Modal logics over finite residuated lattices

Amanda Vidal

Institute of Computer Science, Czech Academy of Sciences

Topology, Algebra and Categories in Logic 2017, Prague, Czech Republic,

June 29, 2017

 Modal expansions of lattice-based logics are in phase of development and understanding.

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.
 Propose several open problems. We will address some of them

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.
 Propose several open problems. We will address some of them
 - only □ operator -with the usual lattice-valued interpretation
 Q1. Both □ and ◊ (! ◊x ≠ ¬□¬x)

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.
 Propose several open problems. We will address some of them
 - ▶ only □ operator -with the usual lattice-valued interpretation Q1. Both □ and \diamond (! $\diamond x \neq \neg \Box \neg x$)
 - local deduction, global over crisp frames Q2. (general) Global deduction

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.
 Propose several open problems. We will address some of them
 - ▶ only □ operator -with the usual lattice-valued interpretation Q1. Both □ and \diamond (! $\diamond x \neq \neg \Box \neg x$)
 - local deduction, global over crisp frames Q2. (general) Global deduction
 - Q3. Is an axiomatization for the Global modal logic an axiomatization for the local one + ^{x→y}/_{□x→□y}?
 (Q3'). Similar question restricting to crisp accessibility and adding ^x/_{□x}

- ▶ $\mathbf{A} = \langle A, \cdot, \rightarrow, \wedge, \vee, 0, 1 \rangle$ is a (bounded, commutative, integral) residuated lattice when
 - $\langle A, \wedge, \vee, 1, 0 \rangle$ is a bounded lattice (with order denoted \leq),
 - $\langle A, \cdot, 1
 angle$ is a commutative monoid and
 - for all $a, b, c \in A$ it holds $a \cdot b \leq c \iff a \leq b \rightarrow c$.

- ▶ $\mathbf{A} = \langle A, \cdot, \rightarrow, \wedge, \vee, 0, 1 \rangle$ is a (bounded, commutative, integral) residuated lattice when
 - $\langle A, \wedge, \vee, 1, 0 \rangle$ is a bounded lattice (with order denoted \leq),
 - $\langle {\it A}, \cdot, 1
 angle$ is a commutative monoid and
 - for all $a, b, c \in A$ it holds $a \cdot b \leq c \iff a \leq b \rightarrow c$.

• A^c = expansion of **A** with constants { \overline{a} : $a \in A \setminus \{1, 0\}$ }.

- ▶ $\mathbf{A} = \langle A, \cdot, \rightarrow, \wedge, \vee, 0, 1 \rangle$ is a (bounded, commutative, integral) residuated lattice when
 - $\langle A, \wedge, \vee, 1, 0 \rangle$ is a bounded lattice (with order denoted \leq),
 - $\langle {\cal A}, \cdot, 1
 angle$ is a commutative monoid and
 - ▶ for all $a, b, c \in A$ it holds $a \cdot b \leq c \iff a \leq b \rightarrow c$.
- \mathbf{A}^c = expansion of \mathbf{A} with constants $\{\overline{a}: a \in A \setminus \{1, 0\}\}$.
- Fm = formula algebra built in the language of residuated lattices [+ constants].

- ▶ $\mathbf{A} = \langle A, \cdot, \rightarrow, \wedge, \vee, 0, 1 \rangle$ is a (bounded, commutative, integral) residuated lattice when
 - $\langle A, \wedge, \vee, 1, 0 \rangle$ is a bounded lattice (with order denoted \leq),
 - $\langle A, \cdot, 1
 angle$ is a commutative monoid and
 - ▶ for all $a, b, c \in A$ it holds $a \cdot b \leq c \iff a \leq b \rightarrow c$.
- \mathbf{A}^c = expansion of \mathbf{A} with constants $\{\overline{a}: a \in A \setminus \{1, 0\}\}$.
- Fm = formula algebra built in the language of residuated lattices [+ constants].
- $\Gamma \models_{\mathbf{A}} \varphi$ iff for any $h \in Hom(\mathbf{Fm}, \mathbf{A})$,

 $h([\Gamma]) \subseteq \{1\}$ implies $h(\varphi) = 1$.

- ▶ $\mathbf{A} = \langle A, \cdot, \rightarrow, \wedge, \vee, 0, 1 \rangle$ is a (bounded, commutative, integral) residuated lattice when
 - $\langle A, \wedge, \vee, 1, 0 \rangle$ is a bounded lattice (with order denoted \leq),
 - $\langle {\cal A}, \cdot, 1
 angle$ is a commutative monoid and
 - ▶ for all $a, b, c \in A$ it holds $a \cdot b \leq c \iff a \leq b \rightarrow c$.
- \mathbf{A}^c = expansion of \mathbf{A} with constants $\{\overline{a}: a \in A \setminus \{1, 0\}\}$.
- Fm = formula algebra built in the language of residuated lattices [+ constants].
- $\Gamma \models_{\mathbf{A}} \varphi$ iff for any $h \in Hom(\mathbf{Fm}, \mathbf{A})$,

 $h([\Gamma]) \subseteq \{1\}$ implies $h(\varphi) = 1$.

