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A De Morgan monoid A = 〈A; ·,∧,∨,¬, t〉 comprises

I a distributive lattice 〈A;∧,∨〉;
I a commutative monoid 〈A; ·, t〉 satisfying x 6 x · x ;
I an ‘involution’ ¬ : A −→ A satisfying ¬¬x = x and

x · y 6 z =⇒ x ·¬z 6 ¬y (so ¬ : 〈A;∧,∨〉 ∼= 〈A;∨,∧〉).

Defining x→ y = ¬(x ·¬y) and f = ¬t , we obtain the

Law of Residuation: x · y 6 z ⇐⇒ x 6 y→ z ;
and ¬x = x→ f .

DM = {all De Morgan monoids} is a variety.
It is congruence distributive, extensible and permutable.
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The relevance logic Rt can be characterized as follows:

`Rt α (‘α is a theorem of Rt’) iff DM |= t 6 α.

More generally, in the deducibility relation of the usual formal
system for Rt, we have γ1, . . . ,γn `Rt α iff

DM |= (t 6 γ1 & . . . & t 6 γn) =⇒ t 6 α.

There is a lattice anti-isomorphism from the extensions of Rt to
the subquasivarieties of DM, taking

axiomatic extensions onto subvarieties.

We study the latter as a route to the former.

Why?
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Relevance logic began in protest at ‘paradoxes’ of material
implication, e.g., the weakening axiom p → (q → p).

It has multiple interpretations, however, and now fits under
the ideology-free umbrella of substructural logics.

Relative to these, Rt combines ∧,∨ distributivity with the
contraction axiom (p → (p → q))→ (p → q).

Urquhart (1984): Rt is undecidable.

Algebraic effects? Less explored—philosophical equivocation
over the status of t : distinguished or not?

(In the absence of weakening, t is not equationally definable.
The t–free reducts of De Morgan monoids don’t form a variety,
as they are not closed under subalgebras.
For the anti-isomorphism above, t must be distinguished.)
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Contraction amounts to the square-increasing law x 6 x2

of DM. Its effects include:

I Excluded middle: t 6 x ∨¬x ;

I Unique involution (¬): if two algebras have the same
·,→,∧,∨, t reduct, they are equal (Slaney, 2016).

I Algebras are simple iff t has just one strict lower bound.

I Finitely generated algebras are bounded.
(If ⊥ 6 x 6 > for all x , then ⊥ · x = ⊥.)

On the other hand, ∧,∨ distributivity gives:

I Algebras are finitely subdirectly irreducible (FSI) iff t is
join-prime: t 6 x ∨ y =⇒ t 6 x or t 6 y .
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Special features of De Morgan monoids:

I FSI bounded algebras are ‘rigorously compact’:
if ⊥ 6 x 6 > for all x , then > · x = >, unless x = ⊥.

I f 3 = f 2.

I If a De Morgan monoid is 0–generated (i.e., it has no
proper subalgebra), then it is finite (Slaney, 1980s).
Just seven such algebras are subdirectly irreducible (SI).

I If A ∈ DM is FSI, then A = [t) ∪ (f ].

Here, we may have t 6 f . But if f < t , then t covers f .

Fact. In a De Morgan monoid, the demand f 6 t is equivalent
to idempotence of the whole algebra: x2 = x (for all x).

So, non-idempotent algebras lack idempotent subalgebras.
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The idempotent De Morgan monoids (a.k.a. Sugihara monoids)
form a locally finite variety SM = V(S∗), where

S∗ is the natural chain of nonzero integers (with − as ¬) and

x · y =

{
whichever of x , y has greater absolute value,
or x ∧ y , if |x | = |y |,

Here, t is 1, so f is −1.

S∗ has a homomorphic image S in
which just 1 and −1 are identified.

Up to isomorphism, S could be
defined like S∗ on the set of all
integers. Then S |= f = t (= 0).

