Modal logics over finite residuated lattices

Amanda Vidal
Institute of Computer Science, Czech Academy of Sciences

Topology, Algebra and Categories in Logic 2017, Prague, Czech Republic,

June 29, 2017

In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.

In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.

In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.
Propose several open problems. We will address some of them

In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.
Propose several open problems. We will address some of them
- only \square operator -with the usual lattice-valued interpretation Q1. Both \square and $\diamond(!\diamond x \neq \neg \square \neg x)$

In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.
Propose several open problems. We will address some of them
- only \square operator -with the usual lattice-valued interpretation Q1. Both \square and $\diamond(!\diamond x \neq \neg \square \neg x)$
- local deduction, global over crisp frames

Q2. (general) Global deduction

In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.
Propose several open problems. We will address some of them
- only \square operator -with the usual lattice-valued interpretation Q1. Both \square and $\diamond(!\diamond x \neq \neg \square \neg x)$
- local deduction, global over crisp frames

Q2. (general) Global deduction

- Q3. Is an axiomatization for the Global modal logic an axiomatization for the local one $+\frac{x \rightarrow y}{\square x \rightarrow \square y}$?
(Q3'). Similar question restricting to crisp accessibility and adding $\frac{x}{\square x}$

Preliminaries

- $\mathbf{A}=\langle A, \cdot, \rightarrow, \wedge, \vee, 0,1\rangle$ is a (bounded, commutative, integral) residuated lattice when
- $\langle A, \wedge, \vee, 1,0\rangle$ is a bounded lattice (with order denoted \leq),
- $\langle A, \cdot, 1\rangle$ is a commutative monoid and
- for all $a, b, c \in A$ it holds $a \cdot b \leq c \Longleftrightarrow a \leq b \rightarrow c$.

Preliminaries

- $\mathbf{A}=\langle A, \cdot, \rightarrow, \wedge, \vee, 0,1\rangle$ is a (bounded, commutative, integral) residuated lattice when
- $\langle A, \wedge, \vee, 1,0\rangle$ is a bounded lattice (with order denoted \leq),
- $\langle A, \cdot, 1\rangle$ is a commutative monoid and
- for all $a, b, c \in A$ it holds $a \cdot b \leq c \Longleftrightarrow a \leq b \rightarrow c$.
- $\mathbf{A}^{c}=$ expansion of \mathbf{A} with constants $\{\bar{a}: a \in A \backslash\{1,0\}\}$.

Preliminaries

- $\mathbf{A}=\langle A, \cdot, \rightarrow, \wedge, \vee, 0,1\rangle$ is a (bounded, commutative, integral) residuated lattice when
- $\langle A, \wedge, \vee, 1,0\rangle$ is a bounded lattice (with order denoted \leq),
- $\langle A, \cdot, 1\rangle$ is a commutative monoid and
- for all $a, b, c \in A$ it holds $a \cdot b \leq c \Longleftrightarrow a \leq b \rightarrow c$.
- $\mathbf{A}^{c}=$ expansion of \mathbf{A} with constants $\{\bar{a}: a \in A \backslash\{1,0\}\}$.
- $\mathbf{F m}=$ formula algebra built in the language of residuated lattices [+ constants].

Preliminaries

- $\mathbf{A}=\langle A, \cdot, \rightarrow, \wedge, \vee, 0,1\rangle$ is a (bounded, commutative, integral) residuated lattice when
- $\langle A, \wedge, \vee, 1,0\rangle$ is a bounded lattice (with order denoted \leq),
- $\langle A, \cdot, 1\rangle$ is a commutative monoid and
- for all $a, b, c \in A$ it holds $a \cdot b \leq c \Longleftrightarrow a \leq b \rightarrow c$.
- $\mathbf{A}^{c}=$ expansion of \mathbf{A} with constants $\{\bar{a}: a \in A \backslash\{1,0\}\}$.
- $\mathbf{F m}=$ formula algebra built in the language of residuated lattices [+ constants].
- $\Gamma \models_{\mathbf{A}} \varphi$ iff for any $h \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})$,

$$
h([\Gamma]) \subseteq\{1\} \text { implies } h(\varphi)=1
$$

Preliminaries

- $\mathbf{A}=\langle A, \cdot, \rightarrow, \wedge, \vee, 0,1\rangle$ is a (bounded, commutative, integral) residuated lattice when
- $\langle A, \wedge, \vee, 1,0\rangle$ is a bounded lattice (with order denoted \leq),
- $\langle A, \cdot, 1\rangle$ is a commutative monoid and
- for all $a, b, c \in A$ it holds $a \cdot b \leq c \Longleftrightarrow a \leq b \rightarrow c$.
- $\mathbf{A}^{c}=$ expansion of \mathbf{A} with constants $\{\bar{a}: a \in A \backslash\{1,0\}\}$.
- $\mathbf{F m}=$ formula algebra built in the language of residuated lattices [+ constants].
- $\Gamma \models \mathbf{A} \varphi$ iff for any $h \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})$,

$$
h([\Gamma]) \subseteq\{1\} \text { implies } h(\varphi)=1
$$

In the following \mathbf{A} will be finite

Preliminaries

- $\mathfrak{M}=\langle W, R, e\rangle$ is a A-Kripke model when W is a non-empty set, $R: W \times W \rightarrow A$ and $e: W \times \mathcal{V} \rightarrow A$, extended uniquely in order to be in $\operatorname{Hom}(\mathbf{F m}, \mathbf{A})$ and
$e(v, \square \varphi)=\bigwedge_{w \in W}\{R v w \rightarrow e(w, \varphi)\} \quad e(v, \diamond \varphi)=\bigvee_{w \in W}\{R v w \cdot e(w, \varphi)\}$
It is said crisp if $R \subseteq W \times W$.

