Varieties of De Morgan Monoids II: Covers of Atoms

T. Moraschini¹, J.G. Raftery², and J.J. Wannenburg²

 1 Academy of Sciences of the Czech Republic, Czech Republic 2 University of Pretoria, South Africa

TACL, June 2017

De Morgan monoids

A De Morgan monoid $\mathbf{A} = \langle A; \vee, \wedge, \cdot, \neg, t \rangle$ comprises

- ▶ a distributive lattice $\langle A; \vee, \wedge \rangle$,
- ▶ a square-increasing $(x \le x \cdot x)$ commutative monoid $(A; \cdot, t)$,
- ▶ satisfying $x = \neg \neg x$
- ▶ and $x \cdot y \le z$ iff $x \cdot \neg z \le \neg y$.
- $\triangleright x \rightarrow y := \neg(x \cdot \neg y)$

 \mathcal{DM} denotes the variety of all De Morgan monoids.

Algebraic logic

The logic Rt can be characterized as follows

$$\gamma_1, \ldots, \gamma_n \vdash_{\mathsf{R}^t} \alpha \text{ iff } \mathcal{DM} \vDash (t \leq \gamma_1 \& \ldots \& t \leq \gamma_n) \Rightarrow t \leq \alpha.$$

Important algebras

- ▶ The first three are exactly the simple 0-generated De Morgan monoids, see Slaney (1989).
- For any positive odd number n, the \cdot of $\textbf{\textit{S}}_n$ is as follows: when $|i| \leq |j|$, then $i \cdot j = \begin{cases} j & \text{if } |i| \neq |j| \\ i \wedge j & \text{otherwise.} \end{cases}$

Atoms of $L_{\mathbb{V}}(\mathcal{DM})$

Subvarieties of \mathcal{DM}

We investigate the covers of the atoms in $L_{\mathbb{V}}(\mathcal{DM})$.

Covers of $\mathbb{V}(2)$ and $\mathbb{V}(S_3)$

Subvarieties of \mathcal{DM}

- The join of any two atoms is a cover of both.
- ► The remaining covers are precisely the *join-irreducible* (JI) covers.

Thm.

- ▶ V(2) has no JI cover.
- ► The only JI cover of $\mathbb{V}(S_3)$ is $\mathbb{V}(S_5)$.

Covers of $\mathbb{V}(D_4)$

Thm. Every join-irreducible cover of $\mathbb{V}(D_4)$ has the form $\mathbb{V}(A)$ for some simple 1-generated De Morgan monoid A, where D_4 embeds into A but is not isomorphic to A.

- For every prime p, the algebra DA_p generates a cover of $\mathbb{V}(D_4)$,
- so there are infinitely many covers of $\mathbb{V}(D_4)$.

A non-finitely generated cover of $\mathbb{V}(D_4)$

- Not all covers of V(D₄) are finitely generated,
- ▶ for example, D_{∞} generates a cover of $\mathbb{V}(D_4)$ that is not finitely generated.

Covers of $\mathbb{V}(C_4)$

More cases, as C_4 has diverse homomorphic pre-images. In fact:

Thm. (Slaney) If $h: A \to B$ is a homomorphism from a finitely subdirectly irreducible De Morgan monoid into a 0-generated De Morgan monoid, then h is an isomorphism or $B \cong C_4$.

- ▶ There is a largest subvariety \mathcal{U} of \mathcal{DM} such that every non-trivial member of \mathcal{U} has C_4 as a homomorphic image.
- U is finitely axiomatized.
- ▶ There is a largest subvariety \mathcal{M} of \mathcal{DM} such that \mathcal{C}_4 is a retract of all non-trivial members of \mathcal{M} .
- ▶ \mathcal{M} is axiomatized, relative to \mathcal{U} , by $t \leq f$.

Covers of $\mathbb{V}(C_4)$

Thm. If K is a join-irreducible cover of $V(C_4)$, then exactly one of the following holds.

