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The modal µ-calculus

I Formulas of Lµ :

φ := x | y | ¬y | > | φ ∧ φ | ⊥ | φ ∨ φ | 〈a〉φ | [a]φ

| µx .φ | νx .φ .

I Kripke-model semantics, as usual from modal logic.

For µ and ν:

given a model M = 〈W ,R, v〉 and a variable x , put

φM,x (S) := JφKM[S/x] , for each S ⊆W ,

and define

Jµx .φKM := least fixed-point of φM,x ,

Jνx .φKM := greatest fixed-point of φM,x .
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Closure ordinals

Put

φαM,x
(∅) :=

⋃
β<α

φβM,x
(∅) , φα+1

M,x
(∅) := φM,x (φαM,x

(∅)) .

By some variant of the Knaster-Tarski-Kleene theorem, we always
have

Jµx .φKM = φαM,x
(∅)

for some ordinal α, which depends on M.

Problem. Given φ ∈ Lµ, does there exist an ordinal α such that

Jµx .φKM = φαM,x
(∅) , for each model M?

If so, call the least such ordinal the closure ordinal of φ(x).
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Other problems

I Given a formula and an ordinal α, answer whether the formula
converges at its least fixed-point in at most α steps.

I Given a formula φ(x) ∈ Lµ, compute its closure ordinal (or
return None if this formula does not have a closure ordinal).

I What are the closure ordinals of formulas of the modal
µ-calculus?
That is, characterise the spectrum of ordinals of Lµ.

I What about closure ordinals of formulas in fragments of Lµ?

I . . . and on restricted classes of models and/or modal varieties?
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Examples, known (?) results

I 〈 〉x has closure ordinal 0.

I y ∨ 〈 〉x has closure ordinal ω,

I if φ(x) is a continuous formula,
then it has a closure ordinal ≤ ω.

I [ ]x has no closure ordinal.

Theorem (Czarnecki, 2010). For each ordinal α < ω2 there exists
a modal formula φ(x) ∈ Lµ whose closure ordinal is α.

Theorem (Afshari and Leigh, 2013). If φ(x) ∈ Lµ has a closure
ordinal α and no greatest fixed-point, then α < ω2.
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κ-continuous functions and their least fixed-points

Let κ be a regular cardinal.

Definition.

I A family F ⊆ P(A) is κ-directed if any subfamily of F of
cardinality < κ has an upper bound in F .

I A monotone function f : P(A) −−→ P(A) is κ-continuous if it
preserves unions of κ-directed families.

For κ = ℵ0 this is the usual notion of continuity.

Theorem (Knaster, Tarski, Kleene, . . . , Cousot-Cousot, . . . , ?,
G.S.). If f is κ-continuous, then

lfp.f = f κ(∅) .
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Stability under fixed-points

The following statements appeared in (S. 2002), for accessible
functors and their initial(terminal) (co)algebras.

Proposition.

I If f (x , y) is κ-continuous in x and y and κ ≥ ℵ0,
then µx .f (x , y) κ-continuous in y .

I If f (x , y) is κ-continuous in x and y and κ ≥ ℵ1,
then νx .f (x , y) κ-continuous in y .
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Continuity, for formulas

Definition. A formula φ(x) ∈ Lµ is κ-continuous if, for each model
M, the function φM,x is κ-continuous.

If a formula is κ-continuous,
then it has a closure ordinal with κ as upper bound.
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The C0(X )-fragment

The fragment C0(X ) is generated by the following grammar:

φ := x | y | ¬y | > | φ ∧ φ | ⊥ | φ ∨ φ | 〈a〉φ
| µz .ψ ,

where x ∈ X and ψ ∈ C0(X ∪ { z }).

Theorem (Fontaine 2008). For every φ ∈ C0(X ) and each variable
x ∈ X , the formula φ(x) is ℵ0-continuous.

In particular each φ(x) ∈ C0(x) has closure ordinal ≤ ω.
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Decidability

Theorem (Fontaine 2008). For each formula φ(x) there is a
formula ψ(x) ∈ C0(x) such that TFAE:

I φ(x) is ℵ0-continuous,

I φ(x) and ψ(x) are equivalent formulas.

Theorem (G.S. 2017). For each formula φ(x) we can construct a
formula φ[(x) ∈ C1(x) such that the follwing are equivalent:

I φ(x) is κ-continuous, for some regular cardinal κ,

I φ(x) and φ[(x) are equivalent formulas.

Corollary. It is decidable whether a formula φ(x) ∈ Lµ is
κ-continuous, for some regular cardinal κ.
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Other κ-continuous fragments?

Corollary. If a formula φ(x) ∈ Lµ is κ-continuous, for some regular
cardinal κ, then it is ℵ1-continuous.

Corollary. ℵ0 and ℵ1 are the only regular cardinal of interest to
the modal µ-calculus.

Namely, C0(x) and C1(x) are the only fragments of the modal
µ-calculus determined by κ-continuity at some regular cardinal κ.

15/21



Plan

Closure ordinals for the modal µ-calculus Lµ

κ-continuous functions

ℵ1-continuous fragment of Lµ

Back to closure ordinals

16/21



ω1(= ℵ1) is a closure ordinal

Theorem. ω1 is a closure ordinal.

Proof. We have

s |= [v ]⊥ ∨ νz .(〈v〉x ∧ 〈h〉z)

iff

either there no vertical steps from s,
or there exists an infinite horizontal path from s

and every state on this path can do a vertical step to x.

The above formula belongs to C1(x). A (bimodal) model M on
the set

ω × ω1 = { (n, α) | 0 ≤ n < ω,α < ω1 } ,

witnesses that φM,x does not converge to its l.f.p. before ω1 steps.

Finally, we translate the bimodal formula above into a monomodal
one (and similarly for M).
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Closure under ordinal sum

Theorem (G. S. 2017). If α, β are closure ordinals of formulas in
Lµ, the si is α + β.

Proof. Given φα, φβ and Mα,Mβ, construct a “lexicographic”
model Mα +Mβ.

Construct a formula φα+β describing how φα, φβ jointly act on this
model.

The above observation, together with the observations that 1, ω
are closure ordinals, is sufficient to recover Czarnecki’s result
(everu ordinal < ω2 is a closure ordinal).

Theorem (G. S. 2017). Every formal expression built up from
1, ω, ω1 using + gives rise to a closure ordinal of the modal
µ-calculus.
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To sum up

I Czarnecki’s method for constructing closure ordinals is
understood as closure under ordinal sum.

I It is the only method known to construct closure ordinals.

I We have generalized it, by adding one more generator, ω1.

I We cannot generalize it further by adding regular cardinals.

I Possibly, we can try to close under other operations.

I Semantic tools to characterize the spectrum of ordinals of Lµ
(see also Gaëlle and Yde’s preprint).

I Yet, the spectrum of cardinals of Lµ has been fully
characterized.
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Thanks ! Questions ?
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