T} \llbracket v(t\ldots) = t(v\ldots) \rrbracket$$

$$W_2 = \bigcap_{x,y \in Y_2, x \neq y} \llbracket x \neq y \rrbracket \in \mathcal{U}.$$

Let $j \in W$. We define $f: B_i \to A$ in the following way

$$f(x) = \begin{cases} h(b/\mathcal{U}) & \text{if } x = b(j) \text{ for some } b \in Y_2, \\ a & \text{otherwise.} \end{cases}$$

And also $Y = \{ v(a')(j) \in B_j \mid a \in \text{Var } T \}.$

Finally, we prove \mathcal{B}_j , Y and f satisfy the conditions of the definition of FCP.

Let $j \in W$. We define $f: B_i \to A$ in the following way

$$f(x) = \begin{cases} h(b/\mathcal{U}) & \text{if } x = b(j) \text{ for some } b \in Y_2, \\ a & \text{otherwise.} \end{cases}$$

And also $Y = \{ v(a')(j) \in B_j \mid a \in \text{Var } T \}$. Finally, we prove \mathcal{B}_j , Y and f satisfy the conditions of the definition of FCP.

Let $\mathcal{A}=(A,F)$ be an algebra and \mathcal{K} be a class of algebras of the type F. The algebra \mathcal{A} satisfies the finite coverability property for the class \mathcal{K} if and only if $\mathcal{A} \in \mathsf{HSP}_\mathsf{U}(\mathcal{K})$.

Equivalent formulation of Jónsson's lemma

Corollary

Let $\mathcal K$ be a class of algebras of the same type such that $\mathcal V(\mathcal K)$ is a congruence distributive variety. If $\mathcal A \in \mathcal V(\mathcal K)$ is subdirectly irreducible then $\mathcal A$ satisfies the finite coverability property for the class $\mathcal K$.

Let $\mathcal{A}=(A,F)$ be an algebra and \mathcal{K} be a class of algebras of the type F. The algebra \mathcal{A} satisfies the finite coverability property for the class \mathcal{K} if and only if $\mathcal{A}\in\mathsf{HSP}_\mathsf{U}(\mathcal{K})$.

Equivalent formulation of Jónsson's lemma:

Corollary

Let $\mathcal K$ be a class of algebras of the same type such that $\mathcal V(\mathcal K)$ is a congruence distributive variety. If $\mathcal A \in \mathcal V(\mathcal K)$ is subdirectly irreducible then $\mathcal A$ satisfies the finite coverability property for the class $\mathcal K$.

References

- Botur, M.: A non-associative generalization of Hájek's BL-algebras. Fuzzy Sets and Systems **178**, 24–37 (2011)
- Botur, M., Broušek, M.: Finite coverability property. Manuscript (2017)
- Haniková, Z., Horčík, R.: Finite Embeddability Property for Residuated Groupoids. Algebra Universalis **72**, Issue: 1, 1–13 (August 2014)

Thank you for your attention!

