Modal logics over finite residuated lattices

Amanda Vidal

Institute of Computer Science, Czech Academy of Sciences

Topology, Algebra and Categories in Logic 2017, Prague, Czech Republic,

June 29, 2017
In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices.
In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices. Propose several open problems. We will address some of them
In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices. Propose several open problems. We will address some of them
 - only □ operator -with the usual lattice-valued interpretation
 Q1. Both □ and ◊ (! ◊x ≠ ¬□¬x)
In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices. Propose several open problems. We will address some of them
 - only □ operator -with the usual lattice-valued interpretation
 Q1. Both □ and ◊ (! ◊x ≠ ¬□¬x)
 - local deduction, global over crisp frames
 Q2. (general) Global deduction
In particular...

- Modal expansions of lattice-based logics are in phase of development and understanding.
- (Bou et. al., 2011) does a general study of axiomatizations of these logics over finite residuated lattices. Propose several open problems. We will address some of them:
 - only □ operator -with the usual lattice-valued interpretation
 Q1. Both □ and ◇ (! ◇x ≠ ¬□¬x)
 - local deduction, global over crisp frames
 Q2. (general) Global deduction
 - Q3. Is an axiomatization for the Global modal logic an axiomatization for the local one + \(\frac{x \rightarrow y}{\Box x \rightarrow \Box y} \)?
 (Q3'). Similar question restricting to crisp accessibility and adding \(\frac{x}{\Box x} \)
Preliminaries

- $A = \langle A, \cdot, \to, \land, \lor, 0, 1 \rangle$ is a (bounded, commutative, integral) residuated lattice when
 - $\langle A, \land, \lor, 1, 0 \rangle$ is a bounded lattice (with order denoted \leq),
 - $\langle A, \cdot, 1 \rangle$ is a commutative monoid and
 - for all $a, b, c \in A$ it holds $a \cdot b \leq c \iff a \leq b \to c$.

- $A_{\text{c}} = \text{expansion of } A \text{ with constants } \{ a : a \in A \{ 1, 0 \} \}$.

- $F_{\text{m}} = \text{formula algebra built in the language of residuated lattices } [+ \text{ constants}]$.

- $\Gamma | \phi \iff \text{for any } h \in \text{Hom}(F_{\text{m}}, A)$, $h(\Gamma) \subseteq \{ 1 \}$ implies $h(\phi) = 1$.

In the following A will be finite.
\(\mathbf{A} = \langle A, \cdot, \rightarrow, \wedge, \vee, 0, 1 \rangle \) is a (bounded, commutative, integral) **residuated lattice** when

- \(\langle A, \wedge, \vee, 1, 0 \rangle \) is a bounded lattice (with order denoted \(\leq \)),
- \(\langle A, \cdot, 1 \rangle \) is a commutative monoid and
- for all \(a, b, c \in A \) it holds \(a \cdot b \leq c \iff a \leq b \rightarrow c \).

\(\mathbf{A}^c = \) expansion of \(\mathbf{A} \) with constants \(\{ \overline{a} : a \in A \setminus \{1, 0\} \} \).
A = ⟨A, ⋅, →, ∧, ∨, 0, 1⟩ is a (bounded, commutative, integral) residuated lattice when

- ⟨A, ∧, ∨, 1, 0⟩ is a bounded lattice (with order denoted ≤),
- ⟨A, ⋅, 1⟩ is a commutative monoid and
- for all a, b, c ∈ A it holds a ⋅ b ≤ c ⇐⇒ a ≤ b → c.

A^c = expansion of A with constants \{\overline{a}: a ∈ A \setminus \{1, 0\}\}.

Fm = formula algebra built in the language of residuated lattices [+ constants].
A = \langle A, \cdot, \rightarrow, \land, \lor, 0, 1 \rangle is a (bounded, commutative, integral) residuated lattice when

\begin{itemize}
 \item \langle A, \land, \lor, 1, 0 \rangle is a bounded lattice (with order denoted \leq),
 \item \langle A, \cdot, 1 \rangle is a commutative monoid and
 \item for all \(a, b, c \in A \) it holds \(a \cdot b \leq c \iff a \leq b \rightarrow c \).
\end{itemize}

\(A^c \) = expansion of \(A \) with constants \(\{\bar{a} : a \in A \setminus \{1, 0\}\} \).

\(\text{Fm} = \) formula algebra built in the language of residuated lattices [+ constants].

\(\Gamma \models_A \varphi \) iff for any \(h \in \text{Hom}(\text{Fm}, A) \),

\[h([\Gamma]) \subseteq \{1\} \text{ implies } h(\varphi) = 1. \]
Preliminaries

\[A = \langle A, \cdot, \rightarrow, \wedge, \vee, 0, 1 \rangle \] is a (bounded, commutative, integral) residuated lattice when

- \[\langle A, \wedge, \vee, 1, 0 \rangle \] is a bounded lattice (with order denoted \(\leq \)),
- \[\langle A, \cdot, 1 \rangle \] is a commutative monoid and
- for all \(a, b, c \in A \) it holds \(a \cdot b \leq c \iff a \leq b \rightarrow c \).

\[A^c = \text{expansion of } A \text{ with constants } \{ \overline{a} : a \in A \setminus \{1, 0\} \}. \]

\[Fm = \text{formula algebra built in the language of residuated lattices [\(+ constants\].} \]

\[\Gamma \models_{A} \varphi \text{ iff for any } h \in \text{Hom}(Fm, A), \]

\[h([\Gamma]) \subseteq \{1\} \text{ implies } h(\varphi) = 1. \]

