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Metrics

Fréchet [1906]: Metric space (X, d) is a map d : X ×X → [0,+∞] such that

I 0 ≥ d(x, x)

I d(z, y) + d(y, x) ≥ d(z, x)

I d(y, x) = d(x, y)

I d(x, y) = 0 = d(y, x) =⇒ x = y

I d(x, y) 6= +∞

zero self-distance

triangular inequality

symmetry

separatedness

finiteness

(X, d) “has balls”, thus comes with its metric topology, whence the convergence
criterion:

(xn)n → x in (X, d) ⇐⇒ (d(xn, x))n → 0 in [0,+∞].

(This is hineininterpretierung because General Topology did not exist in 1906—but
Fréchet already had this convergence criterion.)



Examples—or not?!

Elements of X = {0, 1}N are bitstreams. Define

d(x, y) =
1

2k

where k is the place of the first letter in which x = x0x1x2... and y = y0y1y2... differ.

Convergence (d(xn, x))n → 0 means that “the initial segments of the xn resemble more
and more to x”

Elements of X = {0, 1}N ∪ {0, 1}∗ are bitstreams and their finite approximations.
Slightly amend the previous definition:

d(x, y) =
1

2k

where k is the place of the first letter in which x = x0x1x2... and y = y0y1y2... differ or
no longer exist.

Unfortunately d is not a metric: d(x, x) 6= 0 if x ∈ {0, 1}∗.
In particular is (d(xn, x))n → 0 an inadequate convergence criterion: x, x, x, ... 6→ x
whenever x is a finite word.



Partial metrics

From the late seventies, several computer scientists (with a strong mathematical
background) were interested in the “bitstream” (or “data flow”) example.
Main issue: non-zero self-distance and “tighter” triangular inequality.
It took more than a decade to settle upon the following axioms (Matthews [1994]):

A map d : X ×X → [0,+∞] is ...

...a metric if: ... a partial metric if:
0 ≥ d(x, x) d(y, x) ≥ d(x, x) ∨ d(y, y)
d(z, y) + d(y, x) ≥ d(z, x) d(z, y)− d(y, y) + d(y, x) ≥ d(z, x)
d(y, x) = d(x, y) d(y, x) = d(x, y)
d(x, y) = 0 = d(y, x) =⇒ x = y d(x, y) = d(x, x) = d(y, y) = d(y, x) =⇒ x = y
d(x, y) 6= +∞ d(x, y) 6= +∞

Convergence criterion for (xn)n → x ...

(d(xn, x))n → 0 (d(xn, x))n → d(x, x)

... is still inadequate! E.g. in the bitstream example, any constant sequence x, x, x, ...
converges to every initial word of x (as well as to x itself).

So we need more than a mere analogy here—we need a common generalisation.



Quantales, quantaloids

A (unital) quantale Q = (Q,
∨
, ◦, 1) is a monoid (Q, ◦, 1) which is also a sup-lattice

(Q,
∨
) such that all f ◦ − and − ◦ g preserve suprema. It is in particular residuated:

g ◦ f ≤ h ⇐⇒ g ≤ h↙ f ⇐⇒ f ≤ g ↘ h.

A quantaloid Q is a category with hom-sup-lattices Q(X,Y ) such that all f ◦ − and
− ◦ g preserve suprema; it is also residuated.

A quantale is thus exactly a quantaloid with a single object. Quantaloids often arise
from universal constructions on quantales.



Diagonals

For f, g, d in any quantaloid Q,

∃d0, d1 :

A0

f
��

d
!!

d0 // B0

g
��

A1
d1
// B1

⇐⇒

A0

f
��

d
!!

g ↘ d
// B0

g
��

A1
d↙ f

// B1

In this case, say that d : f → g is a diagonal in Q.

The quantaloid D(Q) of diagonals in Q is defined by the composition rule

f
��

e ◦g d

''

h
��

= f
��

d
��

//

g

��

e
��

//

h
��// //

, e.g. e ◦g d = (e↙ g) ◦ d

with identities f
��

f
��

f
��

, and local order as in Q.



Diagonals (2)

There is a full embedding

I : Q→ D(Q) :

(
A

f
// B

)
7→

 A

1A
��

f
  

B

1B
��

A B



and also a lax morphism

J0 : D(Q)→ Q :


A0

f
��

d
!!