Preliminaries

- $\mathfrak{M}=\langle W, R, e\rangle$ is a A-Kripke model when W is a non-empty set, $R: W \times W \rightarrow A$ and $e: W \times \mathcal{V} \rightarrow A$, extended uniquely in order to be in $\operatorname{Hom}(\mathbf{F m}, \mathbf{A})$ and
$e(v, \square \varphi)=\bigwedge_{w \in W}\{R v w \rightarrow e(w, \varphi)\} \quad e(v, \diamond \varphi)=\bigvee_{w \in W}\{R v w \cdot e(w, \varphi)\}$
It is said crisp if $R \subseteq W \times W$.
- $\Gamma \Vdash_{M_{\mathrm{A}}}^{\prime} \varphi$ iff for any \mathbf{A}-Kripke model \mathfrak{M}, and any $v \in W$, if $e(v,[\Gamma]) \subseteq\{1\}$ then $e(v, \varphi)=1$.

Preliminaries

- $\mathfrak{M}=\langle W, R, e\rangle$ is a A-Kripke model when W is a non-empty set, $R: W \times W \rightarrow A$ and $e: W \times \mathcal{V} \rightarrow A$, extended uniquely in order to be in $\operatorname{Hom}(\mathbf{F m}, \mathbf{A})$ and
$e(v, \square \varphi)=\bigwedge_{w \in W}\{R v w \rightarrow e(w, \varphi)\} \quad e(v, \diamond \varphi)=\bigvee_{w \in W}\{R v w \cdot e(w, \varphi)\}$
It is said crisp if $R \subseteq W \times W$.
- $\Gamma \Vdash_{M_{\mathrm{A}}}^{\prime} \varphi$ iff for any \mathbf{A}-Kripke model \mathfrak{M}, and any $v \in W$, if $e(v,[\Gamma]) \subseteq\{1\}$ then $e(v, \varphi)=1$.
- $\Gamma \Vdash_{M_{\mathrm{A}}}^{g} \varphi$ iff for any \mathbf{A}-Kripke model \mathfrak{M}, if for all $v \in W$, it holds $e(v,[\Gamma]) \subseteq\{1\}$ then for all $v \in W$ it also holds $e(v, \varphi)=1$.

Preliminaries

- $\mathfrak{M}=\langle W, R, e\rangle$ is a A-Kripke model when W is a non-empty set, $R: W \times W \rightarrow A$ and $e: W \times \mathcal{V} \rightarrow A$, extended uniquely in order to be in $\operatorname{Hom}(\mathbf{F m}, \mathbf{A})$ and
$e(v, \square \varphi)=\bigwedge_{w \in W}\{R v w \rightarrow e(w, \varphi)\} \quad e(v, \diamond \varphi)=\bigvee_{w \in W}\{R v w \cdot e(w, \varphi)\}$
It is said crisp if $R \subseteq W \times W$.
- $\Gamma \Vdash^{\prime}{ }_{M_{\mathrm{A}}} \varphi$ iff for any \mathbf{A}-Kripke model \mathfrak{M}, and any $v \in W$, if $e(v,[\Gamma]) \subseteq\{1\}$ then $e(v, \varphi)=1$.
- $\Gamma \Vdash_{M_{\mathrm{A}}}^{g} \varphi$ iff for any \mathbf{A}-Kripke model \mathfrak{M}, if for all $v \in W$, it holds $e(v,[\Gamma]) \subseteq\{1\}$ then for all $v \in W$ it also holds $e(v, \varphi)=1$.
- Same valid formulas.

(Some comparisons with classical K)

- No K. (Bou et. al) [K is valid only if Rvw is idempotent.]

(Some comparisons with classical K)

- No K. (Bou et. al) [K is valid only if Rvw is idempotent.]
- No $\square=\neg \diamond \neg$. [Only if \neg is involutive (eg., MV algebras)].

(Some comparisons with classical K)

- No K. (Bou et. al) [K is valid only if Rvw is idempotent.]
- No $\square=\neg \diamond \neg$. [Only if \neg is involutive (eg., MV algebras)]. Not known general interdefinability of modalities...

(Some comparisons with classical K)

- No K. (Bou et. al) [K is valid only if Rvw is idempotent.]
- No $\square=\neg \diamond \neg$. [Only if \neg is involutive (eg., MV algebras)]. Not known general interdefinability of modalities....
- Local classical modal logic enjoys DT \Longrightarrow usually we say "modal logic" for the set of valid formulas or the global consequence. No longer (necessarily) true -nor even LDT.

Existing axiomatization

For \mathbf{A}^{c} finite $R L$ with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no- \diamond fragment of $\Vdash^{\prime} M_{A^{(c)}}$ (with constants).

Existing axiomatization

For \mathbf{A}^{c} finite $R L$ with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no- \diamond fragment of $\Vdash_{M_{A^{(c)}}^{\prime}}^{\prime}$ (with constants).
$\mathcal{L}_{\square}^{\mathbf{A}^{(c)}}=$ Axiomatization for $\models_{\mathbf{A}^{(c)}}+$

- $\square 1$,

Existing axiomatization

For \mathbf{A}^{c} finite RL with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no- \diamond fragment of $\Vdash^{\prime} M_{A^{(c)}}$ (with constants).
$\mathcal{L}_{\square}^{\mathbf{A}^{(c)}}=$ Axiomatization for $\models_{\mathbf{A}^{(c)}}+$

- $\square 1$,
- $\square(\varphi \wedge \psi) \leftrightarrow(\square \varphi \wedge \square \psi)$,

Existing axiomatization

For \mathbf{A}^{c} finite RL with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no- \diamond fragment of $\Vdash^{\prime} M_{A^{(c)}}$ (with constants).
$\mathcal{L}_{\square}^{\mathbf{A}^{(c)}}=$ Axiomatization for $\models_{\mathbf{A}^{(c)}}+$