In the following \(A \) will be finite
\(\mathcal{M} = \langle W, R, e \rangle \) is a **A-Kripke model** when \(W \) is a non-empty set, \(R: W \times W \rightarrow A \) and \(e: W \times \mathcal{V} \rightarrow A \), extended uniquely in order to be in \(\text{Hom}(\text{Fm}, A) \) and
\[
e(v, \Box \varphi) = \bigwedge_{w \in W} \{ Rvw \rightarrow e(w, \varphi) \} \quad e(v, \Diamond \varphi) = \bigvee_{w \in W} \{ Rvw \cdot e(w, \varphi) \}
\]
It is said **crisp** if \(R \subseteq W \times W \).
\[M = \langle W, R, e \rangle \] is a \textbf{A-Kripke model} when \(W \) is a non-empty set, \(R : W \times W \to A \) and \(e : W \times \mathcal{V} \to A \), extended uniquely in order to be in \(\text{Hom} (\text{Fm}, A) \) and

\[
e(v, \square \varphi) = \bigwedge_{w \in W} \{ Rvw \to e(w, \varphi) \} \quad e(v, \Diamond \varphi) = \bigvee_{w \in W} \{ Rvw \cdot e(w, \varphi) \}
\]

It is said \textbf{crisp} if \(R \subseteq W \times W \).

\[\Gamma \vDash_{M_A} \varphi \text{ iff for any A-Kripke model } M, \text{ and any } v \in W, \text{ if } e(v, [\Gamma]) \subseteq \{1\} \text{ then } e(v, \varphi) = 1. \]
\(\mathcal{M} = \langle W, R, e \rangle \) is a \textbf{A-Kripke model} when \(W \) is a non-empty set, \(R: W \times W \rightarrow A \) and \(e: W \times V \rightarrow A \), extended uniquely in order to be in \(\text{Hom}(\text{Fm}, A) \) and

\[
e(v, \Box \varphi) = \bigwedge_{w \in W} \{ Rvw \rightarrow e(w, \varphi) \} \quad e(v, \Diamond \varphi) = \bigvee_{w \in W} \{ Rvw \cdot e(w, \varphi) \}
\]

It is said \textbf{crisp} if \(R \subseteq W \times W \).

\(\Gamma \models_{M_A}^I \varphi \) iff for any \textbf{A-Kripke model} \(\mathcal{M} \), and any \(v \in W \), if \(e(v, [\Gamma]) \subseteq \{1\} \) then \(e(v, \varphi) = 1 \).

\(\Gamma \models_{M_A}^g \varphi \) iff for any \textbf{A-Kripke model} \(\mathcal{M} \), if for all \(v \in W \), it holds \(e(v, [\Gamma]) \subseteq \{1\} \) then for all \(v \in W \) it also holds \(e(v, \varphi) = 1 \).
\(\mathcal{M} = \langle W, R, e \rangle \) is an **A-Kripke model** when \(W \) is a non-empty set, \(R : W \times W \rightarrow A \) and \(e : W \times V \rightarrow A \), extended uniquely in order to be in \(\text{Hom}(Fm, A) \) and
\[
e(v, \square \varphi) = \bigwedge_{w \in W} \{ Rvw \rightarrow e(w, \varphi) \} \quad e(v, \Diamond \varphi) = \bigvee_{w \in W} \{ Rvw \cdot e(w, \varphi) \}
\]
It is said **crisp** if \(R \subseteq W \times W \).

\(\Gamma \models_{M_A} \varphi \) iff for any A-Kripke model \(\mathcal{M} \), and any \(v \in W \), if \(e(v, [\Gamma]) \subseteq \{1\} \) then \(e(v, \varphi) = 1 \).

\(\Gamma \models_{M_A}^g \varphi \) iff for any A-Kripke model \(\mathcal{M} \), if for all \(v \in W \), it holds \(e(v, [\Gamma]) \subseteq \{1\} \) then for all \(v \in W \) it also holds \(e(v, \varphi) = 1 \).

Same valid formulas.
Some comparisons with classical K

- No K. (Bou et. al) [K is valid only if Rvw is idempotent.]
(Some comparisons with classical \(K\))

- No \(K\). (Bou et. al) \([K \text{ is valid only if } Rvw \text{ is idempotent.}]\)

- No \(\Box = \neg \Diamond \neg\). \([\text{Only if } \neg \text{ is involutive (eg., MV algebras)}]\).
(Some comparisons with classical K)

- No K. (Bou et al) [K is valid only if Rvw is idempotent.]

- No $\square = \neg \lozenge \neg$. [Only if \neg is involutive (eg., MV algebras)]. Not known general interdefinability of modalities...
Some comparisons with classical K)

- No K. (Bou et. al) [K is valid only if Rvw is idempotent.]

- No $\Box = \neg \Diamond \neg$. [Only if \neg is involutive (eg., MV algebras)]. Not known general interdefinability of modalities....

- Local classical modal logic enjoys $DT \implies$ usually we say "modal logic" for the set of valid formulas or the global consequence. No longer (necessarily) true - nor even LDT.
For A^c finite RL with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no-\Diamond fragment of $\mathcal{M}_{A(c)}$ (with constants).
For A^c finite RL with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no-\Diamond fragment of $\models_M^{A(c)}$ (with constants).

$L_{\boxdot}^{A(c)} = \text{Axiomatization for } |=_{A(c)} +$

- $\Box 1,$
Existing axiomatization

For A^c finite RL with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no-\diamond fragment of $\models_{MA(c)}$ (with constants).

$L_{\square}^{A(c)} = \text{Axiomatization for } \models_{A(c)} +$

- $\square 1,$
- $\square (\varphi \land \psi) \leftrightarrow (\square \varphi \land \square \psi),\]
For A^c finite RL with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no-\Diamond fragment of $\vdash^l_{I_{A(c)}}$ (with constants).

