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» Formulas of L, :

p=x|y|-y|TloAg| LoV (a)e]lae
| px-@ | vx- .

» Kripke-model semantics, as usual from modal logic.
For pv and v:
given a model M = (W, R, v) and a variable x, put

Bpi (S) = [Pl amis/x)» for each S C W,
and define

[1ix- @] m = least fixed-point of ¢, ,
[vx-¢]m = greatest fixed-point of ¢, .
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Closure ordinals

Put

oo 0= J ol (0. o2 0) =, (02, (1))

B<a

By some variant of the Knaster-Tarski-Kleene theorem, we always
have

lix-dla = 62 (0)
for some ordinal «, which depends on M.

Problem. Given ¢ € L, does there exist an ordinal « such that
[1x-0Im = 3, (9), for each model AM?
If so, call the least such ordinal the closure ordinal of ¢(x).
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Other problems

» Given a formula and an ordinal «, answer whether the formula
converges at its least fixed-point in at most « steps.

» Given a formula ¢(x) € L,,, compute its closure ordinal (or
return None if this formula does not have a closure ordinal).

» What are the closure ordinals of formulas of the modal
pu-calculus?
That is, characterise the spectrum of ordinals of L.

» What about closure ordinals of formulas in fragments of L,?

» ...and on restricted classes of models and/or modal varieties?
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Examples, known (?) results
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Examples, known (?) results

v

( )x has closure ordinal 0.

v

y V ( )x has closure ordinal w,

v

if ¢(x) is a continuous formula,
then it has a closure ordinal < w.

v

[ ]x has no closure ordinal.

Theorem (Czarnecki, 2010). For each ordinal a < w? there exists
a modal formula ¢(x) € L, whose closure ordinal is a.

Theorem (Afshari and Leigh, 2013). If ¢(x) € L, has a closure
ordinal a and no greatest fixed-point, then a < w?.
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r-continuous functions and their least fixed-points

Let x be a regular cardinal.
Definition.

» A family F C P(A) is k-directed if any subfamily of F of
cardinality < k has an upper bound in F.

» A monotone function f : P(A) — P(A) is k-continuous if it
preserves unions of k-directed families.

For k = N this is the usual notion of continuity.

Theorem (Knaster, Tarski, Kleene, ..., Cousot-Cousot, ..., ?,
G.S.). If f is k-continuous, then

1fp.f = (D).
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Stability under fixed-points

The following statements appeared in (S. 2002), for accessible
functors and their initial(terminal) (co)algebras.

Proposition.

» If f(x,y) is k-continuous in x and y and kK > N,
then py.f(x,y) k-continuous in y.
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The following statements appeared in (S. 2002), for accessible
functors and their initial(terminal) (co)algebras.

Proposition.

» If f(x,y) is k-continuous in x and y and kK > N,
then py.f(x,y) k-continuous in y.

» If f(x,y) is k-continuous in x and y and kK > Ny,
then vy.f(x,y) k-continuous in y.
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Continuity, for formulas

Definition. A formula ¢(x) € L, is k-continuous if, for each model
M, the function ¢, is k-continuous.

If a formula is k-continuous,
then it has a closure ordinal with x as upper bound.
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The Cy(X)-fragment

The fragment Co(X) is generated by the following grammar:

p=x|y|l-y|Tlono[L][oVe]|(a)e
| bz,
where x € X and ¢ € Co(X U {z}).

Theorem (Fontaine 2008). For every ¢ € Co(X) and each variable
x € X, the formula ¢(x) is Np-continuous.

In particular each ¢(x) € Co(x) has closure ordinal < w.
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The C;(X)-fragment

...is generated by the following grammar:

p=x|y|l-y|Tl[ono[L][oVe]|(a)e
’:U’Z'r(/]|l/2'w7
where x € X and ¢ € C1(X U{z}).

Theorem (G.S. 2017). For every ¢ € C1(X) and each variable
x € X, the formula ¢(x) is Ni-continuous.

In particular each ¢(x) € C1(x) has a closure ordinal < wy.
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Decidability

Theorem (Fontaine 2008). For each formula ¢(x) there is a
formula 1(x) € Co(x) such that TFAE:

> ¢(x) is Ng-continuous,

» $(x) and ¥ (x) are equivalent formulas.
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Decidability

Theorem (Fontaine 2008). For each formula ¢(x) there is a
formula 1(x) € Co(x) such that TFAE:

> ¢(x) is Ng-continuous,

» $(x) and ¥ (x) are equivalent formulas.

Theorem (G.S. 2017). For each formula ¢(x) we can construct a
formula ¢”(x) € C1(x) such that the follwing are equivalent:

> ¢(x) is K-continuous, for some regular cardinal &,

» $(x) and ¢’(x) are equivalent formulas.

Corollary. It is decidable whether a formula ¢(x) € L, is
k-continuous, for some regular cardinal .
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Other k-continuous fragments?

Corollary. If a formula ¢(x) € L,, is k-continuous, for some regular
cardinal k, then it is Ni-continuous.

Corollary. Ng and Xy are the only regular cardinal of interest to
the modal p-calculus.

Namely, Co(x) and Ci(x) are the only fragments of the modal
p-calculus determined by x-continuity at some regular cardinal «.
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Theorem. wy is a closure ordinal.
Proof. We have

s = [v]L Vu,.({vix A (h)z)
iff

either there no vertical steps from s,
or there exists an infinite horizontal path from s
and every state on this path can do a vertical step to x.

The above formula belongs to Ci(x). A (bimodal) model M on
the set

wXw ={(na)|0<n<wa<w},
witnesses that ¢,, does not converge to its |.f.p. before w; steps.

Finally, we translate the bimodal formula above into a monomodal
one (and similarly for M). O
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Closure under ordinal sum

Theorem (G. S. 2017). If o, B are closure ordinals of formulas in
L,, the siis o + f3.
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Closure under ordinal sum

Theorem (G. S. 2017). If o, B are closure ordinals of formulas in
L,, the siis o + f3.

Proof. Given ¢, ¢g and M, Mg, construct a “lexicographic”
model M, + Mg.

Construct a formula ¢4 3 describing how ¢, ¢ jointly act on this
model. Ol

The above observation, together with the observations that 1, w
are closure ordinals, is sufficient to recover Czarnecki's result
(everu ordinal < w? is a closure ordinal).

Theorem (G. S. 2017). Every formal expression built up from

1, w,w; using + gives rise to a closure ordinal of the modal
p-calculus.
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To sum up

» Czarnecki's method for constructing closure ordinals is
understood as closure under ordinal sum.

» It is the only method known to construct closure ordinals.

» We have generalized it, by adding one more generator, ws.
» We cannot generalize it further by adding regular cardinals.
» Possibly, we can try to close under other operations.

» Semantic tools to characterize the spectrum of ordinals of L,
(see also Gaélle and Yde's preprint).

> Yet, the spectrum of cardinals of L, has been fully
characterized.
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