- $\square 1$,
- $\square(\varphi \wedge \psi) \leftrightarrow(\square \varphi \wedge \square \psi)$,
- $\square(\bar{c} \rightarrow \varphi) \leftrightarrow(\bar{c} \rightarrow \square \varphi)$,

Existing axiomatization

For \mathbf{A}^{c} finite $R L$ with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no- \diamond fragment of $\Vdash^{\prime} M_{A^{(c)}}$ (with constants).
$\mathcal{L}_{\square}^{\mathbf{A}^{(c)}}=$ Axiomatization for $\models_{\mathbf{A}^{(c)}}+$

- $\square 1$,
- $\square(\varphi \wedge \psi) \leftrightarrow(\square \varphi \wedge \square \psi)$,
- $\square(\bar{c} \rightarrow \varphi) \leftrightarrow(\bar{c} \rightarrow \square \varphi)$,
- $\vdash \varphi \rightarrow \psi$ implies $\vdash \square \varphi \rightarrow \square \psi$.

Existing axiomatization

For \mathbf{A}^{c} finite RL with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no- \diamond fragment of $\Vdash_{M_{A^{(c)}}^{\prime}}^{\prime}$ (with constants).
$\mathcal{L}_{\square}^{\mathbf{A}^{(c)}}=$ Axiomatization for $\models_{\mathbf{A}^{(c)}}+$

- $\square 1$,
- $\square(\varphi \wedge \psi) \leftrightarrow(\square \varphi \wedge \square \psi)$,
- $\square(\bar{c} \rightarrow \varphi) \leftrightarrow(\bar{c} \rightarrow \square \varphi)$,
- $\vdash \varphi \rightarrow \psi$ implies $\vdash \square \varphi \rightarrow \square \psi$.
(For SI residuated lattices (with a unique coatom), adding K and $\square(x \vee \bar{c}) \rightarrow(\square x \vee \bar{c})) \Longrightarrow$ completeness wrt. the no- \diamond fragment of $\left.\Vdash^{\prime}{ }_{C_{A}}.\right)$

Both modal operators

answer to Q1

For $\mathcal{L}=($ the previous A.S. $)+\square(x \rightarrow \bar{c}) \rightarrow(\diamond x \rightarrow \bar{c}), \mathcal{L}$ is complete with respect to $\Vdash_{M_{A^{(c)}}^{\prime}}^{\prime}$ (also concerning only idempotent/crisp frames completeness).

Both modal operators

answer to Q1

For $\mathcal{L}=($ the previous A.S. $)+\square(x \rightarrow \bar{c}) \rightarrow(\diamond x \rightarrow \bar{c}), \mathcal{L}$ is complete with respect to $\Vdash_{M_{A^{(c)}}^{\prime}}^{\prime}$ (also concerning only idempotent/crisp frames completeness).

- Two RL equations concerning existing arbitrary infima/suprema are partially axiomatically represented

$$
\bigwedge_{x \in X} x \rightarrow y=\bigvee X \rightarrow y \quad \text { and } \bigwedge_{x \in X} y \rightarrow x=y \rightarrow \bigwedge X
$$

Both modal operators

answer to Q1

For $\mathcal{L}=($ the previous A.S. $)+\square(x \rightarrow \bar{c}) \rightarrow(\diamond x \rightarrow \bar{c}), \mathcal{L}$ is complete with respect to $\Vdash_{M_{A^{(c)}}^{\prime}}^{\prime}$ (also concerning only idempotent/crisp frames completeness).

- Two RL equations concerning existing arbitrary infima/suprema are partially axiomatically represented

$$
\bigwedge_{x \in X} x \rightarrow y=\bigvee X \rightarrow y \quad \text { and } \bigwedge_{x \in X} y \rightarrow x=y \rightarrow \bigwedge X
$$

- Some small modifications in the canonical model defined by Bou. et. al. suffice to check completeness. [in defining Rvw]

Both modal operators

answer to Q1

For $\mathcal{L}=($ the previous A.S. $)+\square(x \rightarrow \bar{c}) \rightarrow(\diamond x \rightarrow \bar{c}), \mathcal{L}$ is complete with respect to $\Vdash_{M_{A^{(c)}}^{\prime}}^{\prime}$ (also concerning only idempotent/crisp frames completeness).

- Two RL equations concerning existing arbitrary infima/suprema are partially axiomatically represented

$$
\bigwedge_{x \in X} x \rightarrow y=\bigvee X \rightarrow y \quad \text { and } \bigwedge_{x \in X} y \rightarrow x=y \rightarrow \bigwedge X
$$

- Some small modifications in the canonical model defined by Bou. et. al. suffice to check completeness. [in defining Rvw] Same solution serves for the crisp case.

For what concerns global logics...

It was not proven whether an axiomatic system for the global logic over $\mathbf{A} / \mathbf{A}^{(c)}$ can be obtained by adding (the appropriated) necessity rule to an axiomatic system for the local one.

For what concerns global logics...

It was not proven whether an axiomatic system for the global logic over $\mathbf{A} / \mathbf{A}^{(c)}$ can be obtained by adding (the appropriated) necessity rule to an axiomatic system for the local one.

answer to Q2

$\mathcal{L}+N_{\square}\left(=\frac{\varphi \rightarrow \psi}{\square \varphi \rightarrow \square \psi}\right)$ is complete with respect to $\Vdash_{M_{A^{(c)}}^{g}}^{g}$ (also considering the no- \diamond restriction and the idempotent cases)

For what concerns global logics...

