$\aleph_1(=\omega_1)$ and the modal μ -calculus¹

Maria João Gouveia, Universidade de Lisboa

Luigi Santocanale, Aix-Marseille Université

TACL@Praha, June 2017

¹Preprint available on HAL:

https://hal.archives-ouvertes.fr/hal-01503091 > (> (>) ()

Closure ordinals for the modal μ -calculus L $_{\mu}$

 κ -continuous functions

 \aleph_1 -continuous fragment of L_{μ}

Back to closure ordinals

• Formulas of L_{μ} :

$$\phi := \mathbf{x} \mid \mathbf{y} \mid \neg \mathbf{y} \mid \top \mid \phi \land \phi \mid \bot \mid \phi \lor \phi \mid \langle \mathbf{a} \rangle \phi \mid [\mathbf{a}] \phi$$
$$\mid \mu_{\mathbf{x}}.\phi \mid \nu_{\mathbf{x}}.\phi.$$

• Formulas of
$$L_{\mu}$$
 :

$$\phi := \mathbf{x} \mid \mathbf{y} \mid \neg \mathbf{y} \mid \top \mid \phi \land \phi \mid \bot \mid \phi \lor \phi \mid \langle \mathbf{a} \rangle \phi \mid [\mathbf{a}] \phi$$
$$\mid \mu_{\mathbf{x}}.\phi \mid \nu_{\mathbf{x}}.\phi.$$

Kripke-model semantics, as usual from modal logic.
 For μ and ν:

• Formulas of
$$L_{\mu}$$
 :

$$\phi := \mathbf{x} \mid \mathbf{y} \mid \neg \mathbf{y} \mid \top \mid \phi \land \phi \mid \bot \mid \phi \lor \phi \mid \langle \mathbf{a} \rangle \phi \mid [\mathbf{a}] \phi$$
$$\mid \mu_{\mathbf{x}}.\phi \mid \nu_{\mathbf{x}}.\phi.$$

Kripke-model semantics, as usual from modal logic.
 For μ and ν:

given a model $\mathcal{M} = \langle W, R, v \rangle$ and a variable x, put

$$\phi_{\mathcal{M},x}(S) := \llbracket \phi \rrbracket_{\mathcal{M}[S/x]}, \text{ for each } S \subseteq W,$$

• Formulas of
$$L_{\mu}$$
 :

$$\phi := \mathbf{x} \mid \mathbf{y} \mid \neg \mathbf{y} \mid \top \mid \phi \land \phi \mid \bot \mid \phi \lor \phi \mid \langle \mathbf{a} \rangle \phi \mid [\mathbf{a}] \phi$$
$$\mid \mu_{\mathbf{x}}.\phi \mid \nu_{\mathbf{x}}.\phi.$$

Kripke-model semantics, as usual from modal logic.
 For μ and ν:

given a model $\mathcal{M} = \langle W, R, v \rangle$ and a variable x, put

$$\phi_{\mathcal{M},x}(S) := \llbracket \phi \rrbracket_{\mathcal{M}[S/x]}, \text{ for each } S \subseteq W,$$

and define

$$\begin{split} \llbracket \mu_{x}.\phi \rrbracket_{\mathcal{M}} &:= \text{least fixed-point of } \phi_{\mathcal{M},x} \ , \\ \llbracket \nu_{x}.\phi \rrbracket_{\mathcal{M}} &:= \text{greatest fixed-point of } \phi_{\mathcal{M},x} \ . \end{split}$$

Closure ordinals

Put

$$\phi^{\alpha}_{\mathcal{M},x}(\emptyset) := \bigcup_{\beta < \alpha} \phi^{\beta}_{\mathcal{M},x}(\emptyset) \,, \qquad \phi^{\alpha+1}_{\mathcal{M},x}(\emptyset) := \phi_{\mathcal{M},x}(\phi^{\alpha}_{\mathcal{M},x}(\emptyset)) \,.$$

Closure ordinals

Put

$$\phi_{\mathcal{M},x}^{\alpha}(\emptyset) := \bigcup_{\beta < \alpha} \phi_{\mathcal{M},x}^{\beta}(\emptyset), \qquad \phi_{\mathcal{M},x}^{\alpha+1}(\emptyset) := \phi_{\mathcal{M},x}(\phi_{\mathcal{M},x}^{\alpha}(\emptyset)).$$

By some variant of the Knaster-Tarski-Kleene theorem, we always have

$$\llbracket \mu_{\mathsf{x}}.\phi \rrbracket_{\mathcal{M}} = \phi^{lpha}_{\mathcal{M},\mathsf{x}}(\emptyset)$$

for some ordinal α , which depends on \mathcal{M} .