$L_{\Box A(c)}^c = \text{Axiomatization for } \models_{A(c)} +$

- $\Box 1$,
- $\Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi)$,
- $\Box(\overline{c} \rightarrow \varphi) \leftrightarrow (\overline{c} \rightarrow \Box \varphi)$,
Existing axiomatization

For A^c finite RL with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no-\(\Diamond\) fragment of $\vdash_{M_{A(c)}}$ (with constants).

$L_{\Box}^{A(c)} = \text{Axiomatization for } \models_{A(c)} +$

- $\Box 1,$
- $\Box (\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi),$
- $\Box (\lnot c \to \varphi) \leftrightarrow (\lnot c \to \Box \varphi),$
- $\vdash \varphi \to \psi \text{ implies } \vdash \Box \varphi \to \Box \psi.$
Existing axiomatization

For \mathbf{A}^c finite RL with canonical constants, Bou et. al propose an axiomatic system complete wrt. the no-\Diamond fragment of $\mathcal{M}_{\mathbf{A}(c)}$ (with constants).

$L_{\square}^{\mathbf{A}(c)} = \text{Axiomatization for } \models_{\mathbf{A}(c)} +$

- $\square 1,$
- $\square (\varphi \land \psi) \leftrightarrow (\square \varphi \land \square \psi),$
- $\square (\overline{c} \rightarrow \varphi) \leftrightarrow (\overline{c} \rightarrow \square \varphi),$
- $\vdash \varphi \rightarrow \psi$ implies $\vdash \square \varphi \rightarrow \square \psi.$

(For SI residuated lattices (with a unique coatom), adding K and $\square (x \lor \overline{c}) \rightarrow (\square x \lor \overline{c})) \iff$ completeness wrt. the no-\Diamond fragment of $\mathcal{M}_{\mathbf{C}_{\mathbf{A}}^c}.$)
Both modal operators

answer to Q1

For $\mathcal{L} = (\text{the previous A.S.}) + \Box(x \rightarrow \overline{c}) \rightarrow (\Diamond x \rightarrow \overline{c})$, \mathcal{L} is complete with respect to $\models^I_{M_{A(c)}}$ (also concerning only idempotent/crisp frames completeness).
Both modal operators

answer to Q1

For $\mathcal{L} = (\text{the previous A.S.}) + \Box(x \to c) \to (\Diamond x \to c)$, \mathcal{L} is complete with respect to $\vDash_{M_{A(c)}}^I$ (also concerning only idempotent/crisp frames completeness).

- Two RL equations concerning existing arbitrary infima/suprema are partially axiomatically represented

$$\bigwedge_{x \in X} x \to y = \bigvee X \to y$$

and

$$\bigwedge_{x \in X} y \to x = y \to \bigwedge X$$

Some small modifications in the canonical model defined by Bou. et. al. suffice to check completeness. [in defining Rvw] Same solution serves for the crisp case.
Both modal operators

Answer to Q1

For $\mathcal{L} = (\text{the previous A.S.}) + \Box(x \rightarrow \overline{c}) \rightarrow (\Diamond x \rightarrow \overline{c})$, \mathcal{L} is complete with respect to $\Vdash_{M_{A(c)}}^L$ (also concerning only idempotent/crisp frames completeness).

- Two RL equations concerning existing arbitrary infima/suprema are partially axiomatically represented:
 \[
 \bigwedge_{x \in X} x \rightarrow y = \bigvee X \rightarrow y \quad \text{and} \quad \bigwedge_{x \in X} y \rightarrow x = y \rightarrow \bigwedge X
 \]

- Some small modifications in the canonical model defined by Bou. et. al. suffice to check completeness. [in defining Rvw]
Both modal operators

answer to Q1

For $\mathcal{L} = (\text{the previous A.S.}) + \Box(x \rightarrow \overline{c}) \rightarrow (\Diamond x \rightarrow \overline{c})$, \mathcal{L} is complete with respect to $\models_{M_{A(c)}}$ (also concerning only idempotent/crisp frames completeness).

- Two RL equations concerning existing arbitrary infima/suprema are partially axiomatically represented:

$$\bigwedge_{x \in X} x \rightarrow y = \bigvee X \rightarrow y \quad \text{and} \quad \bigwedge_{x \in X} y \rightarrow x = y \rightarrow \bigwedge X$$

- Some small modifications in the canonical model defined by Bou. et. al. suffice to check completeness. [in defining Rvw] Same solution serves for the crisp case.
For what concerns global logics...

It was not proven whether an axiomatic system for the global logic over $A/ A^{(c)}$ can be obtained by adding (the appropriated) necessity rule to an axiomatic system for the local one.
For what concerns global logics...

It was not proven whether an axiomatic system for the global logic over $A / A^{(c)}$ can be obtained by adding (the appropriated) necessity rule to an axiomatic system for the local one.

answer to Q2

$L + N_\Box (= \frac{\varphi \rightarrow \psi}{\Box \varphi \rightarrow \Box \psi})$ is complete with respect to $\vdash_{M_{A(c)}}$ (also considering the no-\Diamond restriction and the idempotent cases)
For what concerns global logics...

It was not proven whether an axiomatic system for the global logic over $A/ A^{(c)}$ can be obtained by adding (the appropriated) necessity rule to an axiomatic system for the local one.

answer to Q2

$L + N_{\Box}(= \frac{\psi \rightarrow \varphi}{\Box \varphi \rightarrow \Box \psi})$ is complete with respect to $\vdash_{M_{A(c)}}^g$ (also considering the no-\Diamond restriction and the idempotent cases)

- Clear that $\Gamma \vdash_{M_{A(c)}}^I \varphi \implies \Gamma \vdash_{M_{A(c)}}^g \varphi$.
For what concerns global logics...

