Varieties of De Morgan Monoids II: Covers of Atoms

T. Moraschini ${ }^{1}$, J.G. Raftery ${ }^{2}$, and J.J. Wannenburg ${ }^{2}$
${ }^{1}$ Academy of Sciences of the Czech Republic, Czech Republic
${ }^{2}$ University of Pretoria, South Africa

TACL, June 2017

De Morgan monoids

A De Morgan monoid $\boldsymbol{A}=\langle A ; \vee, \wedge, \cdot, \neg, t\rangle$ comprises

- a distributive lattice $\langle A ; \vee, \wedge\rangle$,
- a square-increasing $(x \leq x \cdot x)$ commutative monoid $\langle A ; \cdot, t\rangle$,
- satisfying $x=\neg \neg x$
- and $x \cdot y \leq z$ iff $x \cdot \neg z \leq \neg y$.
- $x \rightarrow y:=\neg(x \cdot \neg y)$
$\mathcal{D} \boldsymbol{M}$ denotes the variety of all De Morgan monoids.

Algebraic logic

The logic $\mathbf{R}^{\mathbf{t}}$ can be characterized as follows

$$
\gamma_{1}, \ldots, \gamma_{n} \vdash_{\mathbf{R}^{\mathbf{t}}} \alpha \text { iff } \mathcal{D} \mathcal{M} \vDash\left(t \leq \gamma_{1} \& \ldots \& t \leq \gamma_{n}\right) \Rightarrow t \leq \alpha
$$

Subvarieties of $\mathcal{D M}$

Axiomatic extensions of \mathbf{R}^{t}

Important algebras

- The first three are exactly the simple 0-generated De Morgan monoids, see Slaney (1989).
- For any positive odd number n, the \cdot of $\boldsymbol{S}_{\boldsymbol{n}}$ is as follows:
when $|i| \leq|j|$, then $i \cdot j= \begin{cases}j & \text { if }|i| \neq|j| \\ i \wedge j & \text { otherwise. }\end{cases}$

Atoms of $\mathrm{L}_{\mathbb{V}}(\mathcal{D} \mathcal{M})$

Subvarieties of $\mathcal{D M}$
We investigate the covers of the atoms in $L_{\mathbb{V}}(\mathcal{D} \mathcal{M})$.

Covers of $\mathbb{V}(2)$ and $\mathbb{V}\left(S_{3}\right)$

- The join of any two atoms is a cover of both.
- The remaining covers are precisely the join-irreducible (JI) covers.

Thm.

- $\mathbb{V}(2)$ has no Jl cover.
- The only JI cover of $\mathbb{V}\left(\boldsymbol{S}_{\mathbf{3}}\right)$ is $\mathbb{V}\left(S_{5}\right)$.

Subvarieties of $\mathcal{D M}$

Covers of $\mathbb{V}\left(D_{4}\right)$

Thm. Every join-irreducible cover of $\mathbb{V}\left(\boldsymbol{D}_{4}\right)$ has the form $\mathbb{V}(\boldsymbol{A})$ for some simple 1-generated De Morgan monoid \boldsymbol{A}, where \boldsymbol{D}_{4} embeds into \boldsymbol{A} but is not isomorphic to \boldsymbol{A}.

- For every prime p, the algebra $\boldsymbol{D \boldsymbol { A } _ { \boldsymbol { p } }}$ generates a cover of $\mathbb{V}\left(\boldsymbol{D}_{4}\right)$,
- so there are infinitely many covers of $\mathbb{V}\left(\boldsymbol{D}_{4}\right)$.

A non-finitely generated cover of $\mathbb{V}\left(D_{4}\right)$

- Not all covers of $\mathbb{V}\left(\boldsymbol{D}_{\mathbf{4}}\right)$ are finitely generated,
- for example, \boldsymbol{D}_{∞} generates a cover of $\mathbb{V}\left(\boldsymbol{D}_{4}\right)$ that is not finitely generated.

Covers of $\mathbb{V}\left(C_{4}\right)$

More cases, as $\boldsymbol{C}_{\mathbf{4}}$ has diverse homomorphic pre-images. In fact:
Thm. (Slaney) If $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is a homomorphism from a finitely subdirectly irreducible De Morgan monoid into a 0-generated De Morgan monoid, then h is an isomorphism or $\boldsymbol{B} \cong \boldsymbol{C}_{\mathbf{4}}$.

- There is a largest subvariety \mathcal{U} of $\mathcal{D} \mathcal{M}$ such that every non-trivial member of \mathcal{U} has \boldsymbol{C}_{4} as a homomorphic image.
- \mathcal{U} is finitely axiomatized.
- There is a largest subvariety \mathcal{M} of $\mathcal{D \mathcal { M }}$ such that \boldsymbol{C}_{4} is a retract of all non-trivial members of $\boldsymbol{\mathcal { M }}$.
- \mathcal{M} is axiomatized, relative to \mathcal{U}, by $t \leq f$.

Covers of $\mathbb{V}\left(C_{4}\right)$

Thm. If \mathcal{K} is a join-irreducible cover of $\mathbb{V}\left(\boldsymbol{C}_{4}\right)$, then exactly one of the following holds.

1. $\mathcal{K}=\mathbb{V}(\boldsymbol{A})$ for some simple 1-generated De Morgan monoid \boldsymbol{A}, such that \boldsymbol{C}_{4} embeds into \boldsymbol{A} but is not isomorphic to \boldsymbol{A}.
2. $\mathcal{K}=\mathbb{V}(\boldsymbol{A})$ for some (finite) 0-generated subdirectly irreducible De Morgan monoid $\boldsymbol{A} \in \mathcal{U} \backslash \boldsymbol{\mathcal { M }}$.
3. $\mathcal{K} \subseteq \mathcal{M}$.