Closure ordinals

Put

$$\phi^{\alpha}_{\mathcal{M},x}(\emptyset) := \bigcup_{\beta < \alpha} \phi^{\beta}_{\mathcal{M},x}(\emptyset) \,, \qquad \phi^{\alpha+1}_{\mathcal{M},x}(\emptyset) := \phi_{\mathcal{M},x}(\phi^{\alpha}_{\mathcal{M},x}(\emptyset)) \,.$$

By some variant of the Knaster-Tarski-Kleene theorem, we always have

$$\llbracket \mu_{\mathsf{x}}.\phi \rrbracket_{\mathcal{M}} = \phi^{lpha}_{\mathcal{M},\mathsf{x}}(\emptyset)$$

for some ordinal α , which depends on \mathcal{M} .

Problem. Given $\phi \in \mathsf{L}_{\mu}$, does there exist an ordinal α such that

 $\llbracket \mu_{\mathbf{x}}.\phi \rrbracket_{\mathcal{M}} = \phi^{\alpha}_{\mathcal{M},\mathbf{x}}(\emptyset), \quad \text{ for each model } \mathcal{M}?$

If so, call the least such ordinal the *closure ordinal of* $\phi(x)$.

Given a formula and an ordinal α, answer whether the formula converges at its least fixed-point in at most α steps.

- Given a formula and an ordinal α, answer whether the formula converges at its least fixed-point in at most α steps.
- ► Given a formula φ(x) ∈ L_µ, compute its closure ordinal (or return None if this formula does not have a closure ordinal).

- Given a formula and an ordinal α, answer whether the formula converges at its least fixed-point in at most α steps.
- ► Given a formula φ(x) ∈ L_µ, compute its closure ordinal (or return None if this formula does not have a closure ordinal).
- What are the closure ordinals of formulas of the modal μ-calculus?

That is, characterise the spectrum of ordinals of L_{μ} .

- Given a formula and an ordinal α, answer whether the formula converges at its least fixed-point in at most α steps.
- ► Given a formula φ(x) ∈ L_µ, compute its closure ordinal (or return None if this formula does not have a closure ordinal).
- What are the closure ordinals of formulas of the modal μ-calculus?
 That is, characterise the spectrum of ordinals of L_μ.
- ▶ What about closure ordinals of formulas in fragments of L_µ?

- Given a formula and an ordinal α, answer whether the formula converges at its least fixed-point in at most α steps.
- ► Given a formula φ(x) ∈ L_µ, compute its closure ordinal (or return None if this formula does not have a closure ordinal).
- What are the closure ordinals of formulas of the modal μ-calculus?
 That is, characterise the spectrum of ordinals of L_μ.
- ▶ What about closure ordinals of formulas in fragments of L_µ?
- ...and on restricted classes of models and/or modal varieties?

Examples, known (?) results

- $\langle \rangle x$ has closure ordinal 0.
- $y \lor \langle \rangle x$ has closure ordinal ω ,
- if $\phi(x)$ is a *continuous formula*, then it has a closure ordinal $\leq \omega$.
- []x has no closure ordinal.

Examples, known (?) results

- $\langle \rangle x$ has closure ordinal 0.
- $y \lor \langle \rangle x$ has closure ordinal ω ,
- ► if $\phi(x)$ is a *continuous formula*, then it has a closure ordinal $\leq \omega$.
- []x has no closure ordinal.

Theorem (Czarnecki, 2010). For each ordinal $\alpha < \omega^2$ there exists a modal formula $\phi(x) \in L_{\mu}$ whose closure ordinal is α .

