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De Morgan monoids

A De Morgan monoid A = 〈A;∨,∧, ·,¬, t〉 comprises

I a distributive lattice 〈A;∨,∧〉,
I a square-increasing (x ≤ x · x) commutative monoid 〈A; ·, t〉,
I satisfying x = ¬¬x
I and x · y ≤ z iff x · ¬z ≤ ¬y .

I x → y := ¬(x · ¬y)

DM denotes the variety of all De Morgan monoids.



Algebraic logic

The logic Rt can be characterized as follows

γ1, . . . , γn `Rt α iff DM �
(
t ≤ γ1 & . . .& t ≤ γn

)
⇒ t ≤ α.
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Important algebras
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I The first three are exactly the simple 0-generated De Morgan
monoids, see Slaney (1989).

I For any positive odd number n, the · of Sn is as follows:

when |i | ≤ |j |, then i · j =

{
j if |i | 6= |j |
i ∧ j otherwise.



Atoms of LV(DM)
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Subvarieties of DM

We investigate the covers of the atoms in LV(DM).



Covers of V(2) and V(S3)
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Subvarieties of DM

I The join of any two atoms is a
cover of both.

I The remaining covers are precisely
the join-irreducible (JI) covers.

Thm.

I V(2) has no JI cover.

I The only JI cover of V(S3) is
V(S5).



Covers of V(D4)

Thm. Every join-irreducible cover of V(D4) has the form V(A)
for some simple 1-generated De Morgan monoid A, where D4

embeds into A but is not isomorphic to A.
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I For every prime p, the algebra DAp

generates a cover of V(D4),

I so there are infinitely many covers
of V(D4).



A non-finitely generated cover of V(D4)

D∞:

@@

sa3 sa3fq q q
s¬(a3)

@@

s¬(a3f )q q q ��

s¬(a2)
@@

s¬(a2f )
�� ��

s¬a@@

s¬af
�� ��

�� @@ f

f 2 ss

��sa2f
��sa2

@@

��saf
��sa
@@��

��@@ ¬(f 2)

t ss

I Not all covers of V(D4) are
finitely generated,

I for example, D∞ generates
a cover of V(D4) that is not
finitely generated.



Covers of V(C4)

More cases, as C4 has diverse homomorphic pre-images. In fact:

Thm. (Slaney) If h : A→ B is a homomorphism from a finitely
subdirectly irreducible De Morgan monoid into a 0-generated De
Morgan monoid, then h is an isomorphism or B ∼= C4.

I There is a largest subvariety U of DM such that every
non-trivial member of U has C4 as a homomorphic image.

I U is finitely axiomatized.

I There is a largest subvarietyM of DM such that C4 is a
retract of all non-trivial members ofM.

I M is axiomatized, relative to U , by t ≤ f .



Covers of V(C4)
Thm. If K is a join-irreducible cover of V(C4), then exactly one
of the following holds.

1. K = V(A) for some simple 1-generated De Morgan monoid
A, such that C4 embeds into A but is not isomorphic to A.

2. K = V(A) for some (finite) 0-generated subdirectly
irreducible De Morgan monoid A ∈ U \M.

3. K ⊆M.
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Condition 1

1. K = V(A) for some simple 1-generated De Morgan monoid
A, such that C4 embeds into A but is not isomorphic to A.
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I For every prime p, the
algebra Ap generates
a cover of V(C4),

I so, there are infinitely
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I There are covers of
V(C4) that are not
finitely generated,

I for example, A∞
generates a cover of
V(C4).



Condition 2

2. K = V(A) for some (finite) 0-generated subdirectly
irreducible De Morgan monoid A ∈ U \M.

Slaney (1989) characterized all the 0-generated subdirectly
irreducible De Morgan monoids. They are all finite, and apart from
the simple ones, they are:
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Condition 3

3. K ⊆M

Every subdirectly irreducible algebra inM arises by a construction
of Slaney (1993) from a Dunn monoid B [essentially a De
Morgan monoid without the involution ¬], i.e.,

a square-increasing distributive lattice-ordered
commutative monoid 〈B;∨,∧, ·,→, t〉 that satisfies the
law of residuation

x ≤ y → z iff x · y ≤ z .

Let’s call this construction skew reflection.



Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Skew Reflection
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Declare that a < b′ for certain a, b ∈ B in
such a way that 〈B ∪ B ′ ∪ {⊥,>};≤〉 is a
distributive lattice, t < t ′ and for all a, b ∈ B,

a < b′ iff t < (a · b)′.

Then there is a unique way of turning the
structure into a De Morgan monoid

S<(B) = 〈B ∪B ′ ∪ {⊥,>};∨,∧, ·,¬, t〉 ∈M,

of which B is a subreduct, where ¬ extends ′.
In particular, if we specify that a < b′ for all
a, b ∈ B, then we get the reflection
construction, which is an older idea, see Meyer
(1973) and Galatos and Raftery (2004). In this
case we write R(B) for S<(B).



Covers of V(C4) withinM

Thm. Let K be a cover of V(C4) withinM. Then K = V(A)
for some finite skew reflection A of a subdirectly irreducible Dunn
monoid B, where ⊥ is meet-irreducible in A, and A is generated
by the greatest strict lower bound of t in B.
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Covers of V(C4) withinM

There are just six of these:

R(2):
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T5 is idempotent and T6 is idempotent except for t ′ ∧ (c → t).



Summary

Thm. Every cover of V(C4) withinM has no proper nontrivial
subquasivariety other than V(C4).
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