Condition 1

1. $\mathcal{K}=\mathbb{V}(\boldsymbol{A})$ for some simple 1-generated De Morgan monoid \boldsymbol{A}, such that $\boldsymbol{C}_{\mathbf{4}}$ embeds into \boldsymbol{A} but is not isomorphic to \boldsymbol{A}.

- For every prime p, the algebra $\boldsymbol{A}_{\boldsymbol{p}}$ generates a cover of $\mathbb{V}\left(\boldsymbol{C}_{4}\right)$,
- so, there are infinitely many covers of $\mathbb{V}\left(\boldsymbol{C}_{4}\right)$ that satisfy condition 1.

```
\(\boldsymbol{A}_{\infty}\) :
```

- f^{2}

- $\neg a$
- $\neg\left(a^{2}\right)$
:
- a^{2}
- $\begin{aligned} & a \\ & -\neg\left(f^{2}\right)\end{aligned}$
- There are covers of $\mathbb{V}\left(\boldsymbol{C}_{4}\right)$ that are not finitely generated,
- for example, \boldsymbol{A}_{∞} generates a cover of $\mathbb{V}\left(C_{4}\right)$.

Condition 2

2. $\mathcal{K}=\mathbb{V}(\boldsymbol{A})$ for some (finite) 0-generated subdirectly irreducible De Morgan monoid $\boldsymbol{A} \in \mathcal{U} \backslash \mathcal{M}$.

Slaney (1989) characterized all the 0-generated subdirectly irreducible De Morgan monoids. They are all finite, and apart from the simple ones, they are:
$C_{5}: \quad C_{6}$:

C_{8} :

Condition 3

3. $\mathcal{K} \subseteq \mathcal{M}$

Every subdirectly irreducible algebra in $\boldsymbol{\mathcal { M }}$ arises by a construction of Slaney (1993) from a Dunn monoid \boldsymbol{B} [essentially a De Morgan monoid without the involution \neg], i.e.,
a square-increasing distributive lattice-ordered commutative monoid $\langle B ; \vee, \wedge, \cdot, \rightarrow, t\rangle$ that satisfies the law of residuation

$$
x \leq y \rightarrow z \text { iff } x \cdot y \leq z
$$

Let's call this construction skew reflection.

Skew Reflection

Dunn monoid

Skew Reflection

Skew Reflection

Declare that $a<b^{\prime}$ for certain $a, b \in B$ in such a way that $\left\langle B \cup B^{\prime} \cup\{\perp, \top\} ; \leq\right\rangle$ is a distributive lattice, $t<t^{\prime}$ and for all $a, b \in B$,

$$
a<b^{\prime} \text { iff } t<(a \cdot b)^{\prime}
$$

Then there is a unique way of turning the structure into a De Morgan monoid
$S^{<}(\boldsymbol{B})=\left\langle B \cup B^{\prime} \cup\{\perp, \top\} ; \vee, \wedge, \cdot, \neg, t\right\rangle \in \boldsymbol{\mathcal { M }}$,
of which B is a subreduct, where \neg extends ${ }^{\prime}$. In particular, if we specify that $a<b^{\prime}$ for all $a, b \in B$, then we get the reflection construction, which is an older idea, see Meyer (1973) and Galatos and Raftery (2004). In this case we write $R(\boldsymbol{B})$ for $S^{<}(\boldsymbol{B})$.

Covers of $\mathbb{V}\left(C_{4}\right)$ within \mathcal{M}

Thm. Let \mathcal{K} be a cover of $\mathbb{V}\left(\boldsymbol{C}_{4}\right)$ within \mathcal{M}. Then $\mathcal{K}=\mathbb{V}(\boldsymbol{A})$ for some finite skew reflection \boldsymbol{A} of a subdirectly irreducible Dunn monoid \boldsymbol{B}, where \perp is meet-irreducible in \boldsymbol{A}, and \boldsymbol{A} is generated by the greatest strict lower bound of t in \boldsymbol{B}.

Covers of $\mathbb{V}\left(C_{4}\right)$ within \mathcal{M}

There are just six of these:
$R(\mathbf{2}): \quad R\left(\boldsymbol{S}_{\mathbf{3}}\right): \quad S^{<}\left(\boldsymbol{S}_{\mathbf{3}}\right): \quad S^{<}\left(\boldsymbol{C}_{\mathbf{4}}\right): \quad S^{<}\left(\boldsymbol{T}_{\mathbf{5}}\right): \quad \quad S^{<}\left(\boldsymbol{T}_{\mathbf{6}}\right):$

$\boldsymbol{T}_{\mathbf{5}}$ is idempotent and $\boldsymbol{T}_{\mathbf{6}}$ is idempotent except for $t^{\prime} \wedge(c \rightarrow t)$.

Summary

Thm. Every cover of $\mathbb{V}\left(\boldsymbol{C}_{4}\right)$ within \mathcal{M} has no proper nontrivial subquasivariety other than $\mathbb{V}\left(\boldsymbol{C}_{4}\right)$.

Definitions

Atoms

Covers of $\mathbb{V}(2)$ and $\mathbb{V}\left(\boldsymbol{S}_{3}\right)$

Covers of $\mathbb{V}\left(\boldsymbol{D}_{4}\right)$

Covers of $\mathbb{V}\left(\boldsymbol{C}_{\mathbf{4}}\right)$

Skew Reflection

Covers of $\mathbb{V}\left(\boldsymbol{C}_{4}\right)$ within \mathcal{M}