It was not proven whether an axiomatic system for the global logic over $A/ A^{(c)}$ can be obtained by adding (the appropriated) necessity rule to an axiomatic system for the local one.

answer to Q2

$\mathcal{L} + N_{\Box}(= \frac{\varphi \rightarrow \psi}{\Box \varphi \rightarrow \Box \psi})$ is complete with respect to $\vdash_{M_{A(c)}}^{g}$ (also considering the no-\Diamond restriction and the idempotent cases)

- Clear that $\Gamma \vdash_{M_{A(c)}}^{l} \varphi \implies \Gamma \vdash_{M_{A(c)}}^{g} \varphi$.
- Thus soundness follows easily: $\Gamma \vdash_{\mathcal{L} + N_{\Box}} \varphi \implies \Gamma \vdash_{M_{A(c)}}^{g} \varphi$ (all axioms from \mathcal{L} are sound in the global deduction, and so is N_{\Box}.)
For what concerns global logics...

It was not proven whether an axiomatic system for the global logic over $A/ A^{(c)}$ can be obtained by adding (the appropriated) necessity rule to an axiomatic system for the local one.

answer to Q2

$L + N_{\Box} (= \frac{\varphi \rightarrow \psi}{\Box \varphi \rightarrow \Box \psi})$ is complete with respect to $\vdash_{M_{A(c)}}^g$ (also considering the no-\Diamond restriction and the idempotent cases)

- Clear that $\Gamma \vdash_{M_{A(c)}}^l \varphi \iff \Gamma \vdash_{M_{A(c)}}^g \varphi$.
- Thus soundness follows easily: $\Gamma \vdash_{L + N_{\Box}} \varphi \iff \Gamma \vdash_{M_{A(c)}}^g \varphi$ (all axioms from L are sound in the global deduction, and so is N_{\Box}.)

For the completeness direction, we will build appropriated canonical models.
Assume $\Gamma \not\models_{\mathcal{L}^+N\Box} \varphi$. We define the Γ-canonical model by:

1. $W = \{h \in Hom(Fm, A^{(c)}): h(C_{\mathcal{L}^+N\Box}(\Gamma)) = 1\}$,
Assume $\Gamma \not\models_{\mathcal{L}+\mathcal{N}_\Box} \varphi$. We define the Γ-canonical model by:

- $\mathcal{W} = \{ h \in \text{Hom}(\mathcal{Fm}, \mathcal{A}^{(c)}): h(\mathcal{C}_{\mathcal{L}+\mathcal{N}_\Box}(\Gamma)) = 1 \}$,
- $e(h, \varphi) = h(\varphi)$,
Assume $\Gamma \not\vDash_{\mathcal{L} + N \square} \varphi$. We define the Γ-canonical model by:

$W = \{ h \in \text{Hom}(Fm, A^{(c)}): h(C_{\mathcal{L} + N \square}(\Gamma)) = 1 \}$,

$e(h, \varphi) = h(\varphi)$,

$Rhg = \bigwedge_{\psi \in MFm} \{ ((h(\square \psi) \rightarrow g(\psi)) \land (g(\psi) \rightarrow h(\Diamond \psi))) \}$.
On the canonical model(s)

Assume $\Gamma \not\vdash_{\mathcal{L}+\mathcal{N}^\Box} \varphi$. We define the Γ-canonical model by:

- $W = \{ h \in \text{Hom}(\mathbf{Fm}, \mathbf{A}^{(c)}) : h(C_{\mathcal{L}+\mathcal{N}^\Box}(\Gamma)) = 1 \}$,
- $e(h, \varphi) = h(\varphi)$,
- $Rhg = \bigwedge_{\psi \in M\mathbf{Fm}} \{(h(\square \psi) \rightarrow g(\psi)) \land (g(\psi) \rightarrow h(\Diamond \psi))\}$,

(before proving the above is indeed an $\mathbf{A}^{(c)}$-Kripke model...)

9 / 15
Assume $\Gamma \not\vdash_{\mathcal{L}+N\Box} \varphi$. We define the Γ-canonical model by:

- $W = \{ h \in \text{Hom}(\text{Fm}, A^{(c)}) : h(C_{\mathcal{L}+N\Box}(\Gamma)) = 1 \}$,
- $e(h, \varphi) = h(\varphi)$,
- $Rhg = \bigwedge_{\psi \in MFm} \{((h(\Box \psi) \rightarrow g(\psi)) \land (g(\psi) \rightarrow h(\Diamond \psi))) \}$,

(before proving the above is indeed an $A^{(c)}$-Kripke model...)

1. By definition of W and e, the above is a global model for Γ,

On the canonical model(s)

Assume $\Gamma \not\triangleright_{\mathcal{L}+\mathbb{N}_\Box} \varphi$. We define the Γ-canonical model by:

- $W = \{ h \in \text{Hom}(\mathcal{Fm}, A^{(c)}): h(C_{\mathcal{L}+\mathbb{N}_\Box}(\Gamma)) = 1 \}$,
- $e(h, \varphi) = h(\varphi)$,
- $Rh_g = \bigwedge_{\psi \in \text{MFm}} \{ (((h(\Box \psi) \to g(\psi)) \land (g(\psi) \to h(\Diamond \psi))) \}$,

(before proving the above is indeed an $A^{(c)}$-Kripke model...)

