Modal logics over finite residuated lattices

Amanda Vidal

Institute of Computer Science, Czech Academy of Sciences

Topology, Algebra and Categories in Logic 2017, Prague, Czech Republic,

June 29, 2017

1/15



In particular...

» Modal expansions of lattice-based logics are in phase of
development and understanding.

2/15



In particular...

» Modal expansions of lattice-based logics are in phase of
development and understanding.

» (Bou et. al., 2011) does a general study of axiomatizations of
these logics over finite residuated lattices.

2/15



In particular...

» Modal expansions of lattice-based logics are in phase of
development and understanding.
» (Bou et. al., 2011) does a general study of axiomatizations of

these logics over finite residuated lattices.
Propose several open problems. We will address some of them

2/15



In particular...

» Modal expansions of lattice-based logics are in phase of
development and understanding.

» (Bou et. al., 2011) does a general study of axiomatizations of

these logics over finite residuated lattices.
Propose several open problems. We will address some of them

» only O operator -with the usual lattice-valued interpretation
Q1. Both O and & (! Ox # —0O-x)

2/15



In particular...

» Modal expansions of lattice-based logics are in phase of
development and understanding.

» (Bou et. al., 2011) does a general study of axiomatizations of
these logics over finite residuated lattices.
Propose several open problems. We will address some of them

» only O operator -with the usual lattice-valued interpretation
Ql Both O and ¢ (l Ox ;ﬁ ﬁDﬁX)

» local deduction, global over crisp frames
Q2. (general) Global deduction

2/15



In particular...

» Modal expansions of lattice-based logics are in phase of
development and understanding.

» (Bou et. al., 2011) does a general study of axiomatizations of
these logics over finite residuated lattices.
Propose several open problems. We will address some of them

» only O operator -with the usual lattice-valued interpretation
Ql Both O and ¢ (l Ox ;ﬁ ﬁDﬁX)

» local deduction, global over crisp frames
Q2. (general) Global deduction

» Q3. Is an axiomatization for the Global modal logic an

axiomatization for the local one + Di:éy?

(Q3’). Similar question restricting to crisp accessibility and
adding &
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in order to be in Hom(Fm, A) and

e(v,0p) = /\W{RVW — e(w, )} e(v,Op) = \/W{va -e(w, 9)}
we we

It is said crisp if RC W x W.

> I"IF)y, « iff for any A-Kripke model 91, and any v € W, if
e(v,[I']) C {1} then e(v,p) = 1.

> I Il—ﬁ/,A @ iff for any A-Kripke model 901, if for all v € W, it
holds e(v,[I']) C {1} then for all v € W it also holds
e(v,p) = 1.

» Same valid formulas.
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(Some comparisons with classical K)

» No K. (Bou et. al) [K is valid only if Rvw is idempotent.]

» No O = —=O—. [Only if = is involutive (eg., MV algebras)].
Not known general interdefinability of modalities....

» Local classical modal logic enjoys DT — usually we say
"modal logic" for the set of valid formulas or the global
consequence.

No longer (necessarily) true -nor even LDT.
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Existing axiomatization

For A€ finite RL with canonical constants, Bou et. al propose an
axiomatic system complete wrt. the no-<& fragment of II—;V, o (with
A (=

constants).
L'é(c) = Axiomatization for =5 +
» [O1,
> O(p A ) & (Bp ADY),
» O(C — ¢) <> (¢ — Oyp),
> = — 1 implies F Op — O,
(For Sl residuated lattices (with a unique coatom), adding K and
O(x V¢) — (Ox V<)) = completeness wrt. the no-<& fragment of

()
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/\X—>y:\/X—>y and /\y—>x:y—>/\X

xeX xeX

» Some small modifications in the canonical model defined by
Bou. et. al. suffice to check completeness. [in defining Rvw]
Same solution serves for the crisp case.
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For what concerns global logics...

It was not proven whether an axiomatic system for the global logic
over A/ A(9) can be obtained by adding (the appropriated)
necessity rule to an axiomatic system for the local one.

answer to Q2

Op—0O
considering the no-< restriction and the idempotent cases)

L+ No(= =£2% ) is complete with respect to ”_ﬁﬂA(c) (also

/ g
» Clear that I" “_MA(C) p=1TI “_MA(C) ®-

» Thus soundness follows easily: I' Fropy ¢ = I H—ﬁ/,A(C) (all
axioms from L are sound in the global deduction, and so is
Ng.)