B0

g
��

A1 B1

 7→
(

A0

g ↘ d
// B0

)
.

(There is a J1 too, but we will not need it.)

Note: even for a quantale Q, the diagonals form a quantaloid D(Q).



[0,+∞]

Write R = ([0,+∞],
∧
,+, 0) for Lawvere’s [1973] (commutative) quantale of positive

real numbers (opposite of natural order!); residuation is a↘ b = b↙ a = 0 ∨ (b− a).
Diagonals are

x : a→ b in D(R) ⇐⇒ ∃x0, x1 : a
��

x0 //

x
��
b
��

x1

//

⇐⇒ x ≥ a ∨ b.

Composition of diagonals looks like:

a

��

x
��

x− b
//

b

��

y
��

y − c
//

c

��

x− a
//

y − b
//

⇐⇒

b y
��

a

x 33

x− b+ y

AA c

Furthermore, R and D(R) compare via

R
I //

D(R)
J0

oo
a 7→ a : 0→ 0

x− b 7→ x : a→ b



Enriched categories

Let Q be a (small) quantaloid. A Q-enriched category C consists of:

I a set C0,
I a type function t : C0 → obj(Q),
I a hom function C : C0 × C0 → arr(Q)

for which we have:
I C(y, x) : tx→ ty,
I 1tx ≤ C(x, x),
I C(z, y) ◦ C(y, x) ≤ C(z, x).

. . .

tz

ty

tx

. . .

•

•
•z

...

•

•
•
y

...

•

••
•x

...

C0

Q

C(z, x)

C(y, x)C(z, y) ≤

With the appropriate notion of Q-enriched functor, we get a category Cat(Q), and with
the appropriate notion of Q-enriched distributor, we get a (large) quantaloid Dist(Q).
The inclusion of Cat(Q) into Dist(Q) (mapping a functor on the left adjoint distributor
that it represents) is the starting point for a very rich theory of Q-enriched categories.



Enriched categories (2)

An involution on Q is a homomorphism

(−)o : Q→ Q
op : ( A

f
// B ) 7→ ( A B

f o

oo )

which satisfies f oo = f , and a Q-category C is symmetric if C(y, x) = C(x, y)o holds.

Any Q-category C can be symmetrised: define Cs to have the same objects and types as
C, but with homs

Cs(y, x) = C(y, x) ∧ C(x, y)o.

This defines the coreflector to the full embedding of symmetric Q-categories into Cat(Q):

SCat(Q)
� � > // Cat(Q)

(−)s
xx



Metrics—again

Consider again the quantale (i.e. one-object quantaloid) R = ([0,+∞],
∧
,+, 0).

Following the previous definition, an R-category C consists of
I a set C0,
I a type function t : C0 → obj(R),
I a hom function C : C0 × C0 → arr(R),

such that, in R, we have
I C(y, x) : tx→ ty,
I 1tx ≤ C(x, x),
I C(z, y) ◦ C(y, x) ≤ C(z, x).



Metrics—again

Consider again the quantale (i.e. one-object quantaloid) R = ([0,+∞],
∧
,+, 0).

Following the previous definition, an R-category C consists of
I a set C0,
I a type function t : C0 → {∗},
I a hom function C : C0 × C0 → arr(R),

such that, in R, we have
I C(y, x) : tx→ ty,
I 1tx ≤ C(x, x),
I C(z, y) ◦ C(y, x) ≤ C(z, x).
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I C(z, y) ◦ C(y, x) ≤ C(z, x).
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Consider again the quantale (i.e. one-object quantaloid) R = ([0,+∞],
∧
,+, 0).

Following the previous definition, an R-category C consists of
I a set C0,
I a type function t : C0 → {∗},
I a hom function C : C0 × C0 → R,
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I a type function t : C0 → {∗},
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) : tx→ ty,
I 0 ≤ C(x, x),
I C(z, y) ◦ C(y, x) ≤ C(z, x).



Metrics—again

Consider again the quantale (i.e. one-object quantaloid) R = ([0,+∞],
∧
,+, 0).