In the following A will be finite

▶ $\mathfrak{M} = \langle W, R, e \rangle$ is a **A-Kripke model** when W is a non-empty set, $R: W \times W \to A$ and $e: W \times V \to A$, extended uniquely in order to be in Hom(Fm, A) and $e(v, \Box \varphi) = \bigwedge_{w \in W} \{Rvw \to e(w, \varphi)\}$ $e(v, \Diamond \varphi) = \bigvee_{w \in W} \{Rvw \cdot e(w, \varphi)\}$ It is said crisp if $R \subseteq W \times W$.

- ▶ $\mathfrak{M} = \langle W, R, e \rangle$ is a **A-Kripke model** when W is a non-empty set, $R: W \times W \to A$ and $e: W \times \mathcal{V} \to A$, extended uniquely in order to be in Hom(Fm, A) and $e(v, \Box \varphi) = \bigwedge_{w \in W} \{Rvw \to e(w, \varphi)\}$ $e(v, \Diamond \varphi) = \bigvee_{w \in W} \{Rvw \cdot e(w, \varphi)\}$ It is said **crisp** if $R \subseteq W \times W$.
- ▶ $\Gamma \Vdash_{M_{\mathbf{A}}}^{l} \varphi$ iff for any **A**-Kripke model \mathfrak{M} , and any $v \in W$, if $e(v, [\Gamma]) \subseteq \{1\}$ then $e(v, \varphi) = 1$.

- ▶ $\mathfrak{M} = \langle W, R, e \rangle$ is a **A-Kripke model** when W is a non-empty set, $R: W \times W \to A$ and $e: W \times V \to A$, extended uniquely in order to be in Hom(Fm, A) and $e(v, \Box \varphi) = \bigwedge_{w \in W} \{Rvw \to e(w, \varphi)\}$ $e(v, \Diamond \varphi) = \bigvee_{w \in W} \{Rvw \cdot e(w, \varphi)\}$ It is said crisp if $R \subseteq W \times W$.
- ▶ $\Gamma \Vdash_{M_{\mathbf{A}}}^{l} \varphi$ iff for any **A**-Kripke model \mathfrak{M} , and any $v \in W$, if $e(v, [\Gamma]) \subseteq \{1\}$ then $e(v, \varphi) = 1$.
- ▶ $\Gamma \Vdash_{M_{A}}^{g} \varphi$ iff for any **A**-Kripke model \mathfrak{M} , if for all $v \in W$, it holds $e(v, [\Gamma]) \subseteq \{1\}$ then for all $v \in W$ it also holds $e(v, \varphi) = 1$.

- ▶ $\mathfrak{M} = \langle W, R, e \rangle$ is a **A-Kripke model** when W is a non-empty set, $R: W \times W \to A$ and $e: W \times V \to A$, extended uniquely in order to be in Hom(Fm, A) and $e(v, \Box \varphi) = \bigwedge_{w \in W} \{Rvw \to e(w, \varphi)\}$ $e(v, \Diamond \varphi) = \bigvee_{w \in W} \{Rvw \cdot e(w, \varphi)\}$ It is said crisp if $R \subseteq W \times W$.
- ▶ $\Gamma \Vdash_{M_{\mathbf{A}}}^{l} \varphi$ iff for any **A**-Kripke model \mathfrak{M} , and any $v \in W$, if $e(v, [\Gamma]) \subseteq \{1\}$ then $e(v, \varphi) = 1$.
- ▶ $\Gamma \Vdash_{M_{A}}^{g} \varphi$ iff for any **A**-Kripke model \mathfrak{M} , if for all $v \in W$, it holds $e(v, [\Gamma]) \subseteq \{1\}$ then for all $v \in W$ it also holds $e(v, \varphi) = 1$.
- Same valid formulas.

▶ No K. (Bou et. al) [K is valid only if Rvw is idempotent.]

(Some comparisons with classical K)

▶ No K. (Bou et. al) [K is valid only if Rvw is idempotent.]

▶ No $\Box = \neg \Diamond \neg$. [Only if \neg is involutive (eg., MV algebras)].

(Some comparisons with classical K)

- ▶ No K. (Bou et. al) [K is valid only if Rvw is idempotent.]
- No □ = ¬◇¬. [Only if ¬ is involutive (eg., MV algebras)]. Not known general interdefinability of modalities...

(Some comparisons with classical K)

- ▶ No K. (Bou et. al) [K is valid only if Rvw is idempotent.]
- No □ = ¬◇¬. [Only if ¬ is involutive (eg., MV algebras)]. Not known general interdefinability of modalities....

 Local classical modal logic enjoys DT => usually we say "modal logic" for the set of valid formulas or the global consequence.

No longer (necessarily) true -nor even LDT.

For \mathbf{A}^c finite RL with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no- \diamond fragment of $\Vdash_{M_{\mathbf{A}}(c)}^{I}$ (with constants). $\mathcal{L}_{\Box}^{\mathbf{A}^{(c)}} = A$ xiomatization for $\models_{\mathbf{A}^{(c)}} + \square 1$,

 $\mathcal{L}_{\square}^{\mathbf{A}^{(c)}} = \overset{\cdot}{\mathsf{A}} \text{xiomatization for } \models_{\mathbf{A}^{(c)}} +$

$$\blacktriangleright \ \Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi),$$

 $\mathcal{L}^{\mathbf{A}^{(c)}}_{\square} = \mathsf{Axiomatization} \text{ for } \models_{\mathbf{A}^{(c)}} +$

- ▶ □1,
- $\blacktriangleright \ \Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi),$
- $\blacktriangleright \ \Box(\overline{c} \to \varphi) \leftrightarrow (\overline{c} \to \Box \varphi),$

