A new characterization of the class $\text{HSP}_U(\mathcal{K})$

Michal Botur & Martin Broušek

Palacký University
Olomouc

Prague, June 2017
Finite Embeddability Property

Definition

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if every finite partial subalgebra of any algebra from \mathcal{K} can be embedded into a finite member of \mathcal{K}.

- useful when dealing with the word problem
- applications in logic
Definition

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if every finite partial subalgebra of any algebra from \mathcal{K} can be embedded into a finite member of \mathcal{K}.

- useful when dealing with the word problem
- applications in logic
A different approach to FEP

Definition

An algebra \(\mathcal{A} \) satisfies the generalized finite embeddability property (GFEP) for a class \(\mathcal{K} \) of algebras of the same type if every finite partial subalgebra of \(\mathcal{A} \) can be embedded into an algebra from \(\mathcal{K} \).

Theorem

An algebra \(\mathcal{A} \) satisfies GFEP for \(\mathcal{K} \) if and only if \(\mathcal{A} \in \text{ISP}_U(\mathcal{K}) \).

useful for several problems of representation
A different approach to FEP

Definition

An algebra \mathcal{A} satisfies the generalized finite embeddability property (GFEP) for a class \mathcal{K} of algebras of the same type if every finite partial subalgebra of \mathcal{A} can be embedded into an algebra from \mathcal{K}.

Theorem

An algebra \mathcal{A} satisfies GFEP for \mathcal{K} if and only if $\mathcal{A} \in \text{ISP}_U(\mathcal{K})$.

- useful for several problems of representation
Finite Coverability Property

Definition

Let $\mathcal{A} = (A, F)$ be an algebra and \mathcal{K} be a class of algebras of the type F. We say \mathcal{A} satisfies the finite coverability property for the class \mathcal{K} if for every finite set of terms $T \subseteq T_F(A)$ there exist an algebra $B \in \mathcal{K}$, a mapping $f : B \rightarrow A$ and a set $Y \subseteq B$ such that

- $f|_Y : Y \rightarrow \text{Var } T$ is a bijection,
- if $t(a_1, \ldots, a_n) \in T$ and $y_1, \ldots, y_n \in Y$ are such that $fy_i = a_i$ then

 $$ft^B(y_1, \ldots, y_n) = t^A(a_1, \ldots, a_n).$$

References

Michal Botur & Martin Broušek

A new characterization of the class $\text{HSP}_U(\mathcal{K})$
Finite Coverability Property

Definition

Let $\mathcal{A} = (A, F)$ be an algebra and \mathcal{K} be a class of algebras of the type F. We say \mathcal{A} satisfies the finite coverability property for the class \mathcal{K} if for every finite set of terms $T \subseteq T_F(A)$ there exist an algebra $B \in \mathcal{K}$, a mapping $f : B \rightarrow A$ and a set $Y \subseteq B$ such that

- $f|_Y : Y \rightarrow \text{Var } T$ is a bijection,
- if $t(a_1, \ldots, a_n) \in T$ and $y_1, \ldots, y_n \in Y$ are such that $fy_i = a_i$ then

$$f^B(y_1, \ldots, y_n) = t^A(a_1, \ldots, a_n).$$
Finite Coverability Property

Definition

Let $\mathcal{A} = (A, F)$ be an algebra and \mathcal{K} be a class of algebras of the type F. We say \mathcal{A} satisfies the finite coverability property for the class \mathcal{K} if for every finite set of terms $T \subseteq T_F(A)$ there exist an algebra $B \in \mathcal{K}$, a mapping $f: B \to A$ and a set $Y \subseteq B$ such that

- $f|_Y: Y \to \text{Var } T$ is a bijection,
- if $t(a_1, \ldots, a_n) \in T$ and $y_1, \ldots, y_n \in Y$ are such that $fy_i = a_i$ then

$$ft^B(y_1, \ldots, y_n) = t^A(a_1, \ldots, a_n).$$
Theorem

Let A satisfy the finite coverability property for the class \mathcal{K} then $A \in \text{HSP}_U(\mathcal{K})$.

Sketch of proof: There exists an ultrafilter U on the set $\mathcal{P}_{\text{fin}} T_F(A)$ such that it contains all sets

$$\overline{T} = \{T' \in \mathcal{P}_{\text{fin}} T_F(A) \mid T \subseteq T'\},$$

where $T \in \mathcal{P}_{\text{fin}} T_F(A)$.