Examples, known (?) results

- $\langle \rangle x$ has closure ordinal 0.
- $y \lor \langle \rangle x$ has closure ordinal ω ,
- ► if $\phi(x)$ is a *continuous formula*, then it has a closure ordinal $\leq \omega$.
- ▶ []x has no closure ordinal.

Theorem (Czarnecki, 2010). For each ordinal $\alpha < \omega^2$ there exists a modal formula $\phi(x) \in L_{\mu}$ whose closure ordinal is α .

Theorem (Afshari and Leigh, 2013). If $\phi(x) \in L_{\mu}$ has a closure ordinal α and no greatest fixed-point, then $\alpha < \omega^2$.

Closure ordinals for the modal μ -calculus L $_{\mu}$

 $\kappa\text{-}\mathrm{continuous}$ functions

 $lpha_1$ -continuous fragment of L_{μ}

Back to closure ordinals

<ロ > < 部 > < 言 > < 言 > こ き の Q @ 7/21

$\kappa\text{-}\mathrm{continuous}$ functions and their least fixed-points

Let κ be a regular cardinal.

$\kappa\text{-}\mathrm{continuous}$ functions and their least fixed-points

Let κ be a regular cardinal.

Definition.

- A family *F* ⊆ *P*(*A*) is *κ*-directed if any subfamily of *F* of cardinality < *κ* has an upper bound in *F*.
- A monotone function f : P(A) → P(A) is κ-continuous if it preserves unions of κ-directed families.

For $\kappa = \aleph_0$ this is the usual notion of continuity.

$\kappa\text{-}\mathrm{continuous}$ functions and their least fixed-points

Let κ be a regular cardinal.

Definition.

- A family *F* ⊆ *P*(*A*) is *κ*-directed if any subfamily of *F* of cardinality < *κ* has an upper bound in *F*.
- A monotone function f : P(A) → P(A) is κ-continuous if it preserves unions of κ-directed families.

For $\kappa = \aleph_0$ this is the usual notion of continuity.

Theorem (Knaster, Tarski, Kleene, ..., Cousot-Cousot, ..., ?, G.S.). If f is κ -continuous, then

$$lfp.f = f^{\kappa}(\emptyset).$$

◆ロト ◆課 と ◆語 と ◆語 と 一語 … の

Stability under fixed-points

The following statements appeared in (S. 2002), for accessible functors and their initial(terminal) (co)algebras.

Proposition.

► If f(x, y) is κ -continuous in x and y and $\kappa \ge \aleph_0$, then $\mu_x f(x, y)$ κ -continuous in y.

Stability under fixed-points

The following statements appeared in (S. 2002), for accessible functors and their initial(terminal) (co)algebras.

Proposition.

- ▶ If f(x, y) is κ -continuous in x and y and $\kappa \ge \aleph_0$, then $\mu_x f(x, y)$ κ -continuous in y.
- ▶ If f(x, y) is κ -continuous in x and y and $\kappa \ge \aleph_1$, then $\nu_x f(x, y)$ κ -continuous in y.

Closure ordinals for the modal μ -calculus L $_{\mu}$

 κ -continuous functions

 $leph_1$ -continuous fragment of L $_\mu$

Back to closure ordinals

<ロト < 部ト < 書ト < 書ト 差 の Q () 10/21 Definition. A formula $\phi(x) \in L_{\mu}$ is κ -continuous if, for each model \mathcal{M} , the function $\phi_{\mathcal{M},x}$ is κ -continuous.

If a formula is κ -continuous,

then it has a closure ordinal with κ as upper bound.

The $C_0(X)$ -fragment

The fragment $C_0(X)$ is generated by the following grammar:

$$\phi := \mathbf{x} \mid \mathbf{y} \mid \neg \mathbf{y} \mid \top \mid \phi \land \phi \mid \bot \mid \phi \lor \phi \mid \langle \mathbf{a} \rangle \phi$$
$$\mid \mu_{\mathbf{z}}.\psi,$$

where $x \in X$ and $\psi \in C_0(X \cup \{z\})$.