1. By definition of W and e, the above is a global model for Γ,
2. $\Gamma \not\triangleright_{\mathcal{L}+\mathbb{N}_\Box} \varphi \implies C_{\mathcal{L}+\mathbb{N}_\Box}(\Gamma) \not\triangleright_{A^{(c)}} \varphi$, so there is $h \in W$ for which $h(\varphi) < 1$.
On the canonical model(s)

Assume $\Gamma \not\vDash_{\mathcal{L}+N\Box} \varphi$. We define the Γ-canonical model by:

1. $W = \{ h \in \text{Hom}(\mathbf{Fm}, \mathbf{A}^{(c)}): h(C_{\mathcal{L}+N\Box}(\Gamma)) = 1 \}$,
2. $e(h, \varphi) = h(\varphi)$,
3. $Rhg = \bigwedge_{\psi \in \text{MFm}} \{ (((h(\Box\psi) \to g(\psi)) \land (g(\psi) \to h(\Diamond\psi))) \}$.

(before proving the above is indeed an $\mathbf{A}^{(c)}$-Kripke model...)

1. By definition of W and e, the above is a global model for Γ,
2. $\Gamma \not\vDash_{\mathcal{L}+N\Box} \varphi \implies C_{\mathcal{L}+N\Box}(\Gamma) \not\vDash_{\mathbf{A}^{(c)}} \varphi$, so there is $h \in W$ for which $h(\varphi) < 1$.
3. So this model would indeed serve to prove $\Gamma \not\vDash_{M^{(c)}_A} \varphi$.

Is the evaluation given a modal evaluation?
Truth Lemma

Is the evaluation given a modal evaluation?

- Prop. formulas are immediate, since the worlds are propositional homomorphisms.
Is the evaluation given a modal evaluation?

- Prop. formulas are immediate, since the worlds are propositional homomorphisms.

\[h(\Box \varphi) \equiv \bigwedge_{g \in W} \{ Rhg \to g(\varphi) \} \]

- \(\leq \) direction is easy:

\[
Rh g \to g(\varphi) = \\
\bigwedge_{\psi \in MFm} \{ (((h(\Box \psi) \to g(\psi)) \land g(\psi) \to h(\Diamond \psi))) \} \to h(\varphi) \geq \\
(h(\Box \varphi) \to g(\varphi)) \to g(\varphi) \geq \\
h(\Box \varphi)
\]
Truth Lemma

Witness lemma

\(Rhg \leq g(\varphi)\) for all \(g \in W\) implies \(h(\Box \varphi) = 1.\)
Truth Lemma

Witness lemma

$Rhg \leq g(\varphi)$ for all $g \in W$ implies $h(\Box \varphi) = 1$.

Fix $\tau(\psi) = (\overline{h(\Box \psi)} \to \psi) \land (\psi \to \overline{h(\Diamond \psi)})$.

Using the axioms of L, is easy to prove that $h(\overline{\bigwedge \psi \in \Sigma 2 \tau(\psi)}) = 1$, and thus $h(\overline{2 \varphi}) = 1$ too.
Truth Lemma

Witness lemma

\[Rhg \leq g(\varphi) \text{ for all } g \in W \text{ implies } h(\Box \varphi) = 1. \]

Fix \(\tau(\psi) = (h(\Box \psi) \rightarrow \psi) \land (\psi \rightarrow h(\Diamond \psi)) \).

\[\Rightarrow \text{ for each } c \in A, \]
\[C_{L+\Box} \Gamma, \{ \overline{c} \rightarrow \tau(\psi) \}_{\psi \in MFM} \models A \overline{c} \rightarrow \varphi \quad (1) \]
Truth Lemma

Witness lemma

\[Rhg \leq g(\varphi) \text{ for all } g \in W \text{ implies } h(\Box \varphi) = 1. \]

Fix \(\tau(\psi) = (h(\Box \psi) \to \psi) \land (\psi \to h(\Diamond \psi)) \).

\[\Rightarrow \text{ for each } c \in A, \]
\[\mathcal{C}_{L+\text{N}_\Box}(\Gamma), \{ \overline{c} \to \tau(\psi) \}_{\psi \in \text{MFm}} \models A \overline{c} \to \varphi \quad (1) \]

\[\Rightarrow \text{ A finite, so for each } c \in A \text{ there is a finite } \Sigma_c \subset \text{MFm} \text{ for which } (1) \iff \mathcal{C}_{L+\text{N}_\Box}(\Gamma), \{ \overline{c} \to \tau(\psi) \}_{\psi \in \Sigma_c} \models A \overline{c} \to \varphi \]
Truth Lemma

Witness lemma

\[Rhg \leq g(\varphi) \text{ for all } g \in W \text{ implies } h(\square \varphi) = 1. \]

Fix \(\tau(\psi) = (\overline{h(\square \psi)} \rightarrow \psi) \land (\psi \rightarrow \overline{h(\Diamond \psi)}) \).

- for each \(c \in A \),
 \[C_{\mathcal{L}+N_\Box}(\Gamma), \{ \overline{c} \rightarrow \tau(\psi) \}_{\psi \in MFm} \models_A \overline{c} \rightarrow \varphi \quad (1) \]

- \(A \) finite, so for each \(c \in A \) there is a finite \(\Sigma_c \subset MFm \) for which \((1) \iff C_{\mathcal{L}+N_\Box}(\Gamma'), \{ \overline{c} \rightarrow \tau(\psi) \}_{\psi \in \Sigma_c} \models_A \overline{c} \rightarrow \varphi \)

- Taking \(\Sigma = \bigcup_{c \in A} \Sigma_c \), we obtain \(C_{\mathcal{L}+N_\Box}(\Gamma) \models_A \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi \).
Truth Lemma

Witness lemma

\[Rhg \leq g(\varphi) \text{ for all } g \in W \text{ implies } h(\square \varphi) = 1. \]

Fix \(\tau(\psi) = (\overline{h(\square \psi)} \rightarrow \psi) \land (\psi \rightarrow \overline{h(\lozenge \psi)}) \).