It was not proven whether an axiomatic system for the global logic over $\mathbf{A} / \mathbf{A}^{(c)}$ can be obtained by adding (the appropriated) necessity rule to an axiomatic system for the local one.

answer to Q2

$\mathcal{L}+N_{\square}\left(=\frac{\varphi \rightarrow \psi}{\square \varphi \rightarrow \square \psi}\right)$ is complete with respect to $\Vdash_{M_{A^{(c)}}^{g}}^{g}$ (also considering the no- \diamond restriction and the idempotent cases)

- Clear that $\Gamma \Vdash_{M_{\mathbf{A}^{(c)}}}^{\prime} \varphi \Longrightarrow \Gamma \Vdash_{M_{\mathbf{A}^{(c)}}^{g}}^{g} \varphi$.

For what concerns global logics...

It was not proven whether an axiomatic system for the global logic over $\mathbf{A} / \mathbf{A}^{(c)}$ can be obtained by adding (the appropriated) necessity rule to an axiomatic system for the local one.

answer to Q2

$\mathcal{L}+N_{\square}\left(=\frac{\varphi \rightarrow \psi}{\square \varphi \rightarrow \square \psi}\right)$ is complete with respect to $\Vdash_{M_{A^{(c)}}^{g}}^{g}$ (also considering the no- \diamond restriction and the idempotent cases)

- Clear that $\Gamma \Vdash_{M_{\mathbf{A}^{(c)}}^{\prime}}^{\prime} \varphi \Longrightarrow \Gamma \Vdash_{M_{\mathbf{A}^{(c)}}^{g}}^{g} \varphi$.
- Thus soundness follows easily: $\Gamma \vdash_{\mathcal{L}+N_{\square}} \varphi \Longrightarrow \Gamma \vdash_{M_{\text {Ac }}}^{g}$ (all axioms from \mathcal{L} are sound in the global deduction, and so is N_{\square}.)

For what concerns global logics...

It was not proven whether an axiomatic system for the global logic over $\mathbf{A} / \mathbf{A}^{(c)}$ can be obtained by adding (the appropriated) necessity rule to an axiomatic system for the local one.

answer to Q2

$\mathcal{L}+N_{\square}\left(=\frac{\varphi \rightarrow \psi}{\square \varphi \rightarrow \square \psi}\right)$ is complete with respect to $\Vdash_{M_{A^{(c)}}^{g}}^{g}$ (also considering the no- \diamond restriction and the idempotent cases)

- Clear that $\Gamma \Vdash_{M_{\mathbf{A}^{(c)}}^{\prime}}^{\prime} \varphi \Longrightarrow \Gamma \Vdash_{M_{\mathbf{A}^{(c)}}^{g}}^{g} \varphi$.
- Thus soundness follows easily: $\Gamma \vdash_{\mathcal{L}+N_{\square}} \varphi \Longrightarrow \Gamma \vdash_{M_{\mathbf{A}^{(c)}}^{g}}$ (all axioms from \mathcal{L} are sound in the global deduction, and so is N_{\square}.)

For the completeness direction, we will build appropriated canonical models.

On the canonical model(s)

Assume $\Gamma \nvdash_{\mathcal{L}+N_{\square}} \varphi$. We define the Γ-canonical model by:

- $W=\left\{h \in \operatorname{Hom}\left(\mathbf{F m}, \mathbf{A}^{(c)}\right): h\left(C_{\mathcal{L}+N_{\square}}(\Gamma)\right)=1\right\}$,

On the canonical model(s)

Assume $\Gamma \nvdash_{\mathcal{L}+N_{\square}} \varphi$. We define the Γ-canonical model by:

- $W=\left\{h \in \operatorname{Hom}\left(\mathbf{F m}, \mathbf{A}^{(c)}\right): h\left(C_{\mathcal{L}+N_{\square}}(\Gamma)\right)=1\right\}$,
- $e(h, \varphi)=h(\varphi)$,

On the canonical model(s)

Assume $\Gamma \vdash_{\mathcal{L}+N_{\square}} \varphi$. We define the Γ-canonical model by:

- $W=\left\{h \in \operatorname{Hom}\left(\mathbf{F m}, \mathbf{A}^{(c)}\right): h\left(C_{\mathcal{L}+N_{\square}}(\Gamma)\right)=1\right\}$,
- $e(h, \varphi)=h(\varphi)$,
- Rhg $=\bigwedge_{\psi \in M F m}\{((h(\square \psi) \rightarrow g(\psi)) \wedge(g(\psi) \rightarrow h(\diamond \psi)))\}$,

On the canonical model(s)

Assume $\Gamma \vdash_{\mathcal{L}+N_{\square}} \varphi$. We define the Γ-canonical model by:

- $W=\left\{h \in \operatorname{Hom}\left(\mathbf{F m}, \mathbf{A}^{(c)}\right): h\left(C_{\mathcal{L}+N_{\square}}(\Gamma)\right)=1\right\}$,
- $e(h, \varphi)=h(\varphi)$,
- Rhg $=\bigwedge_{\psi \in M F m}\{((h(\square \psi) \rightarrow g(\psi)) \wedge(g(\psi) \rightarrow h(\diamond \psi)))\}$,
(before proving the above is indeed an $\mathbf{A}^{(c)}$-Kripke model...)

On the canonical model(s)

Assume $\Gamma \vdash_{\mathcal{L}+N_{\square}} \varphi$. We define the Γ-canonical model by:

- $W=\left\{h \in \operatorname{Hom}\left(\mathbf{F m}, \mathbf{A}^{(c)}\right): h\left(C_{\mathcal{L}+N_{\square}}(\Gamma)\right)=1\right\}$,
- $e(h, \varphi)=h(\varphi)$,
- Rhg $=\bigwedge_{\psi \in M F m}\{((h(\square \psi) \rightarrow g(\psi)) \wedge(g(\psi) \rightarrow h(\diamond \psi)))\}$,
(before proving the above is indeed an $\mathbf{A}^{(c)}$-Kripke model...)