Algebras with f = t are called odd. s
ss
ss
s3

2

1

−1

−2

−3

= 3 ·− 2

= t

= f

= 1 ·− 2

= 3 ·− 3

S∗

T. Moraschini, J.G. Raftery and J.J. Wannenburg Varieties of De Morgan Monoids I



The idempotent De Morgan monoids (a.k.a. Sugihara monoids)
form a locally finite variety SM = V(S∗), where

S∗ is the natural chain of nonzero integers (with − as ¬) and

x · y =

{
whichever of x , y has greater absolute value,
or x ∧ y , if |x | = |y |,

Here, t is 1, so f is −1.

S∗ has a homomorphic image S in
which just 1 and −1 are identified.

Up to isomorphism, S could be
defined like S∗ on the set of all
integers. Then S |= f = t (= 0).

Algebras with f = t are called odd. s
ss
ss
s3

2

1

−1

−2

−3

= 3 ·− 2

= t

= f

= 1 ·− 2

= 3 ·− 3

S∗

T. Moraschini, J.G. Raftery and J.J. Wannenburg Varieties of De Morgan Monoids I



The idempotent De Morgan monoids (a.k.a. Sugihara monoids)
form a locally finite variety SM = V(S∗), where

S∗ is the natural chain of nonzero integers (with − as ¬) and

x · y =

{
whichever of x , y has greater absolute value,
or x ∧ y , if |x | = |y |,

Here, t is 1, so f is −1.

S∗ has a homomorphic image S in
which just 1 and −1 are identified.

Up to isomorphism, S could be
defined like S∗ on the set of all
integers. Then S |= f = t (= 0).

Algebras with f = t are called odd. s
ss
ss
s3

2

1

−1

−2

−3

= 3 ·− 2

= t

= f

= 1 ·− 2

= 3 ·− 3

S∗

T. Moraschini, J.G. Raftery and J.J. Wannenburg Varieties of De Morgan Monoids I



The idempotent De Morgan monoids (a.k.a. Sugihara monoids)
form a locally finite variety SM = V(S∗), where

S∗ is the natural chain of nonzero integers (with − as ¬) and

x · y =

{
whichever of x , y has greater absolute value,
or x ∧ y , if |x | = |y |,

Here, t is 1, so f is −1.

S∗ has a homomorphic image S in
which just 1 and −1 are identified.

Up to isomorphism, S could be
defined like S∗ on the set of all
integers. Then S |= f = t (= 0).

Algebras with f = t are called odd. s
ss
ss
s3

2

1

−1

−2

−3

= 3 ·− 2

= t

= f

= 1 ·− 2

= 3 ·− 3

S∗

T. Moraschini, J.G. Raftery and J.J. Wannenburg Varieties of De Morgan Monoids I



The idempotent De Morgan monoids (a.k.a. Sugihara monoids)
form a locally finite variety SM = V(S∗), where

S∗ is the natural chain of nonzero integers (with − as ¬) and

x · y =

{
whichever of x , y has greater absolute value,
or x ∧ y , if |x | = |y |,

Here, t is 1, so f is −1.

S∗ has a homomorphic image S in
which just 1 and −1 are identified.

Up to isomorphism, S could be
defined like S∗ on the set of all
integers. Then S |= f = t (= 0).

Algebras with f = t are called odd. s
ss
ss
s3

2

1

−1

−2

−3

= 3 ·− 2

= t

= f

= 1 ·− 2

= 3 ·− 3

S∗

T. Moraschini, J.G. Raftery and J.J. Wannenburg Varieties of De Morgan Monoids I



The idempotent De Morgan monoids (a.k.a. Sugihara monoids)
form a locally finite variety SM = V(S∗), where

S∗ is the natural chain of nonzero integers (with − as ¬) and

x · y =

{
whichever of x , y has greater absolute value,
or x ∧ y , if |x | = |y |,

Here, t is 1, so f is −1.

S∗ has a homomorphic image S in
which just 1 and −1 are identified.

Up to isomorphism, S could be
defined like S∗ on the set of all
integers. Then S |= f = t (= 0).