- 1. K = V(A) for some simple 1-generated De Morgan monoid A, such that C_4 embeds into A but is not isomorphic to A.
- 2. K = V(A) for some (finite) 0-generated subdirectly irreducible De Morgan monoid $A \in U \setminus M$.
- 3. $\mathcal{K} \subseteq \mathcal{M}$.

Condition 1

1. $\mathcal{K} = \mathbb{V}(A)$ for some simple 1-generated De Morgan monoid A, such that C_4 embeds into A but is not isomorphic to A.

- For every prime p, the algebra \mathbf{A}_{p} generates a cover of $\mathbb{V}(\mathbf{C}_{4})$,
 - ▶ so, there are infinitely many covers of V(C₄) that satisfy condition 1.

- There are covers of $\mathbb{V}(C_4)$ that are not finitely generated,
 - for example, A_{∞} generates a cover of $\mathbb{V}(C_4)$.

Condition 2

2. $\mathcal{K} = \mathbb{V}(\mathbf{A})$ for some (finite) 0-generated subdirectly irreducible De Morgan monoid $\mathbf{A} \in \mathcal{U} \setminus \mathcal{M}$.

Slaney (1989) characterized all the 0-generated subdirectly irreducible De Morgan monoids. They are all finite, and apart from the simple ones, they are:

Condition 3

3. $\mathcal{K} \subseteq \mathcal{M}$

Every subdirectly irreducible algebra in \mathcal{M} arises by a construction of Slaney (1993) from a **Dunn monoid** \boldsymbol{B} [essentially a De Morgan monoid without the involution \neg], i.e.,

a square-increasing distributive lattice-ordered commutative monoid $\langle B; \vee, \wedge, \cdot, \rightarrow, t \rangle$ that satisfies the law of residuation

$$x \leq y \rightarrow z \text{ iff } x \cdot y \leq z.$$

Let's call this construction skew reflection.

Dunn monoid

Dunn monoid

Dunn monoid

Dunn monoid

Dunn monoid

Dunn monoid

Declare that a < b' for certain $a, b \in B$ in such a way that $\langle B \cup B' \cup \{\bot, \top\}; \leq \rangle$ is a distributive lattice, t < t' and for all $a, b \in B$,

$$a < b'$$
 iff $t < (a \cdot b)'$.

Then there is a unique way of turning the structure into a De Morgan monoid

$$S^{<}(\mathbf{B}) = \langle B \cup B' \cup \{\bot, \top\}; \lor, \land, \cdot, \neg, t \rangle \in \mathbf{M},$$

of which \boldsymbol{B} is a subreduct, where \neg extends '. In particular, if we specify that a < b' for all $a, b \in B$, then we get the **reflection** construction, which is an older idea, see Meyer (1973) and Galatos and Raftery (2004). In this case we write $R(\boldsymbol{B})$ for $S^{<}(\boldsymbol{B})$.

Covers of $\mathbb{V}(C_4)$ within \mathcal{M}

Thm. Let K be a cover of $V(C_4)$ within M. Then K = V(A) for some finite skew reflection A of a subdirectly irreducible Dunn monoid B, where \bot is meet-irreducible in A, and A is generated by the greatest strict lower bound of t in B.

Covers of $\mathbb{V}(C_4)$ within \mathcal{M}

There are just six of these:

$$R(2): R(S_3): S^{<}(S_3): S^{<}(C_4): S^{<}(T_5): S^{<}(T_6):$$

$$\downarrow^{\top}_{f'} \downarrow^{c'}_{t'} \downarrow^{\tau'}_{t'} \downarrow$$

 T_5 is idempotent and T_6 is idempotent except for $t' \wedge (c \rightarrow t)$.

Summary

Thm. Every cover of $\mathbb{V}(C_4)$ within \mathcal{M} has no proper nontrivial subquasivariety other than $\mathbb{V}(C_4)$.

Definitions

Atoms

Covers of $\mathbb{V}(2)$ and $\mathbb{V}(S_3)$

Covers of $\mathbb{V}(D_4)$

Covers of $\mathbb{V}(C_4)$

Skew Reflection

Covers of $\mathbb{V}(C_4)$ within \mathcal{M}