Theorem (Fontaine 2008). For every $\phi \in C_0(X)$ and each variable $x \in X$, the formula $\phi(x)$ is \aleph_0 -continuous.

In particular each $\phi(x) \in C_0(x)$ has closure ordinal $\leq \omega$.

The $C_1(X)$ -fragment

... is generated by the following grammar:

$$\phi := \mathbf{x} \mid \mathbf{y} \mid \neg \mathbf{y} \mid \top \mid \phi \land \phi \mid \bot \mid \phi \lor \phi \mid \langle \mathbf{a} \rangle \phi$$
$$\mid \mu_{\mathbf{z}} \cdot \psi \mid \boldsymbol{\nu}_{\mathbf{z}} \cdot \psi,$$

where $x \in X$ and $\psi \in C_1(X \cup \{z\})$.

The $C_1(X)$ -fragment

... is generated by the following grammar:

$$\phi := \mathbf{x} \mid \mathbf{y} \mid \neg \mathbf{y} \mid \top \mid \phi \land \phi \mid \bot \mid \phi \lor \phi \mid \langle \mathbf{a} \rangle \phi$$
$$\mid \mu_{\mathbf{z}}.\psi \mid \nu_{\mathbf{z}}.\psi,$$

where $x \in X$ and $\psi \in C_1(X \cup \{z\})$.

Theorem (G.S. 2017). For every $\phi \in C_1(X)$ and each variable $x \in X$, the formula $\phi(x)$ is \aleph_1 -continuous.

In particular each $\phi(x) \in C_1(x)$ has a closure ordinal $\leq \omega_1$.

Decidability

Theorem (Fontaine 2008). For each formula $\phi(x)$ there is a formula $\psi(x) \in C_0(x)$ such that TFAE:

- $\phi(x)$ is \aleph_0 -continuous,
- $\phi(x)$ and $\psi(x)$ are equivalent formulas.

Decidability

Theorem (Fontaine 2008). For each formula $\phi(x)$ there is a formula $\psi(x) \in C_0(x)$ such that TFAE:

- $\phi(x)$ is \aleph_0 -continuous,
- $\phi(x)$ and $\psi(x)$ are equivalent formulas.

Theorem (G.S. 2017). For each formula $\phi(x)$ we can construct a formula $\phi^{\flat}(x) \in C_1(x)$ such that the following are equivalent:

- $\phi(x)$ is κ -continuous, for some regular cardinal κ ,
- $\phi(x)$ and $\phi^{\flat}(x)$ are equivalent formulas.

Decidability

Theorem (Fontaine 2008). For each formula $\phi(x)$ there is a formula $\psi(x) \in C_0(x)$ such that TFAE:

- $\phi(x)$ is \aleph_0 -continuous,
- $\phi(x)$ and $\psi(x)$ are equivalent formulas.

Theorem (G.S. 2017). For each formula $\phi(x)$ we can construct a formula $\phi^{\flat}(x) \in C_1(x)$ such that the following are equivalent:

- $\phi(x)$ is κ -continuous, for some regular cardinal κ ,
- $\phi(x)$ and $\phi^{\flat}(x)$ are equivalent formulas.

Corollary. It is decidable whether a formula $\phi(x) \in L_{\mu}$ is κ -continuous, for some regular cardinal κ .

Other κ -continuous fragments?

Corollary. If a formula $\phi(x) \in L_{\mu}$ is κ -continuous, for some regular cardinal κ , then it is \aleph_1 -continuous.

Corollary. \aleph_0 and \aleph_1 are the only regular cardinal of interest to the modal μ -calculus.

Namely, $C_0(x)$ and $C_1(x)$ are the only fragments of the modal μ -calculus determined by κ -continuity at some regular cardinal κ .

Closure ordinals for the modal μ -calculus L $_{\mu}$

 κ -continuous functions

 \aleph_1 -continuous fragment of L_{μ}

Back to closure ordinals

<ロト < 部ト < 書ト < 書ト 差 の Q () 16/21

$\omega_1 (= \aleph_1)$ is a closure ordinal

Theorem. ω_1 is a closure ordinal.