 $\mathcal{L}^{\mathbf{A}^{(c)}}_{\square} = \mathsf{Axiomatization} \text{ for } \models_{\mathbf{A}^{(c)}} +$

- ▶ □1,
- $\blacktriangleright \ \Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi),$
- $\blacktriangleright \ \Box(\overline{c} \to \varphi) \leftrightarrow (\overline{c} \to \Box \varphi),$
- $\blacktriangleright \vdash \varphi \to \psi \text{ implies} \vdash \Box \varphi \to \Box \psi.$

 $\mathcal{L}^{\mathbf{A}^{(c)}}_{\square} = \mathsf{A}\mathsf{xiomatization} \text{ for } \models_{\mathbf{A}^{(c)}} +$

$$\blacktriangleright \ \Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi),$$

$$\blacktriangleright \ \Box(\overline{c} \to \varphi) \leftrightarrow (\overline{c} \to \Box \varphi),$$

$$\blacktriangleright \vdash \varphi \to \psi \text{ implies} \vdash \Box \varphi \to \Box \psi.$$

(For SI residuated lattices (with a unique coatom), adding K and $\Box(x \lor \overline{c}) \to (\Box x \lor \overline{c})) \Longrightarrow$ completeness wrt. the no- \diamond fragment of $\Vdash_{C_{\mathbf{A}}}^{I}$.)

answer to Q1

For $\mathcal{L} = (\text{the previous A.S.}) + \Box(x \to \overline{c}) \to (\Diamond x \to \overline{c}), \mathcal{L} \text{ is complete with respect to } \Vdash_{M_{\mathbf{A}^{(c)}}}^{l} (\text{also concerning only idempotent/crisp frames completeness}).$

answer to Q1

For $\mathcal{L} = (\text{the previous A.S.}) + \Box(x \to \overline{c}) \to (\Diamond x \to \overline{c}), \mathcal{L} \text{ is complete with respect to } \Vdash_{M_{\mathbf{A}^{(c)}}}^{l} (\text{also concerning only idempotent/crisp frames completeness}).$

 Two RL equations concerning existing arbitrary infima/suprema are partially axiomatically represented

$$\bigwedge_{x\in X} x o y = \bigvee X o y$$
 and $\bigwedge_{x\in X} y o x = y o \bigwedge X$

answer to Q1

For $\mathcal{L} = (\text{the previous A.S.}) + \Box(x \to \overline{c}) \to (\Diamond x \to \overline{c}), \mathcal{L} \text{ is complete with respect to } \Vdash_{M_{\mathbf{A}^{(c)}}}^{l} (\text{also concerning only idempotent/crisp frames completeness}).$

 Two RL equations concerning existing arbitrary infima/suprema are partially axiomatically represented

$$\bigwedge_{x \in X} x \to y = \bigvee X \to y \qquad \text{ and } \bigwedge_{x \in X} y \to x = y \to \bigwedge X$$

 Some small modifications in the canonical model defined by Bou. et. al. suffice to check completeness. [in defining Rvw]

answer to Q1

For $\mathcal{L} = (\text{the previous A.S.}) + \Box(x \to \overline{c}) \to (\Diamond x \to \overline{c}), \mathcal{L} \text{ is complete with respect to } \Vdash_{M_{\mathbf{A}^{(c)}}}^{l} (\text{also concerning only idempotent/crisp frames completeness}).$

 Two RL equations concerning existing arbitrary infima/suprema are partially axiomatically represented

$$\bigwedge_{x \in X} x \to y = \bigvee X \to y \qquad \text{ and } \bigwedge_{x \in X} y \to x = y \to \bigwedge X$$

 Some small modifications in the canonical model defined by Bou. et. al. suffice to check completeness. [in defining *Rvw*] Same solution serves for the crisp case.

answer to Q2

 $\mathcal{L} + N_{\Box} (= \frac{\varphi \rightarrow \psi}{\Box \varphi \rightarrow \Box \psi})$ is complete with respect to $\Vdash_{M_{A^{(c)}}}^{g}$ (also considering the no- \diamond restriction and the idempotent cases)

answer to Q2

 $\mathcal{L} + N_{\Box} (= \frac{\varphi \rightarrow \psi}{\Box \varphi \rightarrow \Box \psi})$ is complete with respect to $\Vdash_{M_{A^{(c)}}}^{g}$ (also considering the no- \diamond restriction and the idempotent cases)

• Clear that
$$\Gamma \Vdash_{M_{\mathbf{A}}(c)}^{l} \varphi \Longrightarrow \Gamma \Vdash_{M_{\mathbf{A}}(c)}^{g} \varphi$$
.

answer to Q2

 $\mathcal{L} + N_{\Box} (= \frac{\varphi \rightarrow \psi}{\Box \varphi \rightarrow \Box \psi})$ is complete with respect to $\Vdash_{M_{\mathbf{A}^{(c)}}}^{g}$ (also considering the no- \diamond restriction and the idempotent cases)

 $\blacktriangleright \text{ Clear that } \Gamma \Vdash_{M_{\mathbf{A}^{(c)}}}^{l} \varphi \Longrightarrow \Gamma \Vdash_{M_{\mathbf{A}^{(c)}}}^{g} \varphi.$