- \(\Rightarrow \) for each \(c \in A \),
 \[C_{\mathcal{L}+\mathcal{N}\square}(\Gamma), \{ \overline{c} \rightarrow \tau(\psi) \} \psi \in MFm \modelsA \overline{c} \rightarrow \varphi \quad (1) \]
- \(A \) finite, so for each \(c \in A \) there is a finite \(\Sigma_c \subset MFm \) for which (1) \(\iff \) \(C_{\mathcal{L}+\mathcal{N}\square}(\Gamma), \{ \overline{c} \rightarrow \tau(\psi) \} \psi \in \Sigma_c \modelsA \overline{c} \rightarrow \varphi \)
- Taking \(\Sigma = \bigcup_{c \in A} \Sigma_c \), we obtain \(C_{\mathcal{L}+\mathcal{N}\square}(\Gamma) \modelsA \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi \).
- Thus, now \(\Gamma \vdash_{\mathcal{L}+\mathcal{N}\square} \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi \). By \(\mathcal{N}\square \) we get
 \[\Gamma \vdash_{\mathcal{L}+\mathcal{N}\square} \square(\bigwedge_{\psi \in \Sigma} \tau(\psi)) \rightarrow \square \varphi. \]
Truth Lemma

Witness lemma

\[Rhg \leq g(\varphi) \text{ for all } g \in W \text{ implies } h(\Box \varphi) = 1. \]

Fix \(\tau(\psi) = (h(\Box \psi) \rightarrow \psi) \land (\psi \rightarrow h(\Diamond \psi)) \).

\begin{itemize}
 \item \(\Rightarrow \) for each \(c \in A \),
 \[C_{L + N_\Box} (\Gamma), \{ \overline{c} \rightarrow \tau(\psi) \}_{\psi \in MFm} \models A \overline{c} \rightarrow \varphi \quad (1) \]
 \item A finite, so for each \(c \in A \) there is a finite \(\Sigma_c \subset MFm \) for which (1) \(\iff \) \(C_{L + N_\Box} (\Gamma), \{ \overline{c} \rightarrow \tau(\psi) \}_{\psi \in \Sigma_c} \models A \overline{c} \rightarrow \varphi \)
 \item Taking \(\Sigma = \bigcup_{c \in A} \Sigma_c \), we obtain \(C_{L + N_\Box} (\Gamma) \models A \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi. \)
 \item Thus, now \(\Gamma \vdash_{L + N_\Box} \bigwedge_{\psi \in \Sigma} \tau(\psi) \rightarrow \varphi. \) By \(N_\Box \) we get
 \[\Gamma \vdash_{L + N_\Box} \Box(\bigwedge_{\psi \in \Sigma} \tau(\psi)) \rightarrow \Box \varphi. \]
 \item Using the axioms of \(L \), is easy to prove that
 \[h(\bigwedge_{\psi \in \Sigma} \Box \tau(\psi)) = 1, \text{ and thus } h(\Box \varphi) = 1 \text{ too}. \]
\end{itemize}
Concluding the completeness

Witness Lemma suffices to prove \(h(\Box \varphi) \geq \bigwedge_{g \in W} \{ Rhg \rightarrow g(\varphi) \} \).
Concluding the completeness

Witness Lemma suffices to prove $h(\Box \varphi) \geq \bigwedge_{g \in W} \{Rh \rightarrow g(\varphi)\}$.

- If $c \leq Rh \rightarrow g(\varphi)$ for all $g \in W$, then $Rh \rightarrow g(\overline{c} \rightarrow \varphi) = 1$ for all $g \in W$.

Altogether prove completeness of $L^+_{\mathcal{N}_2}$ with respect to $\models^g_{\mathcal{M}_\mathcal{A}(c)}$.

Concluding the completeness

Witness Lemma suffices to prove $h(\Box \varphi) \geq \bigwedge_{g \in W} \{Rh_g \to g(\varphi)\}$.

- If $c \leq Rh_g \to g(\varphi)$ for all $g \in W$, then $Rh_g \to g(\overline{c} \to \varphi) = 1$ for all $g \in W$.
- The Lemma leads to $1 = h(\Box (\overline{c} \to \varphi)) = c \to h(\Box \varphi)$.
Concluding the completeness

Witness Lemma suffices to prove \(h(\Box \varphi) \geq \bigwedge_{g \in W} \{ Rhg \to g(\varphi) \} \).

- If \(c \leq Rhg \to g(\varphi) \) for all \(g \in W \), then \(Rhg \to g(\overline{c} \to \varphi) = 1 \) for all \(g \in W \).
- The Lemma leads to \(1 = h(\Box(\overline{c} \to \varphi)) = c \to h(\Box \varphi) \).

\(h(\Diamond \varphi) = \bigvee_{g \in W} \{ Rhg \cdot g(\varphi) \} \) is proven similarly.

\[\geq \] is now the easy one by definition.
Concluding the completeness

Witness Lemma suffices to prove \(h(\square \varphi) \geq \bigwedge_{g \in W} \{Rh g \rightarrow g(\varphi)\} \).

- If \(c \leq Rh g \rightarrow g(\varphi) \) for all \(g \in W \), then \(Rh g \rightarrow g(\overline{c} \rightarrow \varphi) = 1 \) for all \(g \in W \).
- The Lemma leads to \(1 = h(\square(\overline{c} \rightarrow \varphi)) = c \rightarrow h(\square \varphi) \).

\(h(\Diamond \varphi) = \bigvee_{g \in W} \{Rh g \cdot g(\varphi)\} \) is proven similarly.

\(\geq \) is now the easy one by definition.

- If \(c \geq Rh g \cdot g(\varphi) \) for all \(g \in W \), then \(Rh g \rightarrow g(\varphi \rightarrow \overline{c}) = 1 \) for all \(g \in W \).
Concluding the completeness

Witness Lemma suffices to prove $h(\Box \varphi) \geq \bigwedge_{g \in W} \{Rh g \to g(\varphi)\}$.