Algebras with f = t are called odd. s
ss
ss
s3

2

1

−1

−2

−3

= 3 ·− 2

= t

= f

= 1 ·− 2

= 3 ·− 3

S∗

T. Moraschini, J.G. Raftery and J.J. Wannenburg Varieties of De Morgan Monoids I



The idempotent De Morgan monoids (a.k.a. Sugihara monoids)
form a locally finite variety SM = V(S∗), where

S∗ is the natural chain of nonzero integers (with − as ¬) and

x · y =

{
whichever of x , y has greater absolute value,
or x ∧ y , if |x | = |y |,

Here, t is 1, so f is −1.

S∗ has a homomorphic image S in
which just 1 and −1 are identified.

Up to isomorphism, S could be
defined like S∗ on the set of all
integers. Then S |= f = t (= 0).

Algebras with f = t are called odd. s
ss
ss
s3

2

1

−1

−2

−3

= 3 ·− 2

= t

= f

= 1 ·− 2

= 3 ·− 3

S∗

T. Moraschini, J.G. Raftery and J.J. Wannenburg Varieties of De Morgan Monoids I



The n–element (unique) convex subalgebra of S∗ or S is
denoted by Sn.

These are exactly the finitely generated SI Sugihara monoids
(Dunn, 1970s), so SM is semilinear (i.e., Sugihara monoids
are subdirect products of chains).

E.g., S2 is the Boolean algebra −1 < 1;

S3 is −1 < 0 < 1;

S4 is −2 < −1 < 1 < 2;

S5 is −2 < −1 < 0 < 1 < 2, etc.

Beyond Sugihara monoids, the structure of De Morgan
monoids is not fully understood.

Here we contribute a new structure theorem.
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Theorem. Let A be a FSI De Morgan monoid. Then, either
(i) A is a Sugihara monoid, or

(ii) A is the union of an interval subalgebra
[¬(f 2), f 2] := {x ∈ A : ¬(f 2) < x < f 2}

and two chains of idempotent elements, (¬(f 2)] and [f 2).

In (ii), the upper bounds of
f 2 are exactly the idempotent
upper bounds of f , and

the algebra A/Θ(¬(f 2), t)
is an odd Sugihara monoid.

f 2

fr
r
��
��

idempotents
above f

[f )

f 2

¬(f 2)r
r
&%
'$
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The simple 0–generated De Morgan monoids are just
2 (= S2), C4 and D4 below (Slaney, 1980s).

(The odd Sugihara monoid S3 is not 0–generated.)

s
st
f

2 : ss
s1
0 = t = f
−1

S3 :

ss
ssf 2

f
t

¬(f 2)

C4 : s�� s@@

s��s@@
f 2

t f

¬(f 2)

D4 :

Theorem. The minimal varieties of De Morgan monoids
are just V(2), V(S3), V(C4) and V(D4).
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{trivials}

V(C4) V(S3)

V(D4) V(2)

DM

Subvarieties of DM
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On general grounds,

V(2), V(S3), V(C4) and V(D4)

are also minimal as quasivarieties, but they are not the only
ones.

Theorem. There are just 68 minimal quasivarieties of De
Morgan monoids.

The proof uses Slaney’s (1985) description of the
3088–element free 0–generated De Morgan monoid.
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A relevant algebra is a subalgebra B of the t–free reduct
A− = 〈A; ·,∧,∨,¬〉 of a De Morgan monoid A.

These form a varietyRA, algebraizing the relevance logic R
(which lacks the constant symbol t)

2− embeds into every nontrivial finitely generated relevant
algebra, so Boolean algebras constitute the smallest nontrivial
sub(quasi)variety ofRA.
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The bottom of the subvariety lattice ofRA was described by
Świrydowicz (1995), and is as shown below.

His result follows more easily via the consideration of De
Morgan monoids above.

ss
s

@
@

s
�

�

s

s

{trivials}

V(2−)

V(C4
−) V(S3

−)

V(D4
−)

RA
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