▶ Thus soundness follows easily: $\Gamma \vdash_{\mathcal{L}+N_{\square}} \varphi \Longrightarrow \Gamma \Vdash_{M_{\mathbf{A}^{(c)}}}^{g}$ (all axioms from \mathcal{L} are sound in the global deduction, and so is N_{\square} .)

answer to Q2

 $\mathcal{L} + N_{\Box} (= \frac{\varphi \rightarrow \psi}{\Box \varphi \rightarrow \Box \psi})$ is complete with respect to $\Vdash_{M_{A^{(c)}}}^{g}$ (also considering the no- \diamond restriction and the idempotent cases)

- $\blacktriangleright \text{ Clear that } \Gamma \Vdash_{M_{\mathbf{A}^{(c)}}}^{l} \varphi \Longrightarrow \Gamma \Vdash_{M_{\mathbf{A}^{(c)}}}^{g} \varphi.$
- ► Thus soundness follows easily: $\Gamma \vdash_{\mathcal{L}+N_{\square}} \varphi \Longrightarrow \Gamma \Vdash_{M_{\mathbf{A}^{(c)}}}^{g}$ (all axioms from \mathcal{L} are sound in the global deduction, and so is N_{\square} .)

For the completeness direction, we will build appropriated canonical models.

Assume $\Gamma \not\vdash_{\mathcal{L}+\mathcal{N}_{\square}} \varphi$. We define the Γ -canonical model by:

•
$$W = \{h \in Hom(Fm, \mathbf{A}^{(c)}): h(C_{\mathcal{L}+N_{\Box}}(\Gamma)) = 1\},\$$

On the canonical model(s)

Assume $\Gamma \not\vdash_{\mathcal{L}+\mathcal{N}_{\Box}} \varphi$. We define the Γ -canonical model by:

- $W = \{h \in Hom(Fm, A^{(c)}): h(C_{\mathcal{L}+N_{\Box}}(\Gamma)) = 1\},\$
- $e(h, \varphi) = h(\varphi)$,

On the canonical model(s)

Assume $\Gamma \not\vdash_{\mathcal{L}+\mathcal{N}_{\square}} \varphi$. We define the Γ -canonical model by:

►
$$W = \{h \in Hom(Fm, A^{(c)}): h(C_{\mathcal{L}+N_{\square}}(\Gamma)) = 1\},\$$

•
$$e(h, \varphi) = h(\varphi)$$
,

•
$$Rhg = \bigwedge_{\psi \in MFm} \{ ((h(\Box \psi) \to g(\psi)) \land (g(\psi) \to h(\Diamond \psi))) \},$$

On the canonical model(s)

Assume $\Gamma \not\vdash_{\mathcal{L}+N_{\Box}} \varphi$. We define the Γ -canonical model by:

►
$$W = \{h \in Hom(Fm, A^{(c)}): h(C_{\mathcal{L}+N_{\square}}(\Gamma)) = 1\},\$$

▶
$$e(h, \varphi) = h(\varphi),$$

▶ $Rhg = \bigwedge_{\psi \in MFm} \{((h(\Box \psi) \to g(\psi)) \land (g(\psi) \to h(\Diamond \psi)))\},$

(before proving the above is indeed an $A^{(c)}$ -Kripke model...)

Assume $\Gamma \not\vdash_{\mathcal{L}+N_{\Box}} \varphi$. We define the Γ -canonical model by:

►
$$W = \{h \in Hom(Fm, A^{(c)}) : h(C_{\mathcal{L}+N_{\Box}}(\Gamma)) = 1\},\$$

•
$$e(h, \varphi) = h(\varphi),$$

• $Rhg = \bigwedge_{\psi \in MFm} \{ ((h(\Box \psi) \to g(\psi)) \land (g(\psi) \to h(\Diamond \psi))) \},$

(before proving the above is indeed an $A^{(c)}$ -Kripke model...)

1. By definition of W and e, the above is a global model for Γ ,

Assume $\Gamma \not\vdash_{\mathcal{L}+\mathcal{N}_{\Box}} \varphi$. We define the Γ -canonical model by:

- ► $W = \{h \in Hom(Fm, A^{(c)}): h(C_{\mathcal{L}+N_{\square}}(\Gamma)) = 1\},\$
- ► $e(h, \varphi) = h(\varphi),$ ► $Rhg = \bigwedge \{((h(\Box \psi) \to g(\psi)) \land (g(\psi) \to h(\Diamond \psi)))\},\$
- $\mathsf{Rhg} = \bigwedge_{\psi \in \mathsf{MFm}} \{ ((\mathsf{h}(\sqcup \psi) \to \mathsf{g}(\psi)) \land (\mathsf{g}(\psi) \to \mathsf{h}(\Diamond \psi))) \},$

(before proving the above is indeed an $A^{(c)}$ -Kripke model...)

- 1. By definition of W and e, the above is a global model for Γ ,
- 2. $\Gamma \not\models_{\mathcal{L}+N_{\square}} \varphi \implies C_{\mathcal{L}+N_{\square}}(\Gamma) \not\models_{\mathbf{A}^{(c)}} \varphi$, so there is $h \in W$ for which $h(\varphi) < 1$.