For every $T \in \mathcal{P}_{\text{fin}} T_F(A)$ there exist an algebra $B_T \in \mathcal{K}$, a mapping $f_T : B_T \to A$ and a set $Y_T \subseteq B_T$ satisfying the conditions of FCP.

Let $a \in A$ then $y \in \prod_T Y_T$ is called a-stable if

$$\text{Stab}_a(y) := \{T \in \mathcal{P}_{\text{fin}} T_F(A) \mid f_T(y(T)) = a\} \in U.$$
Theorem

Let A satisfy the finite coverability property for the class \mathcal{K} then $A \in \text{HSP}_U(\mathcal{K})$.

Sketch of proof: There exists an ultrafilter \mathcal{U} on the set $\mathcal{P}_{\text{fin}}T_F(A)$ such that it contains all sets

$$\overline{T} = \{ T' \in \mathcal{P}_{\text{fin}}T_F(A) \mid T \subseteq T' \},$$

where $T \in \mathcal{P}_{\text{fin}}T_F(A)$.

For every $T \in \mathcal{P}_{\text{fin}}T_F(A)$ there exist an algebra $B_T \in \mathcal{K}$, a mapping $f_T: B_T \to A$ and a set $Y_T \subseteq B_T$ satisfying the conditions of FCP.

Let $a \in A$ then $y \in \prod_T Y_T$ is called a-stable if

$$\text{Stab}_a(y) := \{ T \in \mathcal{P}_{\text{fin}}T_F(A) \mid f_T(y(T)) = a \} \in \mathcal{U}$$
Theorem

Let A satisfy the finite coverability property for the class \mathcal{K} then $A \in HSP_U(\mathcal{K})$.

Sketch of proof: There exists an ultrafilter \mathcal{U} on the set $\mathcal{P}_{\text{fin}} T_F(A)$ such that it contains all sets

$$\overline{T} = \{ T' \in \mathcal{P}_{\text{fin}} T_F(A) \mid T \subseteq T' \},$$

where $T \in \mathcal{P}_{\text{fin}} T_F(A)$. For every $T \in \mathcal{P}_{\text{fin}} T_F(A)$ there exist an algebra $B_T \in \mathcal{K}$, a mapping $f_T : B_T \to A$ and a set $Y_T \subseteq B_T$ satisfying the conditions of FCP.

Let $a \in A$ then $y \in \prod_T Y_T$ is called a-stable if

$$\text{Stab}_a(y) := \{ T \in \mathcal{P}_{\text{fin}} T_F(A) \mid f_T(y(T)) = a \} \in \mathcal{U}$$
Theorem

Let A satisfy the finite coverability property for the class \mathcal{K} then $A \in \text{HSP}_U(\mathcal{K})$.

Sketch of proof: There exists an ultrafilter U on the set $\mathcal{P}_{\text{fin}} T_F(A)$ such that it contains all sets

$$\overline{T} = \{ T' \in \mathcal{P}_{\text{fin}} T_F(A) \mid T \subseteq T' \},$$

where $T \in \mathcal{P}_{\text{fin}} T_F(A)$. For every $T \in \mathcal{P}_{\text{fin}} T_F(A)$ there exist an algebra $B_T \in \mathcal{K}$, a mapping $f_T : B_T \to A$ and a set $Y_T \subseteq B_T$ satisfying the conditions of FCP.

Let $a \in A$ then $y \in \prod_T Y_T$ is called a-stable if

$$\text{Stab}_a(y) := \{ T \in \mathcal{P}_{\text{fin}} T_F(A) \mid f_T(y(T)) = a \} \in U$$
Lemma

There exists a mapping $\cdot : A \to \prod_T Y_T$ such that a^\cdot is a-stable.

We can define $a^\cdot \in \prod_T Y_T$ such that

$$a^\cdot(T) = \begin{cases} (f_T|_{Y_T})^{-1}(a) & \text{if } a \in \text{Var } T, \\ y_T & \text{if } a \notin \text{Var } T. \end{cases}$$

Lemma

Let $x, y \in \prod_T Y_T$. If x, y are a-stable, then $[x = y] \in \mathcal{U}$.

Lemma

Let $x, y \in \prod_T Y_T$ be such that $[x = y] \in \mathcal{U}$. If x is a-stable then also y is a-stable.
Lemma

There exists a mapping $\bullet: A \to \prod_T Y_T$ such that a^\bullet is a-stable.