- If $c \leq Rh g \to g(\varphi)$ for all $g \in W$, then $Rh g \to g(\overline{c} \to \varphi) = 1$ for all $g \in W$.
- The Lemma leads to $1 = h(\Box(\overline{c} \to \varphi)) = c \to h(\Box \varphi)$.

$h(\Diamond \varphi) = \bigvee_{g \in W} \{Rh g \cdot g(\varphi)\}$ is proven similarly.

- \geq is now the easy one by definition.
- If $c \geq Rh g \cdot g(\varphi)$ for all $g \in W$, then $Rh g \to g(\varphi \to \overline{c}) = 1$ for all $g \in W$.
- Witness Lemma leads to $1 = h(\Box(\varphi \to \overline{c})) = h(\Diamond \varphi) \to c$.
Concluding the completeness

Witness Lemma suffices to prove $h(\Box \varphi) \geq \bigwedge_{g \in W} \{Rhg \rightarrow g(\varphi)\}$.

- If $c \leq Rhg \rightarrow g(\varphi)$ for all $g \in W$, then $Rhg \rightarrow g(\overline{c} \rightarrow \varphi) = 1$ for all $g \in W$.
- The Lemma leads to $1 = h(\Box(\overline{c} \rightarrow \varphi)) = c \rightarrow h(\Box \varphi)$.

$h(\Diamond \varphi) = \bigvee_{g \in W} \{Rhg \cdot g(\varphi)\}$ is proven similarly.

- \geq is now the easy one by definition.

- If $c \geq Rhg \cdot g(\varphi)$ for all $g \in W$, then $Rhg \rightarrow g(\varphi \rightarrow \overline{c}) = 1$ for all $g \in W$.
- Witness Lemma leads to $1 = h(\Box(\varphi \rightarrow \overline{c})) = h(\Diamond \varphi) \rightarrow c$.

Altogether prove completeness of $\mathcal{L} + N\Box$ with respect to $\models^g_{M_A(c)}$.

12 / 15
*Let a theory T be \textit{fully-determined} if for each formula φ there is a unique $c_\varphi \in A$ such that $\varphi \iff \overline{c_\varphi} \in T$.

*Truth lemma as before (ingredients are essentially the same).

\[\Gamma \not\vdash Q + N_2 \varphi \iff C_Q + N_2(\Gamma) \not\models A(c_\varphi). \]

Answer to Q3 - constants-

If Q is an axiomatic system complete with respect to $\vdash M(\varphi)$, then $Q + N_2$ is complete with respect to $\vdash g M(c_\varphi)$.
*Let a theory T be *fully-determined* if for each formula φ there is a unique $c_\varphi \in A$ such that $\varphi \iff c_\varphi \in T$.

For Q complete wrt. $\vdash^l_{M_{A(c)}}$, define the canonical model for Γ by:

$$\mathcal{W} = \{ T : T \text{ is fully-determined maximally consistent } \models^{(c)}_A$$
$$\text{-theory and } C_{Q+N_{\Box}}(\Gamma) \subseteq T \}.$$
*Let a theory T be fully-determined if for each formula φ there is a unique $c_\varphi \in A$ such that $\varphi \leftrightarrow \overline{c_\varphi} \in T$. For Q complete wrt. $\models_M^A(c)$, define the canonical model for Γ by:

1. $\mathcal{W} = \{ T : T$ is fully-determined maximally consistent $\models_A^{(c)}$ -theory and $C_{Q+N\Box}(\Gamma) \subseteq T \}$,
2. $e(T, \varphi) = c_\varphi$,
*Let a theory T be fully-determined if for each formula φ there is a unique $c_\varphi \in A$ such that $\varphi \leftrightarrow \overline{c_\varphi} \in T$.

For Q complete wrt. $\models^I_{M_A(c)}$, define the canonical model for Γ by:

- $W = \{ T : T$ is fully-determined maximally consistent $\models_A^{(c)}$-theory and $C_{Q+N_{\square}}(\Gamma) \subseteq T \}$,
- $e(T, \varphi) = c_\varphi$,
- $RTS = \wedge_{\psi \in MFm} \{ \((e(T, \square \psi) \rightarrow e(S, \psi)) \land (e(S, \psi) \rightarrow e(T, \Diamond \psi))\) \}$.
General approach

*Let a theory T be fully-determined if for each formula φ there is a unique $c_\varphi \in A$ such that $\varphi \leftrightarrow \overline{c_\varphi} \in T$.

For Q complete wrt. $\vdash^l_{M_A(c)}$, define the canonical model for Γ by:

$\mathcal{W} = \{ T : T$ is fully-determined maximally consistent $\models^{(c)}_A$ -theory and $C_{Q+N^\Box}(\Gamma) \subseteq T \}$,

$e(T, \varphi) = c_\varphi$,

$RTS = \bigwedge_{\psi \in MFm} \{ ((e(T, \Box \psi) \rightarrow e(S, \psi)) \land (e(S, \psi) \rightarrow e(T, \Diamond \psi))) \}$,

*Truth lemma as before (ingredients are essentially the same).
General approach

*Let a theory \(T \) be \textit{fully-determined} if for each formula \(\varphi \) there is a unique \(c_{\varphi} \in A \) such that \(\varphi \leftrightarrow c_{\varphi} \in T \).