Assume $\Gamma \not\vdash_{\mathcal{L}+\mathcal{N}_{\Box}} \varphi$. We define the Γ -canonical model by:

- ► $W = \{h \in Hom(Fm, A^{(c)}): h(C_{\mathcal{L}+N_{\square}}(\Gamma)) = 1\},\$
- $e(h,\varphi) = h(\varphi),$
- $\blacktriangleright Rhg = \bigwedge_{\psi \in MFm} \{ ((h(\Box \psi) \to g(\psi)) \land (g(\psi) \to h(\Diamond \psi))) \},\$

(before proving the above is indeed an $A^{(c)}$ -Kripke model...)

- 1. By definition of W and e, the above is a global model for Γ ,
- 2. $\Gamma \not\models_{\mathcal{L}+N_{\square}} \varphi \implies C_{\mathcal{L}+N_{\square}}(\Gamma) \not\models_{\mathbf{A}^{(c)}} \varphi$, so there is $h \in W$ for which $h(\varphi) < 1$.
- 3. So this model would indeed serve to prove $\Gamma \not\Vdash_{M_{\mathbf{A}}^{(c)}}^{g} \varphi$.

Is the evaluation given a modal evaluation?

Is the evaluation given a modal evaluation?

 Prop. formulas are immediate, since the worlds are propositional homomorphisms.

Is the evaluation given a modal evaluation?

 Prop. formulas are immediate, since the worlds are propositional homomorphisms.

►
$$h(\Box \varphi) \stackrel{?}{=} \bigwedge_{g \in W} \{Rhg \to g(\varphi)\}$$

 \blacktriangleright \leq direction is easy:

$$egin{aligned} & Rhg
ightarrow g(arphi) = \ & \bigwedge_{\psi \in \mathit{MFm}} \{ ((h(\Box \psi)
ightarrow g(\psi)) \wedge g(\psi)
ightarrow h(\diamondsuit \psi))) \}
ightarrow h(arphi) \geq \ & (h(\Box arphi)
ightarrow g(arphi))
ightarrow g(arphi))
ightarrow g(arphi) \geq \ & h(\Box arphi) \end{aligned}$$

Witness lemma

 $Rhg \leq g(\varphi)$ for all $g \in W$ implies $h(\Box \varphi) = 1$.

Witness lemma

 $Rhg \leq g(\varphi)$ for all $g \in W$ implies $h(\Box \varphi) = 1$.

Fix $\tau(\psi) = (\overline{h(\Box\psi)} \to \psi) \land (\psi \to \overline{h(\Diamond\psi)}).$

Witness lemma

 $Rhg \leq g(\varphi)$ for all $g \in W$ implies $h(\Box \varphi) = 1$.

$$\begin{aligned} \mathsf{Fix} \ \tau(\psi) &= (\overline{h(\Box\psi)} \to \psi) \land (\psi \to \overline{h(\Diamond\psi)}). \\ \bullet \ \Rightarrow \ \mathsf{for \ each} \ c \in \mathcal{A}, \\ \mathcal{C}_{\mathcal{L}+N_{\Box}}(\Gamma), \{\overline{c} \to \tau(\psi)\}_{\psi \in \mathsf{MFm}} \models_{\mathbf{A}} \overline{c} \to \varphi \end{aligned} (1)$$

Witness lemma

 $Rhg \leq g(\varphi)$ for all $g \in W$ implies $h(\Box \varphi) = 1$.

Fix
$$\tau(\psi) = (\overline{h(\Box\psi)} \to \psi) \land (\psi \to \overline{h(\Diamond\psi)}).$$

 $\blacktriangleright \Rightarrow \text{ for each } c \in A,$
 $C_{\mathcal{L}+N_{\Box}}(\Gamma), \{\overline{c} \to \tau(\psi)\}_{\psi \in MFm} \models_{\mathbf{A}} \overline{c} \to \varphi$ (1)
 $\blacktriangleright A \text{ finite, so for each } c \in A \text{ there is a finite } \Sigma_{c} \subset MFm \text{ for}$

which (1) $\iff C_{\mathcal{L}+\mathcal{N}_{\Box}}(\Gamma), \{\overline{c} \to \tau(\psi)\}_{\psi \in \Sigma_{c}} \models_{\mathbf{A}} \overline{c} \to \varphi$

Witness lemma

 $Rhg \leq g(\varphi)$ for all $g \in W$ implies $h(\Box \varphi) = 1$.

Fix
$$\tau(\psi) = (\overline{h(\Box\psi)} \to \psi) \land (\psi \to \overline{h(\Diamond\psi)}).$$

 \Rightarrow for each $c \in A$,
 $C_{\mathcal{L}+N_{\Box}}(\Gamma), \{\overline{c} \to \tau(\psi)\}_{\psi \in MFm} \models_{\mathbf{A}} \overline{c} \to \varphi$ (1)
 \Rightarrow A finite, so for each $c \in A$ there is a finite $\Sigma_c \subset MFm$ for which (1) $\iff C_{\mathcal{L}+N_{\Box}}(\Gamma), \{\overline{c} \to \tau(\psi)\}_{\psi \in \Sigma_c} \models_{\mathbf{A}} \overline{c} \to \varphi$

► Taking
$$\Sigma = \bigcup_{c \in A} \Sigma_c$$
, we obtain $C_{\mathcal{L}+N_{\square}}(\Gamma) \models_{\mathbf{A}} \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi$.

Witness lemma

 $Rhg \leq g(\varphi)$ for all $g \in W$ implies $h(\Box \varphi) = 1$.