For the completeness direction, we will build appropriated canonical

models.
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On the canonical model(s)

Assume I' /4 ny . We define the I'-canonical model by:
» W = {h & Hom(Fm,A)): h(Cr n, (1)) = 1},

> e(h, ) = h(p),
» Rhg =N\ {((h(O9) — g(¥)) A(g(¥) = h(O¥)))},

YeMFm

(before proving the above is indeed an A(°)-Kripke model...)
1. By definition of W and e, the above is a global model for I,
2. I'rang ¢ = Crang(I) Fpw @, so thereis h € W for

which h(p) < 1.

3. So this model would indeed serve to prove I Wf\/lff) ®.
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Is the evaluation given a modal evaluation?

» Prop. formulas are immediate, since the worlds are

propositional homomorphisms.
?

» h(Op) = A {Rhg — g(¥)}
gew

» < direction is easy:

Rhg — g(») =
A {(h(OY) — g(¥)) A g() = h(OY)))} — h(p) >

PpeMFm
(h(Dp) — g(v)) — &(v) >
h(Dyp)
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Witness lemma
Rhg < g(y) for all g € W implies h(Oyp) = 1. J

Fix 7(¢) = (h(OY) = ) A (¢ = h(C9)).

» = for each c € A,
Ceins (1), {€ = 7(V)pemrm FaT— ¢ (1)
A finite, so for each ¢ € A there is a finite X C MFm for
which (1) <= Ceing (1), {€ = 7(¢) }yes. EAT = ¢
Taking ¥ = (J.ca Xc, we obtain Cryn, (1) = /\ () — .

PYEXL

Thus, now I'Frong A 7(¥0) = . By Ng we get
PeX

I'beine BOA 7(9)) — Op.
ves

Using the axioms of L, is easy to prove that
h( A\ O7(v)) =1, and thus h(dy) = 1 too.
PeEL

v

v

v

v
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» The Lemma leads to 1 = h(O(€ — ¢)) = ¢ — h(Oyp).

h(Cp) = 'V {Rhg - g(¢)} is proven similarly.
gew

» > is now the easy one by definition.

» If ¢ > Rhg - g(y) for all g € W, then Rhg — g(p —¢) =1
for all g € W.
» Witness Lemma leads to 1 = h(O(¢ — ©)) = h(Cp) — c.

Altogether prove completeness of £ + Ng with respect to H—ﬁ’/,A(c).
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General approach

*Let a theory T be fully-determined if for each formula ¢ there is a

unique ¢, € A such that p <> ¢, € T.

For Q complete wrt. H—fv, o’ define the canonical model for I" by:
A c

» W ={T: T is fully-determined maximally consistent ):gc)
-theory and Co n (') C T},

» e(T,p) =cy,

» RTS= A {((e(T.00) = e(S,9)) A (e(S,)¢) = e(T,Ov)))}

YEMFm
*Truth lemma as before (ingredients are essentially the same).

*I'Voing ¢ iff Corng (M) Fawe ¢-

Answer to Q3 - constants-

If O is an axiomatic system complete with respect to H\//(C” then
A

Q + Np is complete with respect to H—;(C).
A
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Without constant symbols

Answer to Q3

If Q is an axiomatic system complete with respect to I/ .+ then
Q + Ng is complete with respect to Il-ﬁ,,A.

Recall soundness was general.
» Let £ be the axioms including constants from £. Then
Q + L€ is complete with respect to ”_MA(C)
» By induction on the derivation, if I', o don't have constants
then I' Foyreing @ implies I' Foyns ©.

> Thus I'l/oing ¢ = I'Vorcernn ¢ <= I'lfmy, ¢ Itis
immediate to check that, for I', ¢ without constants,
I lFA”A(c) p I ”_AAA ©.
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However, the current proofs cannot surpass the lack of DT.
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Very related questions

» Q3 without limitation to finite algebras seems likely to hold.
However, the current proofs cannot surpass the lack of DT.

» Axiomatizations without constant symbols are not clear out of
very particular case studies (£, Godel).

» Infinitarity of the semantical consequence relation seems to
arise in the modal axiomatizations (even if there exists AS for
the finitary companion at the propositional level)...

thank you!
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