We can define $a^\bullet \in \prod_T Y_T$ such that

$$a^\bullet(T) = \begin{cases} (f_T|_{Y_T})^{-1}(a) & \text{if } a \in \text{Var } T, \\ y_T & \text{if } a \notin \text{Var } T. \end{cases}$$

Lemma

Let $x, y \in \prod_T Y_T$. If x, y are a-stable, then $[x = y] \in U$.

Lemma

Let $x, y \in \prod_T Y_T$ be such that $[x = y] \in U$. If x is a-stable then also y is a-stable.
Lemma

There exists a mapping \(\bullet : A \rightarrow \prod_T Y_T \) such that \(a^\bullet \) is a-stable.

We can define \(a^\bullet \in \prod_T Y_T \) such that

\[
a^\bullet(T) = \begin{cases} (f_T|_{Y_T})^{-1}(a) & \text{if } a \in \text{Var } T, \\ y_T & \text{if } a \notin \text{Var } T. \end{cases}
\]

Lemma

Let \(x, y \in \prod_T Y_T \). If \(x, y \) are a-stable, then \([x = y] \in \mathcal{U} \).

Lemma

Let \(x, y \in \prod_T Y_T \) be such that \([x = y] \in \mathcal{U} \). If \(x \) is a-stable then also \(y \) is a-stable.
Let Y be the set of all a-stable elements for some $a \in A$. Then $Y \subseteq \prod_T Y_T \subseteq \prod_T B_T$ and so $[Y/U] \leq \prod_T B_T/U$. Which implies $[Y/U] \in \text{SP}_U(K)$.

Due to the lemmmata the mapping $g: A \to Y/U$ such that $a \mapsto a^* / U$ is a bijection.

A mapping $f: [Y/U] \to A$ such that

$$f(t^{[Y/U]}(a_1^*/U, \ldots, a_n^*/U)) = t^A(a_1, \ldots, a_n)$$

for any $t(a_1, \ldots, a_n) \in T_F(A)$ is a well defined homomorphism.
Let Y be the set of all a-stable elements for some $a \in A$. Then $Y \subseteq \prod_T Y_T \subseteq \prod_T B_T$ and so $[Y/U] \leq \prod_T B_T/U$. Which implies $[Y/U] \in \text{SP}_U(K)$.

Due to the lemmmata the mapping $g: A \to Y/U$ such that $a \mapsto a^*/U$ is a bijection.

A mapping $f: [Y/U] \to A$ such that

$$f(t^{[Y/U]}(a_1^*/U, \ldots, a_n^*/U)) = t^A(a_1, \ldots, a_n)$$

for any $t(a_1, \ldots, a_n) \in T_F(A)$ is a well defined homomorphism.
Let Y be the set of all a-stable elements for some $a \in A$. Than $Y \subseteq \prod_T Y_T \subseteq \prod_T B_T$ and so $[Y/\mathcal{U}] \leq \prod_T B_T/\mathcal{U}$. Which implies $[Y/\mathcal{U}] \in \text{SP}_U(\mathcal{K})$.

Due to the lemmmata the mapping $g: A \rightarrow Y/\mathcal{U}$ such that $a \mapsto a^*/\mathcal{U}$ is a bijection.

A mapping $f: [Y/\mathcal{U}] \rightarrow A$ such that

$$f(t[Y/\mathcal{U}](a_1^*/\mathcal{U}, \ldots, a_n^*/\mathcal{U})) = t^A(a_1, \ldots, a_n)$$

for any $t(a_1, \ldots, a_n) \in T_F(A)$ is a well defined homomorphism.
Indeed, sets

\[M = \left\{ s^{\prod_{T}B_{T}}(a_{1}, \ldots, a_{n}) = t^{\prod_{T}B_{T}}(a_{1}, \ldots, a_{n}) \right\} \]

\[P = \left\{ s(a_{1}, \ldots, a_{n}), t(a_{1}, \ldots, a_{n}) \right\} \]

\[S = \bigcap_{i=1}^{n} \text{Stab}_{a_{i}}(a_{i}^{\bullet}) \]

are elements of \(\mathcal{U} \). And using \(T \in M \cap P \cap S \) we can prove

\[s^{\left[Y/\mathcal{U}\right]}(a_{1}/\mathcal{U}, \ldots, a_{n}/\mathcal{U}) = t^{\left[Y/\mathcal{U}\right]}(a_{1}/\mathcal{U}, \ldots, a_{n}/\mathcal{U}) \]

