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In particular...

I Modal expansions of lattice-based logics are in phase of
development and understanding.

I (Bou et. al., 2011) does a general study of axiomatizations of
these logics over finite residuated lattices.
Propose several open problems. We will address some of them

I only 2 operator -with the usual lattice-valued interpretation
Q1. Both 2 and 3 (! 3x 6= ¬2¬x)

I local deduction, global over crisp frames
Q2. (general) Global deduction

I Q3. Is an axiomatization for the Global modal logic an
axiomatization for the local one + x→y

2x→2y ?
(Q3’). Similar question restricting to crisp accessibility and
adding x

2x
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Preliminaries

I A = 〈A, ·,→,∧,∨, 0, 1〉 is a (bounded, commutative, integral)
residuated lattice when

I 〈A,∧,∨, 1, 0〉 is a bounded lattice (with order denoted ≤),
I 〈A, ·, 1〉 is a commutative monoid and
I for all a, b, c ∈ A it holds a · b ≤ c ⇐⇒ a ≤ b → c .

I Ac = expansion of A with constants {a : a ∈ A \ {1, 0}}.
I Fm = formula algebra built in the language of residuated

lattices [+ constants].
I Γ |=A ϕ iff for any h ∈ Hom(Fm,A),

h([Γ ]) ⊆ {1} implies h(ϕ) = 1.

In the following A will be finite
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Preliminaries

I M = 〈W ,R, e〉 is a A-Kripke model when W is a non-empty
set, R : W ×W → A and e : W × V → A, extended uniquely
in order to be in Hom(Fm,A) and
e(v ,2ϕ) =

∧
w∈W
{Rvw → e(w , ϕ)} e(v ,3ϕ) =

∨
w∈W
{Rvw · e(w , ϕ)}

It is said crisp if R ⊆W ×W .

I Γ l
MA

ϕ iff for any A-Kripke model M, and any v ∈W , if
e(v , [Γ ]) ⊆ {1} then e(v , ϕ) = 1.

I Γ g
MA

ϕ iff for any A-Kripke model M, if for all v ∈W , it
holds e(v , [Γ ]) ⊆ {1} then for all v ∈W it also holds
e(v , ϕ) = 1.

I Same valid formulas.
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(Some comparisons with classical K )

I No K . (Bou et. al) [K is valid only if Rvw is idempotent.]

I No 2 = ¬3¬. [Only if ¬ is involutive (eg., MV algebras)].
Not known general interdefinability of modalities....

I Local classical modal logic enjoys DT =⇒ usually we say
"modal logic" for the set of valid formulas or the global
consequence.
No longer (necessarily) true -nor even LDT.
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Existing axiomatization

For Ac finite RL with canonical constants, Bou et. al propose an
axiomatic system complete wrt. the no-3 fragment of l

M
A(c)

(with
constants).

LA(c)

2 = Axiomatization for |=A(c) +
I 21,
I 2(ϕ ∧ ψ)↔ (2ϕ ∧2ψ),
I 2(c → ϕ)↔ (c → 2ϕ),
I ` ϕ→ ψ implies ` 2ϕ→ 2ψ.

(For SI residuated lattices (with a unique coatom), adding K and
2(x ∨ c)→ (2x ∨ c)) =⇒ completeness wrt. the no-3 fragment of
l
CA

.)
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Both modal operators

answer to Q1
For L = (the previous A.S.)+ 2(x → c)→ (3x → c), L is
complete with respect to l

M
A(c)

(also concerning only
idempotent/crisp frames completeness).

I Two RL equations concerning existing arbitrary
infima/suprema are partially axiomatically represented∧

x∈X
x → y =

∨
X → y and

∧
x∈X

y → x = y →
∧

X

I Some small modifications in the canonical model defined by
Bou. et. al. suffice to check completeness. [in defining Rvw ]
Same solution serves for the crisp case.
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For what concerns global logics...

It was not proven whether an axiomatic system for the global logic
over A/ A(c) can be obtained by adding (the appropriated)
necessity rule to an axiomatic system for the local one.

answer to Q2

L+ N2(= ϕ→ψ
2ϕ→2ψ ) is complete with respect to g

M
A(c)

(also
considering the no-3 restriction and the idempotent cases)

I Clear that Γ l
M

A(c)
ϕ =⇒ Γ g

M
A(c)

ϕ.

I Thus soundness follows easily: Γ `L+N2
ϕ =⇒ Γ g

M
A(c)

(all
axioms from L are sound in the global deduction, and so is
N2.)

For the completeness direction, we will build appropriated canonical
models.
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On the canonical model(s)

Assume Γ 6`L+N2
ϕ. We define the Γ -canonical model by:

I W = {h ∈ Hom(Fm,A(c)) : h(CL+N2
(Γ )) = 1},

I e(h, ϕ) = h(ϕ),
I Rhg =

∧
ψ∈MFm

{((h(2ψ)→ g(ψ)) ∧ (g(ψ)→ h(3ψ)))},

(before proving the above is indeed an A(c)-Kripke model...)
1. By definition of W and e, the above is a global model for Γ ,
2. Γ 6`L+N2

ϕ =⇒ CL+N2
(Γ ) 6|=A(c) ϕ, so there is h ∈W for

which h(ϕ) < 1.
3. So this model would indeed serve to prove Γ 6g

M
(c)
A
ϕ.
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(before proving the above is indeed an A(c)-Kripke model...)
1. By definition of W and e, the above is a global model for Γ ,

2. Γ 6`L+N2
ϕ =⇒ CL+N2

(Γ ) 6|=A(c) ϕ, so there is h ∈W for
which h(ϕ) < 1.