Following the previous definition, an R-category C consists of
I a set C0,
I a type function t : C0 → {∗},
I a hom function C : C0 × C0 → R,

such that, in R, we have
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Metrics—again

Consider again the quantale (i.e. one-object quantaloid) R = ([0,+∞],
∧
,+, 0).

Following the previous definition, an R-category C consists of
I a set C0,
I a type function t : C0 → {∗},
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) : tx→ ty,
I 0 ≥ C(x, x),
I C(z, y) + C(y, x) ≤ C(z, x).



Metrics—again

Consider again the quantale (i.e. one-object quantaloid) R = ([0,+∞],
∧
,+, 0).

Following the previous definition, an R-category C consists of
I a set C0,
I a type function t : C0 → {∗},
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) : tx→ ty,
I 0 ≥ C(x, x),
I C(z, y) + C(y, x) ≥ C(z, x).



Metrics—again

Consider again the quantale (i.e. one-object quantaloid) R = ([0,+∞],
∧
,+, 0).

Following the previous definition, an R-category (X, d) consists of
I a set X,
I a function d : X ×X → R,

such that
I 0 ≥ d(x, x),
I d(z, y) + d(y, x) ≥ d(z, x).

This is a generalised metric space [Lawvere 1973] (and R-enriched functors are
non-expansive maps.)

Considering the trivial involution on the commutative quantale R, a symmetric
R-category is a symmetric generalised metric. Any generalised metric (X, d) can be
symmetrised with the formula

ds(y, x) = d(y, x) ∨ d(x, y).

(Also separatedness and finiteness can be dealt with categorically.)
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Consider again the quantale (i.e. one-object quantaloid) R = ([0,+∞],
∧
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Following the previous definition, an R-category (X, d) consists of
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This is a generalised metric space [Lawvere 1973] (and R-enriched functors are
non-expansive maps.)

Considering the trivial involution on the commutative quantale R, a symmetric
R-category is a symmetric generalised metric. Any generalised metric (X, d) can be
symmetrised with the formula

ds(y, x) = d(y, x) ∨ d(x, y).

(Also separatedness and finiteness can be dealt with categorically.)



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → obj(D(R)),
I a hom function C : C0 × C0 → arr(D(R)),

such that, in D(R), we have
I C(y, x) : tx→ ty,
I 1tx ≤ C(x, x),
I C(z, y) ◦ty C(y, x) ≤ C(z, x).
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Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → arr(D(R)),

such that, in D(R), we have
I C(y, x) : tx→ ty,
I 1tx ≤ C(x, x),
I C(z, y) ◦ty C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in D(R), we have
I C(y, x) : tx→ ty,
I 1tx ≤ C(x, x),
I C(z, y) ◦ty C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) : tx→ ty,
I 1tx ≤ C(x, x),
I C(z, y) ◦ty C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) is a diagonal from tx to ty,
I 1tx ≤ C(x, x),
I C(z, y) ◦ty C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) ≥ tx ∨ ty,
I 1tx ≤ C(x, x),
I C(z, y) ◦ty C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) ≥ tx ∨ ty,
I tx ≤ C(x, x),
I C(z, y) ◦ty C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) ≥ tx ∨ ty,
I tx ≥ C(x, x),
I C(z, y) ◦ty C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) ≥ tx ∨ ty,
I tx = C(x, x),
I C(z, y) ◦ty C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) ≥ C(x, x) ∨ C(y, y),
I tx = C(x, x),
I C(z, y) ◦C(y,y) C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) ≥ C(x, x) ∨ C(y, y),
I tx = C(x, x),
I C(z, y) ◦C(y,y) C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) ≥ C(x, x) ∨ C(y, y),
I tx = C(x, x),
I C(z, y)− C(y, y) + C(y, x) ≤ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category C consists of
I a set C0,
I a type function t : C0 → R,
I a hom function C : C0 × C0 → R,

such that, in R, we have
I C(y, x) ≥ C(x, x) ∨ C(y, y),
I tx = C(x, x),
I C(z, y)− C(y, y) + C(y, x) ≥ C(z, x).



Partial metrics—again

Again following the previous definitions, a D(R)-category (X, p) consists of
I a set X,
I a function p : X ×X → R,

such that
I p(y, x) ≥ p(x, x) ∨ p(y, y),
I p(z, y)− p(y, y) + p(y, x) ≥ p(z, x).