\[\Rightarrow s^{A}(a_{1}, \ldots, a_{n}) = t^{A}(a_{1}, \ldots, a_{n}). \]
Indeed, sets

\[M = \left\{ s^{\prod_{T} B_T}(a_1^*, \ldots, a_n^*) = t^{\prod_{T} B_T}(a_1^*, \ldots, a_n^*) \right\} \]

\[P = \left\{ s(a_1, \ldots, a_n), t(a_1, \ldots, a_n) \right\} \]

\[S = \bigcap_{i=1}^{n} \text{Stab}_{a_i}(a_i^*) \]

are elements of \(\mathcal{U} \). And using \(T \in M \cap P \cap S \) we can prove

\[s^{[Y/\mathcal{U}]}(a_1^*/\mathcal{U}, \ldots, a_n^*/\mathcal{U}) = t^{[Y/\mathcal{U}]}(a_1^*/\mathcal{U}, \ldots, a_n^*/\mathcal{U}) \]

\[\Rightarrow s^A(a_1, \ldots, a_n) = t^A(a_1, \ldots, a_n). \]
Theorem

Let $\mathcal{A} = (A, F)$ be an algebra and let \mathcal{K} be a class of algebras of the type F. If $\mathcal{A} \in \text{HSP}_U(\mathcal{K})$ then \mathcal{A} satisfies the finite coverability property for the class \mathcal{K}.

Sketch of proof: There exist algebras $B_i \in \mathcal{K}$ for $i \in I$, an ultrafilter $U \subseteq \mathcal{P}(I)$ and a homomorphism $h: B \to A$ such that $B \leq (\prod_i B_i) / U$ and $A = h(B)$.

Let us take an arbitrary finite set $T \in T_F(A)$.

- For every $a \in \text{Var } T$ let us take a fixed element $a' \in B$ such that $h(a') = a$.

$$Y_1 = \{ a' \in B \mid a \in \text{Var } T \} \cup \{ t^B(a'_1, \ldots, a'_n) \in B \mid t(a_1, \ldots, a_n) \in T \}$$
Theorem

Let $A = (A, F)$ be an algebra and let K be a class of algebras of the type F. If $A \in \text{HSP}_U(K)$ then A satisfies the finite coverability property for the class K.

Sketch of proof: There exist algebras $B_i \in K$ for $i \in I$, an ultrafilter $\mathcal{U} \subseteq \mathcal{P}(I)$ and a homomorphism $h: B \to A$ such that $B \leq (\prod_i B_i) / \mathcal{U}$ and $A = h(B)$.

Let us take an arbitrary finite set $T \in T_F(A)$.

- For every $a \in \text{Var } T$ let us take a fixed element $a' \in B$ such that $h(a') = a$.

$$Y_1 = \{ a' \in B \mid a \in \text{Var } T \} \cup \{ t^B(a'_1, \ldots, a'_n) \in B \mid t(a_1, \ldots, a_n) \in T \}$$
Theorem

Let $\mathcal{A} = (A, F)$ be an algebra and let \mathcal{K} be a class of algebras of the type F. If $\mathcal{A} \in \text{HSP}_U(\mathcal{K})$ then \mathcal{A} satisfies the finite coverability property for the class \mathcal{K}.

Sketch of proof: There exist algebras $B_i \in \mathcal{K}$ for $i \in I$, an ultrafilter $\mathcal{U} \subseteq \mathcal{P}(I)$ and a homomorphism $h: B \rightarrow A$ such that $B \leq (\prod_i B_i) / \mathcal{U}$ and $A = h(B)$.

Let us take an arbitrary finite set $T \in T_F(\mathcal{A})$.

- For every $a \in \text{Var } T$ let us take a fixed element $a' \in B$ such that $h(a') = a$.

\[
Y_1 = \{ a' \in B \mid a \in \text{Var } T \} \cup \{ t^B(a_1', \ldots, a_n') \in B \mid t(a_1, \ldots, a_n) \in T \}
\]
For every $b \in Y_1$ let us take a fixed $v(b) \in \prod_i B_i$ such that $v(b)/\mathcal{U} = b$.

\[Y_2 = \{ v(b) \in \prod_i B_i \mid b \in Y_1 \} \]

For any $a_1, \ldots, a_n \in \text{Var } T$ and $t \in T$ we prove

\[\left[v(t(\prod_i B_i)/\mathcal{U}(a_1', \ldots, a_n')) = t\prod_i B_i(v(a_1'), \ldots, v(a_n')) \right] \in \mathcal{U}. \]