 $\omega_1 (= \aleph_1)$ is a closure ordinal

Theorem. ω_1 is a closure ordinal. Proof. We have

$$s \models [v] \perp \lor \nu_z . (\langle v \rangle x \land \langle h \rangle z)$$

iff

either there no vertical steps from s, or there exists an infinite horizontal path from s and every state on this path can do a vertical step to x. $\omega_1 (= \aleph_1)$ is a closure ordinal

Theorem. ω_1 is a closure ordinal. Proof. We have

$$s \models [v] \perp \lor \nu_z.(\langle v \rangle x \land \langle h \rangle z)$$

iff

either there no vertical steps from s, or there exists an infinite horizontal path from s and every state on this path can do a vertical step to x.

The above formula belongs to $C_1(x)$.

$\omega_1 (= \aleph_1)$ is a closure ordinal

Theorem. ω_1 is a closure ordinal. Proof. We have

$$s \models [v] \perp \lor \nu_z.(\langle v \rangle x \land \langle h \rangle z)$$

iff

either there no vertical steps from s, or there exists an infinite horizontal path from s and every state on this path can do a vertical step to x.

The above formula belongs to $C_1(x)$. A (bimodal) model \mathcal{M} on the set

$$\omega \times \omega_{1} = \{ (n, \alpha) \mid 0 \leq n < \omega, \alpha < \omega_{1} \},\$$

witnesses that $\phi_{\mathcal{M},\mathbf{x}}$ does not converge to its l.f.p. before ω_1 steps.

$\omega_1 (= \aleph_1)$ is a closure ordinal

Theorem. ω_1 is a closure ordinal. Proof. We have

$$s \models [v] \perp \lor \nu_z.(\langle v \rangle x \land \langle h \rangle z)$$

iff

either there no vertical steps from s, or there exists an infinite horizontal path from s and every state on this path can do a vertical step to x.

The above formula belongs to $C_1(x)$. A (bimodal) model \mathcal{M} on the set

$$\omega \times \omega_{1} = \{ (n, \alpha) \mid 0 \leq n < \omega, \alpha < \omega_{1} \},\$$

witnesses that $\phi_{\mathcal{M},x}$ does not converge to its l.f.p. before ω_1 steps. Finally, we translate the bimodal formula above into a monomodal one (and similarly for \mathcal{M}).

Theorem (G. S. 2017). If α, β are closure ordinals of formulas in L_µ, the si is $\alpha + \beta$.

Theorem (G. S. 2017). If α, β are closure ordinals of formulas in L_{μ} , the si is $\alpha + \beta$. Proof. Given $\phi_{\alpha}, \phi_{\beta}$ and $\mathcal{M}_{\alpha}, \mathcal{M}_{\beta}$, construct a "lexicographic" model $\mathcal{M}_{\alpha} + \mathcal{M}_{\beta}$.

Theorem (G. S. 2017). If α, β are closure ordinals of formulas in L_µ, the si is $\alpha + \beta$.

Proof. Given $\phi_{\alpha}, \phi_{\beta}$ and $\mathcal{M}_{\alpha}, \mathcal{M}_{\beta}$, construct a "lexicographic" model $\mathcal{M}_{\alpha} + \mathcal{M}_{\beta}$.

Construct a formula $\phi_{\alpha+\beta}$ describing how $\phi_{\alpha}, \phi_{\beta}$ jointly act on this model.

Theorem (G. S. 2017). If α, β are closure ordinals of formulas in L_µ, the si is $\alpha + \beta$.

Proof. Given $\phi_{\alpha}, \phi_{\beta}$ and $\mathcal{M}_{\alpha}, \mathcal{M}_{\beta}$, construct a "lexicographic" model $\mathcal{M}_{\alpha} + \mathcal{M}_{\beta}$.

Construct a formula $\phi_{\alpha+\beta}$ describing how $\phi_{\alpha}, \phi_{\beta}$ jointly act on this model.

The above observation, together with the observations that $1, \omega$ are closure ordinals, is sufficient to recover Czarnecki's result (everu ordinal $< \omega^2$ is a closure ordinal).

Theorem (G. S. 2017). If α, β are closure ordinals of formulas in L_{μ} , the si is $\alpha + \beta$.