Fix
$$\tau(\psi) = (\overline{h(\Box\psi)} \to \psi) \land (\psi \to \overline{h(\Diamond\psi)}).$$

 \Rightarrow for each $c \in A$,
 $C_{\mathcal{L}+N_{\Box}}(\Gamma), \{\overline{c} \to \tau(\psi)\}_{\psi \in MFm} \models_{\mathbf{A}} \overline{c} \to \varphi$ (1)
 \bullet A finite, so for each $c \in A$ there is a finite $\Sigma_c \subset MFm$ for
which (1) $\iff C_{\mathcal{L}+N_{\Box}}(\Gamma), \{\overline{c} \to \tau(\psi)\}_{\psi \in \Sigma_c} \models_{\mathbf{A}} \overline{c} \to \varphi$
 \bullet Taking $\Sigma = \bigcup_{c \in A} \Sigma_c$, we obtain $C_{\mathcal{L}+N_{\Box}}(\Gamma) \models_{\mathbf{A}} \bigwedge_{\psi \in \Sigma} \tau(\psi) \to \varphi.$
 \bullet Thus, now $\Gamma \vdash_{\mathcal{L}+N_{\Box}} \bigwedge_{\psi \in \Sigma} \tau(\psi) \to \varphi$. By N_{\Box} we get
 $\Gamma \vdash_{\mathcal{L}+N_{\Box}} \Box(\bigwedge_{\psi \in \Sigma} \tau(\psi)) \to \Box \varphi.$

Witness lemma

 $Rhg \leq g(\varphi)$ for all $g \in W$ implies $h(\Box \varphi) = 1$.

Fix
$$\tau(\psi) = (\overline{h(\Box\psi)} \to \psi) \land (\psi \to \overline{h(\Diamond\psi)}).$$

 \Rightarrow for each $c \in A$,
 $C_{\mathcal{L}+N_{\Box}}(\Gamma), \{\overline{c} \to \tau(\psi)\}_{\psi \in MFm} \models_{\mathbf{A}} \overline{c} \to \varphi$ (1)
 \Rightarrow A finite, so for each $c \in A$ there is a finite $\Sigma_c \subset MFm$ for
which (1) $\iff C_{\mathcal{L}+N_{\Box}}(\Gamma), \{\overline{c} \to \tau(\psi)\}_{\psi \in \Sigma_c} \models_{\mathbf{A}} \overline{c} \to \varphi$
 \Rightarrow Taking $\Sigma = \bigcup_{c \in A} \Sigma_c$, we obtain $C_{\mathcal{L}+N_{\Box}}(\Gamma) \models_{\mathbf{A}} \bigwedge_{\psi \in \Sigma} \tau(\psi) \to \varphi.$
 \Rightarrow Thus, now $\Gamma \vdash_{\mathcal{L}+N_{\Box}} \bigwedge_{\psi \in \Sigma} \tau(\psi) \to \varphi$. By N_{\Box} we get
 $\Gamma \vdash_{\mathcal{L}+N_{\Box}} \Box(\bigwedge_{\psi \in \Sigma} \tau(\psi)) \to \Box\varphi.$

• Using the axioms of \mathcal{L} , is easy to prove that $h(\bigwedge_{\psi \in \Sigma} \Box \tau(\psi)) = 1$, and thus $h(\Box \varphi) = 1$ too.

Witness Lemma suffices to prove $h(\Box \varphi) \ge \bigwedge_{g \in W} \{Rhg \to g(\varphi)\}.$

Witness Lemma suffices to prove $h(\Box \varphi) \ge \bigwedge_{g \in W} \{Rhg \to g(\varphi)\}.$

▶ If $c \leq Rhg \rightarrow g(\varphi)$ for all $g \in W$, then $Rhg \rightarrow g(\overline{c} \rightarrow \varphi) = 1$ for all $g \in W$.

Witness Lemma suffices to prove $h(\Box \varphi) \ge \bigwedge_{g \in W} \{Rhg \to g(\varphi)\}.$

- ▶ If $c \leq Rhg \rightarrow g(\varphi)$ for all $g \in W$, then $Rhg \rightarrow g(\overline{c} \rightarrow \varphi) = 1$ for all $g \in W$.
- The Lemma leads to $1 = h(\Box(\overline{c} \to \varphi)) = c \to h(\Box \varphi)$.

Witness Lemma suffices to prove $h(\Box \varphi) \ge \bigwedge_{g \in W} \{Rhg \to g(\varphi)\}.$

- ▶ If $c \leq Rhg \rightarrow g(\varphi)$ for all $g \in W$, then $Rhg \rightarrow g(\overline{c} \rightarrow \varphi) = 1$ for all $g \in W$.
- The Lemma leads to $1 = h(\Box(\overline{c} \to \varphi)) = c \to h(\Box \varphi)$.

$$h(\Diamond \varphi) = \bigvee_{g \in W} \{Rhg \cdot g(\varphi)\}$$
 is proven similarly.

 \blacktriangleright \geq is now the easy one by definition.

Witness Lemma suffices to prove $h(\Box \varphi) \ge \bigwedge_{g \in W} \{Rhg \to g(\varphi)\}.$

- If $c \leq Rhg \rightarrow g(\varphi)$ for all $g \in W$, then $Rhg \rightarrow g(\overline{c} \rightarrow \varphi) = 1$ for all $g \in W$.
- The Lemma leads to $1 = h(\Box(\overline{c} \to \varphi)) = c \to h(\Box \varphi)$.

$$h(\Diamond \varphi) = \bigvee_{g \in W} \{Rhg \cdot g(\varphi)\} \text{ is proven similarly.}$$

- \blacktriangleright \geq is now the easy one by definition.
- ▶ If $c \ge Rhg \cdot g(\varphi)$ for all $g \in W$, then $Rhg \to g(\varphi \to \overline{c}) = 1$ for all $g \in W$.