For \(Q \) complete wrt. \(\models_{M_{A(c)}}^{\bot} \), define the canonical model for \(\Gamma \) by:

\[
\mathcal{W} = \{ T : T \text{ is fully-determined maximally consistent } \models_{A}^{(c)} \text{-theory and } C_{Q+N_{\Box}}(\Gamma) \subseteq T \},
\]

\[
\mathcal{e}(T, \varphi) = c_{\varphi},
\]

\[
\mathcal{RTS} = \bigwedge_{\psi \in MF_{m}} \{ (\mathcal{e}(T, \Box \psi) \rightarrow \mathcal{e}(S, \psi)) \land (\mathcal{e}(S, \psi) \rightarrow \mathcal{e}(T, \Diamond \psi)) \},
\]

*Truth lemma as before (ingredients are essentially the same).

*\(\Gamma \models_{Q+N_{\Box}} \varphi \) iff \(C_{Q+N_{\Box}}(\Gamma) \models_{A(c)} \varphi \).
General approach

*Let a theory T be fully-determined if for each formula φ there is a unique $c_\varphi \in A$ such that $\varphi \leftrightarrow \overline{c_\varphi} \in T$.

For Q complete wrt. $\models_{A(c)}$, define the canonical model for Γ by:

1. $\mathcal{W} = \{ T : T$ is fully-determined maximally consistent $\models_{A}^{(c)}$ -theory and $C_{Q+N\Box}(\Gamma) \subseteq T \}$,
2. $e(T, \varphi) = c_\varphi$,
3. $RTS = \bigwedge_{\psi \in MFm} \{((e(T, \Box \psi) \rightarrow e(S, \psi)) \land (e(S, \psi) \rightarrow e(T, \Diamond \psi)))\}$,

*Truth lemma as before (ingredients are essentially the same).

If Q is an axiomatic system complete with respect to $\models_{A(c)}$, then $Q + N\Box$ is complete with respect to $\models_{A(c)}$.

Answer to Q3 - constants-

If Q is an axiomatic system complete with respect to $\models_{A(c)}$, then $Q + N\Box$ is complete with respect to $\models_{A(c)}$.

*For Q complete wrt. $\models_{A(c)}$, define the canonical model for Γ by:

1. $\mathcal{W} = \{ T : T$ is fully-determined maximally consistent $\models_{A}^{(c)}$ -theory and $C_{Q+N\Box}(\Gamma) \subseteq T \}$,
2. $e(T, \varphi) = c_\varphi$,
3. $RTS = \bigwedge_{\psi \in MFm} \{((e(T, \Box \psi) \rightarrow e(S, \psi)) \land (e(S, \psi) \rightarrow e(T, \Diamond \psi)))\}$,

*Truth lemma as before (ingredients are essentially the same).

If Q is an axiomatic system complete with respect to $\models_{A(c)}$, then $Q + N\Box$ is complete with respect to $\models_{A(c)}$.

Answer to Q3 - constants-

If Q is an axiomatic system complete with respect to $\models_{A(c)}$, then $Q + N\Box$ is complete with respect to $\models_{A(c)}$.

Without constant symbols

Answer to Q3

If Q is an axiomatic system complete with respect to \vdash^I_{MA}, then $Q + N\Box$ is complete with respect to \vdash^g_{MA}.

Recall soundness was general.
Without constant symbols

Answer to Q3

If Q is an axiomatic system complete with respect to $\vdash^l_{M_A}$, then $Q + N_\square$ is complete with respect to $\vdash^g_{M_A}$.

Recall soundness was general.

- Let \mathcal{L}^c be the axioms including constants from \mathcal{L}. Then $Q + \mathcal{L}^c$ is complete with respect to $\vdash^g_{M_A(c)}$.
Without constant symbols

Answer to Q3

If \(Q \) is an axiomatic system complete with respect to \(\vdash^I_M \), then \(Q + N_{\square} \) is complete with respect to \(\vdash^g_M \).

Recall soundness was general.

- Let \(\mathcal{L}^c \) be the axioms including constants from \(\mathcal{L} \). Then \(Q + \mathcal{L}^c \) is complete with respect to \(\vdash^I_{M^c} \).

- By induction on the derivation, if \(\Gamma, \varphi \) don’t have constants then \(\Gamma \vdash_{Q + \mathcal{L}^c + N_{\square}} \varphi \) implies \(\Gamma \vdash_{Q + N_{\square}} \varphi \).
Without constant symbols

Answer to Q3

If Q is an axiomatic system complete with respect to \models^I_M, then $Q + N_{\square}$ is complete with respect to \models^g_M.

Recall soundness was general.

- Let L^c be the axioms including constants from L. Then $Q + L^c$ is complete with respect to $\models^M_{A(c)}$.
- By induction on the derivation, if Γ, φ don’t have constants then $\Gamma \vdash_{Q+L^c+N_{\square}} \varphi$ implies $\Gamma \vdash_{Q+N_{\square}} \varphi$.
- Thus $\Gamma \not\vdash_{Q+N_{\square}} \varphi \iff \Gamma \not\vdash_{Q+L^c+N_{\square}} \varphi \iff \Gamma \not\models_{M_{A(c)}} \varphi$. It is immediate to check that, for Γ, φ without constants, $\Gamma \models_{M_{A(c)}} \varphi \iff \Gamma \models_{M_A} \varphi$.
- Q3 without limitation to finite algebras seems likely to hold. However, the current proofs cannot surpass the lack of DT.
Very related questions

- Q3 without limitation to finite algebras seems likely to hold. However, the current proofs cannot surpass the lack of DT.
- Axiomatizations without constant symbols are not clear out of very particular case studies (Ł, Gödel).
Very related questions

- Q3 without limitation to finite algebras seems likely to hold. However, the current proofs cannot surpass the lack of DT.
- Axiomatizations without constant symbols are not clear out of very particular case studies (Ł, Gödel).
- Infinitarity of the semantical consequence relation seems to arise in the modal axiomatizations (even if there exists AS for the finitary companion at the propositional level)...