Proof. Given $\phi_{\alpha}, \phi_{\beta}$ and $\mathcal{M}_{\alpha}, \mathcal{M}_{\beta}$, construct a "lexicographic" model $\mathcal{M}_{\alpha} + \mathcal{M}_{\beta}$.

Construct a formula $\phi_{\alpha+\beta}$ describing how $\phi_{\alpha}, \phi_{\beta}$ jointly act on this model.

The above observation, together with the observations that $1, \omega$ are closure ordinals, is sufficient to recover Czarnecki's result (everu ordinal $< \omega^2$ is a closure ordinal).

Theorem (G. S. 2017). Every formal expression built up from $1, \omega, \omega_1$ using + gives rise to a closure ordinal of the modal μ -calculus.

 Czarnecki's method for constructing closure ordinals is understood as closure under ordinal sum.

- Czarnecki's method for constructing closure ordinals is understood as closure under ordinal sum.
- It is the only method known to construct closure ordinals.

- Czarnecki's method for constructing closure ordinals is understood as closure under ordinal sum.
- It is the only method known to construct closure ordinals.
- We have generalized it, by adding one more generator, ω_1 .

- Czarnecki's method for constructing closure ordinals is understood as closure under ordinal sum.
- It is the only method known to construct closure ordinals.
- We have generalized it, by adding one more generator, ω_1 .
- ▶ We cannot generalize it further by adding regular cardinals.

- Czarnecki's method for constructing closure ordinals is understood as closure under ordinal sum.
- It is the only method known to construct closure ordinals.
- We have generalized it, by adding one more generator, ω_1 .
- ▶ We cannot generalize it further by adding regular cardinals.
- Possibly, we can try to close under other operations.

- Czarnecki's method for constructing closure ordinals is understood as closure under ordinal sum.
- It is the only method known to construct closure ordinals.
- We have generalized it, by adding one more generator, ω_1 .
- We cannot generalize it further by adding regular cardinals.
- Possibly, we can try to close under other operations.
- Semantic tools to characterize the spectrum of ordinals of L_µ (see also Gaëlle and Yde's preprint).

- Czarnecki's method for constructing closure ordinals is understood as closure under ordinal sum.
- It is the only method known to construct closure ordinals.
- We have generalized it, by adding one more generator, ω_1 .
- We cannot generalize it further by adding regular cardinals.
- Possibly, we can try to close under other operations.
- Semantic tools to characterize the spectrum of ordinals of L_µ (see also Gaëlle and Yde's preprint).
- ► Yet, the spectrum of cardinals of L_µ has been fully characterized.

Thanks ! Questions ?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

20/21

B. Afshari and G. E. Leigh.

On closure ordinals for the modal mu-calculus.

In S. Ronchi Della Rocca, editor, *Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy*, volume 23 of *LIPIcs*, pages 30–44. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

M. Czarnecki.

How fast can the fixpoints in modal $\mu\text{-calculus}$ be reached?

In L. Santocanale, editor, 7th Workshop on Fixed Points in Computer Science, FICS 2010, page 89, Brno, Czech Republic, Aug. 2010.

Available from Hal: https://hal.archives-ouvertes.fr/hal-00512377.

G. Fontaine.

Continuous fragment of the mu-calculus.

In M. Kaminski and S. Martini, editors, CSL 2008. Proceedings, volume 5213 of Lecture Notes in Computer Science, pages 139–153. Springer, 2008.

G. Fontaine and Y. Venema.

Some model theory for the modal mu-calculus: syntactic characterisations of semantic properties. Technical report, ILLC, 2016. ILLC Prepublication Series PP-2016-39.

M. J. a. Gouveia and L. Santocanale.

$leph_1$ and the modal μ -calculus.

Preprint, available from Hal: https://hal.archives-ouvertes.fr/hal-01503091, Mar. 2017.

L. Santocanale.

μ -Bicomplete Categories and Parity Games.

(TA, 36(2):195-227, 2002. Extended version appeared as LaBRI report RR-1281-02 is available from Hal: https://hal.archives-ouvertes.fr/hal-01376731.