1. By definition of W and e, the above is a global model for Γ,

On the canonical model(s)

Assume $\Gamma \vdash_{\mathcal{L}+N_{\square}} \varphi$. We define the Γ-canonical model by:

- $W=\left\{h \in \operatorname{Hom}\left(\mathbf{F m}, \mathbf{A}^{(c)}\right): h\left(C_{\mathcal{L}+N_{\square}}(\Gamma)\right)=1\right\}$,
- $e(h, \varphi)=h(\varphi)$,
- Rhg $=\bigwedge_{\psi \in M F m}\{((h(\square \psi) \rightarrow g(\psi)) \wedge(g(\psi) \rightarrow h(\diamond \psi)))\}$,
(before proving the above is indeed an $\mathbf{A}^{(c)}$-Kripke model...)

1. By definition of W and e, the above is a global model for Γ,
2. $\Gamma \not \forall_{\mathcal{L}+N_{\square}} \varphi \Longrightarrow C_{\mathcal{L}+N_{\square}}(\Gamma) \not \vDash_{\mathbf{A}^{(c)}} \varphi$, so there is $h \in W$ for which $h(\varphi)<1$.

On the canonical model(s)

Assume $\Gamma \vdash_{\mathcal{L}+N_{\square}} \varphi$. We define the Γ-canonical model by:

- $W=\left\{h \in \operatorname{Hom}\left(\mathbf{F m}, \mathbf{A}^{(c)}\right): h\left(C_{\mathcal{L}+N_{\square}}(\Gamma)\right)=1\right\}$,
- $e(h, \varphi)=h(\varphi)$,
- Rhg $=\bigwedge_{\psi \in M F m}\{((h(\square \psi) \rightarrow g(\psi)) \wedge(g(\psi) \rightarrow h(\diamond \psi)))\}$,
(before proving the above is indeed an $\mathbf{A}^{(c)}$-Kripke model...)

1. By definition of W and e, the above is a global model for Γ,
2. $\Gamma \forall_{\mathcal{L}+N_{\square}} \varphi \Longrightarrow C_{\mathcal{L}+N_{\square}}(\Gamma) \not \vDash_{\mathbf{A}^{(c)}} \varphi$, so there is $h \in W$ for which $h(\varphi)<1$.
3. So this model would indeed serve to prove $\Gamma \Vdash_{M_{A}^{(c)}}^{g} \varphi$.

Truth Lemma

Is the evaluation given a modal evaluation?

Truth Lemma

Is the evaluation given a modal evaluation?

- Prop. formulas are immediate, since the worlds are propositional homomorphisms.

Truth Lemma

Is the evaluation given a modal evaluation?

- Prop. formulas are immediate, since the worlds are propositional homomorphisms.
- $h(\square \varphi) \stackrel{?}{=} \bigwedge_{g \in W}\{R h g \rightarrow g(\varphi)\}$
- \leq direction is easy:

$$
R h g \rightarrow g(\varphi)=
$$

$\bigwedge \quad\{((h(\square \psi) \rightarrow g(\psi)) \wedge g(\psi) \rightarrow h(\diamond \psi)))\} \rightarrow h(\varphi) \geq$ $\psi \in M F m$

$$
\begin{aligned}
&(h(\square \varphi) \rightarrowg(\varphi)) \\
& h(\square \varphi)
\end{aligned}
$$

Truth Lemma

Witness lemma
$R h g \leq g(\varphi)$ for all $g \in W$ implies $h(\square \varphi)=1$.

Truth Lemma

Witness lemma

$R h g \leq g(\varphi)$ for all $g \in W$ implies $h(\square \varphi)=1$.
$\operatorname{Fix} \tau(\psi)=(\overline{h(\square \psi)} \rightarrow \psi) \wedge(\psi \rightarrow \overline{h(\diamond \psi)})$.

Truth Lemma

Witness lemma

$R h g \leq g(\varphi)$ for all $g \in W$ implies $h(\square \varphi)=1$.
Fix $\tau(\psi)=(\overline{h(\square \psi)} \rightarrow \psi) \wedge(\psi \rightarrow \overline{h(\diamond \psi)})$.

- \Rightarrow for each $c \in A$,
$\mathcal{C}_{\mathcal{L}+N_{\square}}(\Gamma),\{\bar{c} \rightarrow \tau(\psi)\}_{\psi \in M F m}=_{\mathbf{A}} \bar{c} \rightarrow \varphi$

Truth Lemma

Witness lemma

$R h g \leq g(\varphi)$ for all $g \in W$ implies $h(\square \varphi)=1$.
Fix $\tau(\psi)=(\overline{h(\square \psi)} \rightarrow \psi) \wedge(\psi \rightarrow \overline{h(\diamond \psi)})$.

- \Rightarrow for each $c \in A$, $C_{\mathcal{L}+N_{\square}}(\Gamma),\{\bar{c} \rightarrow \tau(\psi)\}_{\psi \in M F m}=_{\mathbf{A}} \bar{c} \rightarrow \varphi$
- A finite, so for each $c \in A$ there is a finite $\Sigma_{c} \subset M F m$ for which $(1) \Longleftrightarrow C_{\mathcal{L}+N_{\square}}(\Gamma),\{\bar{c} \rightarrow \tau(\psi)\}_{\psi \in \Sigma_{c}}=_{\mathbf{A}} \bar{c} \rightarrow \varphi$

Truth Lemma

Witness lemma

$R h g \leq g(\varphi)$ for all $g \in W$ implies $h(\square \varphi)=1$.
Fix $\tau(\psi)=(\overline{h(\square \psi)} \rightarrow \psi) \wedge(\psi \rightarrow \overline{h(\diamond \psi)})$.