3. So this model would indeed serve to prove Γ 6g

M
(c)
A
ϕ.
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Truth Lemma

Is the evaluation given a modal evaluation?

I Prop. formulas are immediate, since the worlds are
propositional homomorphisms.

I h(2ϕ)
?
=

∧
g∈W
{Rhg → g(ϕ)}

I ≤ direction is easy:

Rhg → g(ϕ) =∧
ψ∈MFm

{((h(2ψ)→ g(ψ)) ∧ g(ψ)→ h(3ψ)))} → h(ϕ) ≥

(h(2ϕ)→ g(ϕ))→ g(ϕ) ≥
h(2ϕ)
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Truth Lemma

Witness lemma
Rhg ≤ g(ϕ) for all g ∈W implies h(2ϕ) = 1.

Fix τ(ψ) = (h(2ψ)→ ψ) ∧ (ψ → h(3ψ)).
I ⇒ for each c ∈ A,

CL+N2
(Γ ), {c → τ(ψ)}ψ∈MFm |=A c → ϕ (1)

I A finite, so for each c ∈ A there is a finite Σc ⊂ MFm for
which (1)⇐⇒ CL+N2

(Γ ), {c → τ(ψ)}ψ∈Σc |=A c → ϕ
I Taking Σ =

⋃
c∈A Σc , we obtain CL+N2

(Γ ) |=A
∧
ψ∈Σ

τ(ψ)→ ϕ.

I Thus, now Γ `L+N2

∧
ψ∈Σ

τ(ψ)→ ϕ. By N2 we get

Γ `L+N2
2(

∧
ψ∈Σ

τ(ψ))→ 2ϕ.

I Using the axioms of L, is easy to prove that
h(

∧
ψ∈Σ

2τ(ψ)) = 1, and thus h(2ϕ) = 1 too.
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Concluding the completeness

Witness Lemma suffices to prove h(2ϕ) ≥
∧

g∈W
{Rhg → g(ϕ)}.

I If c ≤ Rhg → g(ϕ) for all g ∈W , then Rhg → g(c → ϕ) = 1
for all g ∈W .

I The Lemma leads to 1 = h(2(c → ϕ)) = c → h(2ϕ).

h(3ϕ) =
∨

g∈W
{Rhg · g(ϕ)} is proven similarly.

I ≥ is now the easy one by definition.
I If c ≥ Rhg · g(ϕ) for all g ∈W , then Rhg → g(ϕ→ c) = 1

for all g ∈W .
I Witness Lemma leads to 1 = h(2(ϕ→ c)) = h(3ϕ)→ c .

Altogether prove completeness of L+ N2 with respect to g
M

A(c)
.
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General approach

*Let a theory T be fully-determined if for each formula ϕ there is a
unique cϕ ∈ A such that ϕ↔ cϕ ∈ T .

For Q complete wrt. l
M

A(c)
, define the canonical model for Γ by:

I W = {T : T is fully-determined maximally consistent |=(c)
A

-theory and CQ+N2
(Γ ) ⊆ T},

I e(T , ϕ) = cϕ,
I RTS =

∧
ψ∈MFm

{((e(T ,2ψ)→ e(S , ψ)) ∧ (e(S , )ψ)→ e(T ,3ψ)))},

*Truth lemma as before (ingredients are essentially the same).
*Γ 6`Q+N2

ϕ iff CQ+N2
(Γ ) 6|=A(c) ϕ.

Answer to Q3 - constants-
If Q is an axiomatic system complete with respect to l

M
(c)
A
, then

Q+ N2 is complete with respect to g

M
(c)
A
.
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Without constant symbols

Answer to Q3
If Q is an axiomatic system complete with respect to l

MA
, then

Q+ N2 is complete with respect to g
MA

.

Recall soundness was general.

I Let Lc be the axioms including constants from L. Then
Q+ Lc is complete with respect to M

A(c)

I By induction on the derivation, if Γ, ϕ don’t have constants
then Γ `Q+Lc+N2

ϕ implies Γ `Q+N2
ϕ.

I Thus Γ 6`Q+N2
ϕ =⇒ Γ 6`Q+Lc+N2

ϕ ⇐⇒ Γ 6M
A(c)

ϕ. It is
immediate to check that, for Γ, ϕ without constants,
Γ M

A(c)
ϕ ⇐⇒ Γ MA ϕ.
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, then
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Very related questions

I Q3 without limitation to finite algebras seems likely to hold.
However, the current proofs cannot surpass the lack of DT.

I Axiomatizations without constant symbols are not clear out of
very particular case studies (Ł, Gödel).

I Infinitarity of the semantical consequence relation seems to
arise in the modal axiomatizations (even if there exists AS for
the finitary companion at the propositional level)...

thank you!
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