We can prove $W = W_1 \cap W_2 \in \mathcal{U}$ where

\[W_1 = \bigcap_{t(a_1,\ldots,a_n) \in T} \left[v(t \ldots) = t(v \ldots) \right] \]

\[W_2 = \bigcap_{x,y \in Y_2, x \neq y} [x \neq y] \in \mathcal{U}. \]
For every $b \in Y_1$ let us take a fixed $v(b) \in \prod_i B_i$ such that $v(b)/\mathcal{U} = b$.

\[
Y_2 = \{ v(b) \in \prod_i B_i \mid b \in Y_1 \}
\]

For any $a_1, \ldots, a_n \in \text{Var } T$ and $t \in T$ we prove

\[
[v(t(\prod_i B_i)/\mathcal{U})(a'_1, \ldots, a'_n)) = t^{\prod_i B_i}(v(a'_1), \ldots, v(a'_n))] \in \mathcal{U}.
\]

We can prove $W = W_1 \cap W_2 \in \mathcal{U}$ where

\[
W_1 = \bigcap_{t(a_1, \ldots, a_n)\in T} [v(t \ldots) = t(v \ldots)]
\]

\[
W_2 = \bigcap_{x, y \in Y_2, x \neq y} [x \neq y] \in \mathcal{U}.
\]
For every $b \in Y_1$ let us take a fixed $v(b) \in \prod_i B_i$ such that $v(b)/\mathcal{U} = b$.

$$Y_2 = \{ v(b) \in \prod_i B_i \mid b \in Y_1 \}$$

For any $a_1, \ldots, a_n \in \text{Var } T$ and $t \in T$ we prove

$$[v(t(\prod_i B_i)/\mathcal{U}(a'_1, \ldots, a'_n)) = t\prod_i B_i(v(a'_1), \ldots, v(a'_n))] \in \mathcal{U}.$$

We can prove $W = W_1 \cap W_2 \in \mathcal{U}$ where

$$W_1 = \bigcap_{t(a_1, \ldots, a_n) \in T} [v(t \ldots) = t(v \ldots)]$$

$$W_2 = \bigcap_{x, y \in Y_2, x \neq y} [x \neq y] \in \mathcal{U}.$$
Let $j \in W$. We define $f : B_j \rightarrow A$ in the following way

$$f(x) = \begin{cases} h(b/U) & \text{if } x = b(j) \text{ for some } b \in Y_2, \\ a & \text{otherwise.} \end{cases}$$

And also $Y = \{ v(a')(j) \in B_j \mid a \in \text{Var } T \}$.

Finally, we prove B_j, Y and f satisfy the conditions of the definition of FCP.
Let $j \in W$. We define $f : B_j \to A$ in the following way

$$f(x) = \begin{cases} h(b/U) & \text{if } x = b(j) \text{ for some } b \in Y_2, \\ a & \text{otherwise.} \end{cases}$$

And also $Y = \{ v(a')(j) \in B_j \mid a \in \text{Var } T \}$.

Finally, we prove B_j, Y and f satisfy the conditions of the definition of FCP.
Theorem

Let $\mathcal{A} = (A, F)$ be an algebra and \mathcal{K} be a class of algebras of the type F. The algebra \mathcal{A} satisfies the finite coverability property for the class \mathcal{K} if and only if $\mathcal{A} \in \text{HSP}_U(\mathcal{K})$.

Equivalent formulation of Jónsson’s lemma:

Corollary

Let \mathcal{K} be a class of algebras of the same type such that $\mathcal{V}(\mathcal{K})$ is a congruence distributive variety. If $\mathcal{A} \in \mathcal{V}(\mathcal{K})$ is subdirectly irreducible then \mathcal{A} satisfies the finite coverability property for the class \mathcal{K}.
Theorem

Let $\mathcal{A} = (A, F)$ be an algebra and \mathcal{K} be a class of algebras of the type F. The algebra \mathcal{A} satisfies the finite coverability property for the class \mathcal{K} if and only if $\mathcal{A} \in \text{HSP}_U(\mathcal{K})$.

Equivalent formulation of Jónsson’s lemma:

Corollary

Let \mathcal{K} be a class of algebras of the same type such that $\mathcal{V}(\mathcal{K})$ is a congruence distributive variety. If $\mathcal{A} \in \mathcal{V}(\mathcal{K})$ is subdirectly irreducible then \mathcal{A} satisfies the finite coverability property for the class \mathcal{K}.
References

Thank you for your attention!