- \Rightarrow for each $c \in A$,
$C_{\mathcal{L}+N_{\square}}(\Gamma),\{\bar{c} \rightarrow \tau(\psi)\}_{\psi \in M F m}=_{\mathbf{A}} \bar{c} \rightarrow \varphi$
- A finite, so for each $c \in A$ there is a finite $\Sigma_{c} \subset M F m$ for which $(1) \Longleftrightarrow C_{\mathcal{L}+N_{\square}}(\Gamma),\{\bar{c} \rightarrow \tau(\psi)\}_{\psi \in \Sigma_{c}}=_{\mathbf{A}} \bar{c} \rightarrow \varphi$
- Taking $\Sigma=\bigcup_{c \in A} \Sigma_{c}$, we obtain $C_{\mathcal{L}+N_{\square}}(\Gamma) \models_{\mathbf{A}} \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi$.

Truth Lemma

Witness lemma

$R h g \leq g(\varphi)$ for all $g \in W$ implies $h(\square \varphi)=1$.
Fix $\tau(\psi)=(\overline{h(\square \psi)} \rightarrow \psi) \wedge(\psi \rightarrow \overline{h(\diamond \psi)})$.

- \Rightarrow for each $c \in A$,
$C_{\mathcal{L}+N_{\square}}(\Gamma),\{\bar{c} \rightarrow \tau(\psi)\}_{\psi \in M F m}=_{\mathbf{A}} \bar{c} \rightarrow \varphi$
- A finite, so for each $c \in A$ there is a finite $\Sigma_{c} \subset M F m$ for which $(1) \Longleftrightarrow C_{\mathcal{L}+N_{\square}}(\Gamma),\{\bar{c} \rightarrow \tau(\psi)\}_{\psi \in \Sigma_{c}}=_{\mathbf{A}} \bar{c} \rightarrow \varphi$
- Taking $\Sigma=\bigcup_{c \in A} \Sigma_{c}$, we obtain $C_{\mathcal{L}+N_{\square}}(\Gamma) \models_{\mathbf{A}} \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi$.
- Thus, now $\Gamma \vdash_{\mathcal{L}+N_{\square}} \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi$. By N_{\square} we get

$$
\Gamma \vdash_{\mathcal{L}+N_{\square}} \square\left(\bigwedge_{\psi \in \Sigma} \tau(\psi)\right) \rightarrow \square \varphi .
$$

Truth Lemma

Witness lemma

$R h g \leq g(\varphi)$ for all $g \in W$ implies $h(\square \varphi)=1$.
Fix $\tau(\psi)=(\overline{h(\square \psi)} \rightarrow \psi) \wedge(\psi \rightarrow \overline{h(\diamond \psi)})$.

- \Rightarrow for each $c \in A$,
$C_{\mathcal{L}+N_{\square}}(\Gamma),\{\bar{c} \rightarrow \tau(\psi)\}_{\psi \in M F m}=_{\mathbf{A}} \bar{c} \rightarrow \varphi$
- A finite, so for each $c \in A$ there is a finite $\Sigma_{c} \subset M F m$ for which $(1) \Longleftrightarrow C_{\mathcal{L}+N_{\square}}(\Gamma),\{\bar{c} \rightarrow \tau(\psi)\}_{\psi \in \Sigma_{c}}=_{\mathbf{A}} \bar{c} \rightarrow \varphi$
- Taking $\Sigma=\bigcup_{c \in A} \Sigma_{c}$, we obtain $C_{\mathcal{L}+N_{\square}}(\Gamma) \models_{\mathbf{A}} \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi$.
- Thus, now $\Gamma \vdash_{\mathcal{L}+N_{\square}} \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi$. By N_{\square} we get
$\Gamma \vdash_{\mathcal{L}+N_{\square}} \square\left(\bigwedge_{\in \Sigma} \tau(\psi)\right) \rightarrow \square \varphi$.
- Using the axioms of \mathcal{L}, is easy to prove that $h\left(\bigwedge_{\psi \in \Sigma} \square \tau(\psi)\right)=1$, and thus $h(\square \varphi)=1$ too.

Concluding the completeness

Witness Lemma suffices to prove $h(\square \varphi) \geq \bigwedge_{g \in W}\{R h g \rightarrow g(\varphi)\}$.

Concluding the completeness

Witness Lemma suffices to prove $h(\square \varphi) \geq \bigwedge_{g \in W}\{R h g \rightarrow g(\varphi)\}$.

- If $c \leq R h g \rightarrow g(\varphi)$ for all $g \in W$, then $R h g \rightarrow g(\bar{c} \rightarrow \varphi)=1$ for all $g \in W$.

Concluding the completeness

Witness Lemma suffices to prove $h(\square \varphi) \geq \bigwedge_{g \in W}\{R h g \rightarrow g(\varphi)\}$.

- If $c \leq R h g \rightarrow g(\varphi)$ for all $g \in W$, then $R h g \rightarrow g(\bar{c} \rightarrow \varphi)=1$ for all $g \in W$.
- The Lemma leads to $1=h(\square(\bar{c} \rightarrow \varphi))=c \rightarrow h(\square \varphi)$.

Concluding the completeness

Witness Lemma suffices to prove $h(\square \varphi) \geq \bigwedge_{g \in W}\{R h g \rightarrow g(\varphi)\}$.

- If $c \leq R h g \rightarrow g(\varphi)$ for all $g \in W$, then $R h g \rightarrow g(\bar{c} \rightarrow \varphi)=1$ for all $g \in W$.
- The Lemma leads to $1=h(\square(\bar{c} \rightarrow \varphi))=c \rightarrow h(\square \varphi)$.
$h(\diamond \varphi)=\bigvee_{g \in W}\{R h g \cdot g(\varphi)\}$ is proven similarly.
- \geq is now the easy one by definition.

Concluding the completeness

Witness Lemma suffices to prove $h(\square \varphi) \geq \bigwedge_{g \in W}\{R h g \rightarrow g(\varphi)\}$.