Let us call this a generalised partial metric space [Höhle and Kubiak, 2011; Stubbe,
2014]. (D(R)-enriched functors are non-expansive maps that preserve self-distance.)

(Also symmetry, separatedness and finiteness can be dealt with categorically.)



Partial metrics—again

Again following the previous definitions, a D(R)-category (X, p) consists of
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such that
I p(y, x) ≥ p(x, x) ∨ p(y, y),
I p(z, y)− p(y, y) + p(y, x) ≥ p(z, x).

Let us call this a generalised partial metric space [Höhle and Kubiak, 2011; Stubbe,
2014]. (D(R)-enriched functors are non-expansive maps that preserve self-distance.)

(Also symmetry, separatedness and finiteness can be dealt with categorically.)



Metrics vs. partial metrics

The full embedding I : R→ D(R) : a 7→ (a : 0→ 0) determines the obvious full
embedding

I : Cat(R)→ Cat(D(R))

of metrics into partial metrics.

The lax morphism J0 : D(R)→ R : (x : a→ b) 7→ x− b determines the functor

J0 : Cat(D(R))→ Cat(R)

which sends a partial metric space (X, p) to the metric space (X, p0) in which

p0(y, x) = p(y, x)− p(y, y).

(And remember that we can symmetrise.)



Topology from enrichment

Any subset S ⊆ C0 of a Q-category C determines a full subcategory S ↪→ C.

For S ⊆ C0, we want to compute the largest S ⊆ S ⊆ C0 such that i : S ↪→ S is dense:

for every F,G : S→ X in Cat(Q), if F ◦ i ∼= G ◦ i then F ∼= G.

Doing distributor yoga (not explained here—sorry!), density of i : S→ S is equivalent to

i∗ ⊗ i∗ = idS where S
ci∗
  ⊥c

i∗
bb S.

(So density is “dual” to fully faithfulness.)

This, in turn, leads to the simple formula

S = {x ∈ C0 | C(x, x) =
∨
s∈S

C(x, s) ◦ C(s, x)}

= {x ∈ C0 | 1tx ≤
∨
s∈S

C(x, s) ◦ C(s, x)}.



Topology from enrichment (2)

So, for a subset S ⊆ C0 of a Q-category C, we put

S = {x ∈ C0 | 1tx ≤
∨
s∈S

C(x, s) ◦ C(s, x)}.

From this formula, it is straightforward to prove that:
I S 7→ S is a closure operator on C0—call it the categorical closure on C,
I enriched functors are continuous functions for the categorical closures,
I this makes for a functor Cat(Q)→ Clos.

Furthermore,
I if each identity in Q is ∨-irreducible,

for all X, 1X 6= 0X and if 1X = f ∨ g then 1X = f or 1X = g,

then the categorical closure on each C is topological (for integral Q this is an “iff”),
I an involutive Q is strongly Cauchy-bilateral,

1X ≤
∨
i

gi ◦ fi =⇒ 1X ≤
∨
i

(f o
i ∧ gi) ◦ (fi ∧ goi )

iff the categorical closure on each C is identical to that on its symmetrisation Cs.



Categorical topology on a metric space

In the quantale R = ([0,+∞],
∧
,+, 0), the unit 0 is ∧-irreducible; so the categorical

closure on any generalised metric space (X, d) is topological. For S ⊆ X, the general
formula

x ∈ S ⇐⇒ 1tx ≤
∨
s∈S

C(x, s) ◦ C(s, x)

becomes
x ∈ S ⇐⇒ 0 ≥

∧
s∈S

d(x, s) + d(s, x).

If the metric is symmetric, this is further equivalent to

∀ε > 0 ∃s ∈ S : d(x, s) < ε.

In other words, the categorical topology is then the “usual” metric topology.

As the quantale R is strongly Cauchy-bilateral, the categorical topology on any
generalised metric space (X, d) is identical to the metric topology on (X, ds), the
symmetrisation of (X, d).



Categorical topology on a partial metric space

The quantaloid D(R) has exactly one zero object:

∀a ∈ obj(D(R)) : ∞
∃!
%% a

∃!
gg in D(R).

Equivalently, this means that 1∞ = 0∞ in the quantale D(R)(∞,∞).