Witness Lemma suffices to prove $h(\Box \varphi) \ge \bigwedge_{g \in W} \{Rhg \to g(\varphi)\}.$

- ▶ If $c \leq Rhg \rightarrow g(\varphi)$ for all $g \in W$, then $Rhg \rightarrow g(\overline{c} \rightarrow \varphi) = 1$ for all $g \in W$.
- ▶ The Lemma leads to $1 = h(\Box(\overline{c} \to \varphi)) = c \to h(\Box \varphi)$.

$$h(\Diamond \varphi) = \bigvee_{g \in W} \{Rhg \cdot g(\varphi)\}$$
 is proven similarly.

- \blacktriangleright \geq is now the easy one by definition.
- ▶ If $c \ge Rhg \cdot g(\varphi)$ for all $g \in W$, then $Rhg \to g(\varphi \to \overline{c}) = 1$ for all $g \in W$.
- Witness Lemma leads to $1 = h(\Box(\varphi \to \overline{c})) = h(\Diamond \varphi) \to c$.

Witness Lemma suffices to prove $h(\Box \varphi) \ge \bigwedge_{g \in W} \{Rhg \to g(\varphi)\}.$

- ▶ If $c \leq Rhg \rightarrow g(\varphi)$ for all $g \in W$, then $Rhg \rightarrow g(\overline{c} \rightarrow \varphi) = 1$ for all $g \in W$.
- ▶ The Lemma leads to $1 = h(\Box(\overline{c} \to \varphi)) = c \to h(\Box \varphi)$.

$$h(\Diamond \varphi) = \bigvee_{g \in W} \{Rhg \cdot g(\varphi)\}$$
 is proven similarly.

- \blacktriangleright \geq is now the easy one by definition.
- ▶ If $c \ge Rhg \cdot g(\varphi)$ for all $g \in W$, then $Rhg \to g(\varphi \to \overline{c}) = 1$ for all $g \in W$.
- Witness Lemma leads to $1 = h(\Box(\varphi \to \overline{c})) = h(\Diamond \varphi) \to c$.

Altogether prove completeness of $\mathcal{L} + N_{\Box}$ with respect to $\Vdash_{M_{\mathbf{A}}(c)}^{g}$.

*Let a theory T be *fully-determined* if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$.

*Let a theory T be *fully-determined* if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$. For Q complete wrt. $\Vdash_{M_{\mathbf{A}}(c)}^{I}$, define the canonical model for Γ by:

► $W = \{T : T \text{ is fully-determined maximally consistent } \models_{\mathbf{A}}^{(c)}$ -theory and $C_{Q+N_{\square}}(\Gamma) \subseteq T\}$,

*Let a theory T be *fully-determined* if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$. For Q complete wrt. $\Vdash'_{M_{\mathbf{A}}(c)}$, define the canonical model for Γ by:

► $W = \{T : T \text{ is fully-determined maximally consistent } \models_{\mathbf{A}}^{(c)}$ -theory and $C_{Q+N_{\square}}(\Gamma) \subseteq T\}$,

•
$$e(T,\varphi) = c_{\varphi}$$
,

*Let a theory T be *fully-determined* if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$. For Q complete wrt. $\Vdash_{M_{\mathbf{A}}(c)}^{I}$, define the canonical model for Γ by:

► $W = \{T : T \text{ is fully-determined maximally consistent } \models_{\mathbf{A}}^{(c)}$ -theory and $C_{Q+N_{\square}}(\Gamma) \subseteq T\}$,

•
$$e(T, \varphi) = c_{\varphi}$$
,

 $\blacktriangleright RTS = \bigwedge_{\psi \in MFm} \{ ((e(T, \Box \psi) \to e(S, \psi)) \land (e(S,)\psi) \to e(T, \Diamond \psi))) \},$

*Let a theory T be *fully-determined* if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$. For Q complete wrt. $\Vdash_{M_{\mathbf{A}}(c)}^{I}$, define the canonical model for Γ by:

► $W = \{T : T \text{ is fully-determined maximally consistent } \models_{\mathbf{A}}^{(c)}$ -theory and $C_{Q+N_{\square}}(\Gamma) \subseteq T\}$,

•
$$e(T,\varphi) = c_{\varphi}$$
,

 $\blacktriangleright RTS = \bigwedge_{\psi \in MFm} \{ ((e(T, \Box \psi) \to e(S, \psi)) \land (e(S,)\psi) \to e(T, \Diamond \psi))) \},$

*Truth lemma as before (ingredients are essentially the same).