- If $c \leq R h g \rightarrow g(\varphi)$ for all $g \in W$, then $R h g \rightarrow g(\bar{c} \rightarrow \varphi)=1$ for all $g \in W$.
- The Lemma leads to $1=h(\square(\bar{c} \rightarrow \varphi))=c \rightarrow h(\square \varphi)$.
$h(\diamond \varphi)=\bigvee_{g \in W}\{R h g \cdot g(\varphi)\}$ is proven similarly.
- \geq is now the easy one by definition.
- If $c \geq R h g \cdot g(\varphi)$ for all $g \in W$, then $\operatorname{Rhg} \rightarrow g(\varphi \rightarrow \bar{c})=1$ for all $g \in W$.

Concluding the completeness

Witness Lemma suffices to prove $h(\square \varphi) \geq \bigwedge_{g \in W}\{R h g \rightarrow g(\varphi)\}$.

- If $c \leq R h g \rightarrow g(\varphi)$ for all $g \in W$, then $R h g \rightarrow g(\bar{c} \rightarrow \varphi)=1$ for all $g \in W$.
- The Lemma leads to $1=h(\square(\bar{c} \rightarrow \varphi))=c \rightarrow h(\square \varphi)$.
$h(\diamond \varphi)=\bigvee_{g \in W}\{R h g \cdot g(\varphi)\}$ is proven similarly.
- \geq is now the easy one by definition.
- If $c \geq R h g \cdot g(\varphi)$ for all $g \in W$, then $\operatorname{Rhg} \rightarrow g(\varphi \rightarrow \bar{c})=1$ for all $g \in W$.
- Witness Lemma leads to $1=h(\square(\varphi \rightarrow \bar{c}))=h(\diamond \varphi) \rightarrow c$.

Concluding the completeness

Witness Lemma suffices to prove $h(\square \varphi) \geq \bigwedge_{g \in W}\{R h g \rightarrow g(\varphi)\}$.

- If $c \leq R h g \rightarrow g(\varphi)$ for all $g \in W$, then $R h g \rightarrow g(\bar{c} \rightarrow \varphi)=1$ for all $g \in W$.
- The Lemma leads to $1=h(\square(\bar{c} \rightarrow \varphi))=c \rightarrow h(\square \varphi)$.
$h(\diamond \varphi)=\bigvee_{g \in W}\{R h g \cdot g(\varphi)\}$ is proven similarly.
- \geq is now the easy one by definition.
- If $c \geq R h g \cdot g(\varphi)$ for all $g \in W$, then $\operatorname{Rhg} \rightarrow g(\varphi \rightarrow \bar{c})=1$ for all $g \in W$.
- Witness Lemma leads to $1=h(\square(\varphi \rightarrow \bar{c}))=h(\diamond \varphi) \rightarrow c$.

Altogether prove completeness of $\mathcal{L}+N_{\square}$ with respect to $\Vdash_{M_{A^{(c)}}^{g}}^{g}$.

General approach

*Let a theory T be fully-determined if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$.

General approach

*Let a theory T be fully-determined if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$. For \mathcal{Q} complete wrt. $\Vdash^{\prime} M_{\mathbf{A}^{(c)}}$, define the canonical model for Γ by:

- $W=\left\{T: T\right.$ is fully-determined maximally consistent $\models_{\mathrm{A}}^{(c)}$ -theory and $\left.C_{\mathcal{Q}+N_{\square}}(\Gamma) \subseteq T\right\}$,

General approach

*Let a theory T be fully-determined if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$.
For \mathcal{Q} complete wrt. $\Vdash_{M_{\mathbf{A}^{(c)}}}^{\prime}$, define the canonical model for Γ by:

- $W=\left\{T: T\right.$ is fully-determined maximally consistent $\models_{\mathbf{A}}^{(c)}$ -theory and $\left.C_{\mathcal{Q}+N_{\square}}(\Gamma) \subseteq T\right\}$,
- $e(T, \varphi)=c_{\varphi}$,

General approach

*Let a theory T be fully-determined if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$. For \mathcal{Q} complete wrt. $\Vdash^{\prime} M_{\mathbf{A}^{(c)}}$, define the canonical model for Γ by:

- $W=\left\{T: T\right.$ is fully-determined maximally consistent $\models_{\mathbf{A}}^{(c)}$ -theory and $\left.C_{\mathcal{Q}+N_{\square}}(\Gamma) \subseteq T\right\}$,
- $e(T, \varphi)=c_{\varphi}$,
- $\left.\left.R T S=\bigwedge_{\psi \in M F m}\{(e(T, \square \psi) \rightarrow e(S, \psi)) \wedge(e(S,) \psi) \rightarrow e(T, \diamond \psi))\right)\right\}$,

General approach

*Let a theory T be fully-determined if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$. For \mathcal{Q} complete wrt. $\Vdash_{M_{A^{(c)}}}^{\prime}$, define the canonical model for Γ by:

- $W=\left\{T: T\right.$ is fully-determined maximally consistent $\models_{\mathbf{A}}^{(c)}$ -theory and $\left.C_{\mathcal{Q}+N_{\square}}(\Gamma) \subseteq T\right\}$,
- $e(T, \varphi)=c_{\varphi}$,
- $\left.\left.R T S=\bigwedge_{\psi \in M F m}\{(e(T, \square \psi) \rightarrow e(S, \psi)) \wedge(e(S,) \psi) \rightarrow e(T, \diamond \psi))\right)\right\}$,
*Truth lemma as before (ingredients are essentially the same).