Therefore D(R) does not have ∧-irreducible identities, and the categorical closure on a
generalised partial metric space (X, p) may not be topological.

In fact, the general formula

S = {x ∈ C0 | 1tx ≤
∨
s∈S

C(x, s) ◦ C(s, x)}

produces in particular
∅ = {x ∈ X | p(x, x) =∞}

which may not be empty—and this is to be avoided if we want to say something useful
about converging sequences.



Categorical topology on a partial metric space (2)

However, for any (X, p) we always have the categorical sum

X = {x ∈ X | p(x, x) 6=∞}+ {x ∈ X | p(x, x) =∞}

(with obvious induced partial metrics) in Cat(D(R)), and the “interesting topology”
happens in the finitely typed summand of (X, p).

Better still, if we write D(R)ft for the quantaloid D(R) without its zero object ∞, then

Cat(D(R)ft) ↪→ Cat(D(R))

is the full coreflective subcategory of finitely typed generalised partial metric spaces;
the coreflector sends a partial metric space (X, p) to its finitely typed summand.

The quantaloid D(Q)ft has all its identities ∧-irreducible, so we can extract the
categorical topology on the finitely typed summand of any partial metric space via

Cat(D(R)ft)

��

� � > // Cat(D(R))

��

xx

Top
� � // Clos



Categorical topology on a partial metric space (3)

So let now (X, p) be a finitely typed (summand of a) partial metric.

For S ⊆ X, the general formula

x ∈ S ⇐⇒ 1tx ≤
∨
s∈S

C(x, s) ◦ C(s, x)

produces in particular

x ∈ S ⇐⇒ p(x, x) ≥
∧
s∈S

p(x, s)− p(s, s) + p(s, x).

By a happy coincidence (and because p(x, x) 6=∞) this is further equivalent to

0 ≥
∧
s∈S

p0(x, s) + p0(s, x),

where (X, p0) is the generalised metric obtained from (X, p) via J0 : D(R)→ R.

Furthermore symmetrising p0, the categorical topology on a finitely typed partial metric
space (X, p) is exactly the metric topology on (X, (p0)s), where

(p0)s(y, x) = p0(y, x) ∨ p0(x, y) = (p(y, x)− p(y, y)) ∨ (p(x, y)− p(x, x)).



Categorical topology on a partial metric space (4)

A diagrammatic summary of the situation:

Cat(D(R))

��

>
//
Cat(D(R)ft)oo

��

J0 //
Cat(R)

		

oo
(−)s

��

SCat(R)

yy

^^

Clos Topoo

It is perhaps disappointing that there are no more “partially metrizable topologies” than
there are metrizable topologies. Still, that doesn’t mean that it is uninteresting to
express topological phenomena in a partial metric space (X, p) directly in terms of the
given partial metric p.



Convergence in a partial metric space

In a finitely typed (summand of a) generalised partial metric space (X, p), knowing now
that its categorical topology is metrizable by (p0)s, we have

(xn)n → x ⇐⇒ ((p0)s(xn, x))n → 0

⇐⇒ ((p(xn, x)− p(xn, xn)) ∨ (p(x, xn)− p(x, x)))n → 0

⇐⇒ (p(xn, x)− p(xn, xn))n → 0← (p(x, xn)− p(x, x))n

An easy computation shows that this is further equivalent to the “triple convergence”

(p(xn, xn))n

��
(p(xn, x))n

++

(p(x, xn))n
ss

p(x, x)

Note in particular how the self-distances of the terms of a sequence (xn)n must
converge to the self-distance of the limit point!

This rules out the silly example in the partial metric space of bitstreams and words, of
the constant sequence x, x, x, ... “converging” to every initial word of x: it can now only
converge to x itself.



More results

In our preprint on the arXiv, we have an extended discussion of ...

... ‘divisible quantaloids’,

... the (categorical/sequential) Cauchy completion of (X, p),

... the Hausdorff metric on (X, p),

... the exponentiability of (X, p).

Especially for Cauchy completion, our categorical method allows us to correct/complete
some issues with earlier results in the literature.



Closing remarks [Fréchet, 1906]

“It turns out that our [more general] proofs are often as simple, and sometimes even
simpler, than the particular proofs that they replace. This is because the way the
question is put, forced us to use only its really essential features.”