*Let a theory T be *fully-determined* if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$. For Q complete wrt. $\Vdash'_{M_{\mathbf{A}}(c)}$, define the canonical model for Γ by:

► $W = \{T : T \text{ is fully-determined maximally consistent } \models_{\mathbf{A}}^{(c)}$ -theory and $C_{Q+N_{\square}}(\Gamma) \subseteq T\}$,

•
$$e(T,\varphi) = c_{\varphi}$$
,

$$\blacktriangleright RTS = \bigwedge_{\psi \in MFm} \{ ((e(T, \Box \psi) \to e(S, \psi)) \land (e(S,)\psi) \to e(T, \Diamond \psi)) \} \}$$

*Truth lemma as before (ingredients are essentially the same). * $\Gamma \not\vdash_{\mathcal{Q}+\mathcal{N}_{\Box}} \varphi$ iff $C_{\mathcal{Q}+\mathcal{N}_{\Box}}(\Gamma) \not\models_{\mathbf{A}^{(c)}} \varphi$.

*Let a theory T be *fully-determined* if for each formula φ there is a unique $c_{\varphi} \in A$ such that $\varphi \leftrightarrow \overline{c_{\varphi}} \in T$. For Q complete wrt. $\Vdash_{M_{\mathbf{A}}(c)}^{I}$, define the canonical model for Γ by:

► $W = \{T : T \text{ is fully-determined maximally consistent } \models_{\mathbf{A}}^{(c)}$ -theory and $C_{Q+N_{\square}}(\Gamma) \subseteq T\}$,

•
$$e(T,\varphi) = c_{\varphi}$$
,

$$\mathsf{RTS} = \bigwedge_{\psi \in \mathsf{MFm}} \{ ((\mathsf{e}(\mathsf{T}, \Box \psi) \to \mathsf{e}(\mathsf{S}, \psi)) \land (\mathsf{e}(\mathsf{S},)\psi) \to \mathsf{e}(\mathsf{T}, \Diamond \psi)) \} \}$$

*Truth lemma as before (ingredients are essentially the same). * $\Gamma \not\vdash_{\mathcal{Q}+\mathcal{N}_{\Box}} \varphi$ iff $C_{\mathcal{Q}+\mathcal{N}_{\Box}}(\Gamma) \not\models_{\mathbf{A}^{(c)}} \varphi$.

Answer to Q3 - constants-

If Q is an axiomatic system complete with respect to $\Vdash_{M_{\mathbf{A}}^{(c)}}^{l}$, then $Q + N_{\Box}$ is complete with respect to $\Vdash_{M_{\mathbf{A}}^{(c)}}^{g}$.

If Q is an axiomatic system complete with respect to $\Vdash_{M_{A}}^{l}$, then $Q + N_{\Box}$ is complete with respect to $\Vdash_{M_{A}}^{g}$.

Recall soundness was general.

If Q is an axiomatic system complete with respect to $\Vdash_{M_{A}}^{l}$, then $Q + N_{\Box}$ is complete with respect to $\Vdash_{M_{A}}^{g}$.

Recall soundness was general.

• Let \mathcal{L}^c be the axioms including constants from \mathcal{L} . Then $\mathcal{Q} + \mathcal{L}^c$ is complete with respect to $\Vdash_{M_{\mathbf{a}}(c)}$

If Q is an axiomatic system complete with respect to $\Vdash_{M_{A}}^{l}$, then $Q + N_{\Box}$ is complete with respect to $\Vdash_{M_{A}}^{g}$.

Recall soundness was general.

- Let \mathcal{L}^c be the axioms including constants from \mathcal{L} . Then $\mathcal{Q} + \mathcal{L}^c$ is complete with respect to $\Vdash_{M_{\mathbf{a}}(c)}$
- By induction on the derivation, if Γ, φ don't have constants then Γ ⊢_{Q+L^c+N_□} φ implies Γ ⊢_{Q+N_□} φ.

If Q is an axiomatic system complete with respect to $\Vdash_{M_{\mathbf{A}}}^{l}$, then $Q + N_{\Box}$ is complete with respect to $\Vdash_{M_{\mathbf{A}}}^{g}$.

Recall soundness was general.

- Let \mathcal{L}^c be the axioms including constants from \mathcal{L} . Then $\mathcal{Q} + \mathcal{L}^c$ is complete with respect to $\Vdash_{M_{\mathbf{a}}(c)}$
- By induction on the derivation, if Γ, φ don't have constants then Γ ⊢_{Q+L^c+N_□} φ implies Γ ⊢_{Q+N_□} φ.

► Thus
$$\Gamma \not\vdash_{\mathcal{Q}+N_{\square}} \varphi \implies \Gamma \not\vdash_{\mathcal{Q}+\mathcal{L}^{c}+N_{\square}} \varphi \iff \Gamma \not\Vdash_{M_{\mathbf{A}^{(c)}}} \varphi$$
. It is immediate to check that, for Γ, φ without constants,
 $\Gamma \Vdash_{M_{\mathbf{A}^{(c)}}} \varphi \iff \Gamma \Vdash_{M_{\mathbf{A}}} \varphi$.

 Q3 without limitation to finite algebras seems likely to hold. However, the current proofs cannot surpass the lack of DT.

Very related questions

- Q3 without limitation to finite algebras seems likely to hold.
 However, the current proofs cannot surpass the lack of DT.
- Axiomatizations without constant symbols are not clear out of very particular case studies (Ł, Gödel).

Very related questions

- Q3 without limitation to finite algebras seems likely to hold.
 However, the current proofs cannot surpass the lack of DT.
- Axiomatizations without constant symbols are not clear out of very particular case studies (Ł, Gödel).
- Infinitarity of the semantical consequence relation seems to arise in the modal axiomatizations (even if there exists AS for the finitary companion at the propositional level)...

thank you!