General approach

*Let a theory T be fully-determined if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$.
For \mathcal{Q} complete wrt. $\Vdash^{\prime} M_{\mathbf{A}^{(c)}}$, define the canonical model for Γ by:

- $W=\left\{T: T\right.$ is fully-determined maximally consistent $\models_{\mathbf{A}}^{(c)}$ -theory and $\left.C_{\mathcal{Q}+N_{\square}}(\Gamma) \subseteq T\right\}$,
- $e(T, \varphi)=c_{\varphi}$,
- $\left.\left.R T S=\bigwedge_{\psi \in M F m}\{(e(T, \square \psi) \rightarrow e(S, \psi)) \wedge(e(S,) \psi) \rightarrow e(T, \diamond \psi))\right)\right\}$,
Truth lemma as before (ingredients are essentially the same). $ \Gamma \nvdash_{\mathcal{Q}+N_{\square}} \varphi$ iff $C_{\mathcal{Q}+N_{\square}}(\Gamma) \not \vDash_{\mathbf{A}^{(c)}} \varphi$.

General approach

*Let a theory T be fully-determined if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$.
For \mathcal{Q} complete wrt. $\Vdash_{M_{\mathbf{A}^{(c)}}}$, define the canonical model for Γ by:

- $W=\left\{T: T\right.$ is fully-determined maximally consistent $\models_{\mathbf{A}}^{(c)}$ -theory and $\left.C_{\mathcal{Q}+N_{\square}}(\Gamma) \subseteq T\right\}$,
- $e(T, \varphi)=c_{\varphi}$,
- RTS $\left.\left.=\bigwedge_{\psi \in M F m}\{(e(T, \square \psi) \rightarrow e(S, \psi)) \wedge(e(S,) \psi) \rightarrow e(T, \diamond \psi))\right)\right\}$,
Truth lemma as before (ingredients are essentially the same). $ \Gamma \nvdash_{\mathcal{Q}+N_{\square}} \varphi$ iff $C_{\mathcal{Q}+N_{\square}}(\Gamma) \not \vDash_{\mathbf{A}^{(c)}} \varphi$.

Answer to Q3 - constants-

If \mathcal{Q} is an axiomatic system complete with respect to $\Vdash^{\prime} M_{A}^{(c)}$, then
$\mathcal{Q}+N_{\square}$ is complete with respect to $\Vdash_{M_{A}^{(c)}}^{g}$.

Without constant symbols

Answer to Q3

If \mathcal{Q} is an axiomatic system complete with respect to $\Vdash^{-} M_{\mathbf{A}^{\prime}}$, then
$\mathcal{Q}+N_{\square}$ is complete with respect to $\Vdash_{M_{A}}^{g}$.
Recall soundness was general.

Without constant symbols

Answer to Q3

If \mathcal{Q} is an axiomatic system complete with respect to $\Vdash^{\prime}{ }_{M_{\mathrm{A}}}^{\prime}$, then
$\mathcal{Q}+N_{\square}$ is complete with respect to $\Vdash_{M_{A}}^{g}$.
Recall soundness was general.

- Let \mathcal{L}^{c} be the axioms including constants from \mathcal{L}. Then $\mathcal{Q}+\mathcal{L}^{c}$ is complete with respect to $\Vdash_{M_{A^{(c)}}}$

Without constant symbols

Answer to Q3

If \mathcal{Q} is an axiomatic system complete with respect to $\Vdash^{\prime}{ }_{M_{\mathrm{A}}}^{\prime}$, then $\mathcal{Q}+N_{\square}$ is complete with respect to $\Vdash_{M_{A}}^{g}$.

Recall soundness was general.

- Let \mathcal{L}^{c} be the axioms including constants from \mathcal{L}. Then $\mathcal{Q}+\mathcal{L}^{c}$ is complete with respect to $\Vdash_{M_{A^{(c)}}}$
- By induction on the derivation, if Γ, φ don't have constants then $\Gamma \vdash_{\mathcal{Q}+\mathcal{L}^{c}+N_{\square}} \varphi$ implies $\Gamma \vdash_{\mathcal{Q}+N_{\square}} \varphi$.

Without constant symbols

Answer to Q3

If \mathcal{Q} is an axiomatic system complete with respect to $\Vdash_{M_{A}}^{\prime}$, then $\mathcal{Q}+N_{\square}$ is complete with respect to $\Vdash_{M_{A}}^{g}$.

Recall soundness was general.

- Let \mathcal{L}^{c} be the axioms including constants from \mathcal{L}. Then $\mathcal{Q}+\mathcal{L}^{c}$ is complete with respect to $\Vdash_{M_{A^{(c)}}}$
- By induction on the derivation, if Γ, φ don't have constants then $\Gamma \vdash_{\mathcal{Q}+\mathcal{L}^{c}+N_{\square}} \varphi$ implies $\Gamma \vdash_{\mathcal{Q}+N_{\square}} \varphi$.
- Thus $\Gamma \forall_{\mathcal{Q}+N_{a}} \varphi \Gamma \Gamma \forall_{\mathcal{Q}+\mathcal{L}^{c}+N_{a}} \varphi \Gamma_{H^{(c)}} \varphi$. It is immediate to check that, for Γ, φ without constants, $\Gamma \Vdash_{M_{A^{(c)}}} \varphi \Longleftrightarrow \Gamma \Vdash_{M_{\mathrm{A}}} \varphi$.

Very related questions

- Q3 without limitation to finite algebras seems likely to hold. However, the current proofs cannot surpass the lack of DT.

Very related questions

- Q3 without limitation to finite algebras seems likely to hold. However, the current proofs cannot surpass the lack of DT.
- Axiomatizations without constant symbols are not clear out of very particular case studies ($Ł$, Gödel).

Very related questions

- Q3 without limitation to finite algebras seems likely to hold. However, the current proofs cannot surpass the lack of DT.
- Axiomatizations without constant symbols are not clear out of very particular case studies ($Ł$, Gödel).
- Infinitarity of the semantical consequence relation seems to arise in the modal axiomatizations (even if there exists AS for the finitary companion at the propositional level)...
thank you!

